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Abstract: Reconstruction of bone due to surgical removal or disease-related bony defects is a clinical
challenge. It is known that the immune system exerts positive immunomodulatory effects on tissue
repair and regeneration. In this study, we evaluated the in vivo efficacy of autologous neutrophils
on bone regeneration using a rabbit calvarial defect model. Methods: Twelve rabbits, each with
two surgically created calvarial bone defects (10 mm diameter), were randomly divided into two
groups; (i) single application of neutrophils (SA-NP) vs. SA-NP control, and (ii) repetitive application
of neutrophils (RA-NP) vs. RA-NP control. The animals were euthanized at 4 and 8 weeks post-
operatively and the treatment outcomes were evaluated by micro-computed tomography, histology,
and histomorphometric analyses. Results: The micro-CT analysis showed a significantly higher
bone volume fraction (bone volume/total volume) in the neutrophil-treated groups, i.e., median
interquartile range (IQR) SA-NP (18) and RA-NP (24), compared with the untreated controls, i.e.,
SA-NP (7) and RA-NP (14) at 4 weeks (p < 0.05). Similarly, new bone area fraction (bone area/total
area) was significantly higher in neutrophil-treated groups at 4 weeks (p < 0.05). Both SA-NP and
RA-NP had a considerably higher bone volume and bone area at 8 weeks, although the difference
was not statistically significant. In addition, immunohistochemical analysis at 8 weeks revealed a
higher expression of osteocalcin in both SA-NP and RA-NP groups. Conclusions: The present study
provides first hand evidence that autologous neutrophils may have a positive effect on promoting
new bone formation. Future studies should be performed with a larger sample size in non-human
primate models. If proven feasible, this new promising strategy could bring clinical benefits for bone
defects to the field of oral and maxillofacial surgery.

Keywords: neutrophils; bone regeneration; osteogenesis; rabbit calvarial defect model

1. Introduction

Reconstruction of large bone defects in the oral and maxillofacial region as a result
of trauma, bone tumors, or congenital deformities remains a major clinical challenge [1].
Although autologous bone or synthetic bone grafts have yielded satisfactory results for
bone regeneration, they often possess significant limitations in terms of availability, efficacy,
immunological reactions, and risk of disease transmission [2]. Moreover, additional surgery
for bone harvesting also causes pain and donor site morbidity. For decades, researchers
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have sought suitable alternatives. Bone tissue engineering has been considered a promising
strategy to overcome foregoing challenges in the reconstruction of bone defects.

Hitherto, various approaches in bone tissue engineering have been evaluated, includ-
ing cell- and growth factor-based strategies [3–5]. Recently, it has been proposed that 3D
co-culture systems containing multiple cells are a promising strategy [6,7]. Cell-based ap-
proaches in bone tissue engineering primarily target the early stages of bone repair, which
initiates the inflammatory driven bone regenerative cascade. Until now, several studies
have investigated the ability of different cell types, i.e., embryonic stem cells, induced
pluripotent stem cells, mesenchymal stem cells, and endothelial progenitor cells, in order
to enhance bone repair and regeneration. Despite the advantages of cell-based approaches,
there are unresolved issues such as limitations in the isolation and expansion of cells, the
expression and stability of osteogenic markers, and long-term safety in terms of immune
rejection, graft-versus-host disease, and tumorigenicity [8,9]. Although some encouraging
results have been obtained in vitro, the in vivo efficacy of the aforementioned techniques
is limited [10].

The biology of bone healing is a complex process that follows specific regenerative
patterns and includes an initial inflammatory phase, and repair and remodeling of the
tissues [11]. A neutrophil-predominant, inflammatory reaction is the first healing response
after an injury. Subsequently, a hematoma is formed, and neutrophils, among other cell
types, infiltrate into the tissue and trigger an inflammation-associated bone repair and
regenerative cascade at the site of injury [12–14]. Infiltrated neutrophils result in an elevated
expression of signaling molecules involved in the regulation of bone formation (i.e., pro-
inflammatory cytokines including interleukins (ILs), transforming growth factor beta
(TGF-β), tumor necrosis factor alpha (TNF-α), chemotactic chemokines, fibroblast growth
factor (FGF-2), and platelet-derived growth factor (PDGF)) [13]. This micro-environment
initiates new tissue formation and remodeling.

Recently, it was found that neutrophils are constituted of bona fide subsets that pos-
sess pro-angiogenic properties [15,16]. This specific population of angiogenic neutrophils
secretes matrix metalloproteinase-9 (MMP-9) into the extracellular matrix (ECM) to liberate
pro-angiogenic growth factors, vascular endothelial growth factor (VEGF) and fibroblast
growth factor-2 (FGF-2) into the extracellular matrix, which promote angiogenesis [17–19].
Although the foregoing studies have suggested the key role played by neutrophils in an-
giogenesis and the bone healing processes, conclusive evidence has yet to be demonstrated.
Previously, using a triple-cell co-culture model consisting of osteoblasts, endothelial cells,
and neutrophils, we demonstrated the promising osteogenic and angiogenic potential
of neutrophils in vitro [20]. Thus, neutrophils significantly increased angiogenesis and
osteogenesis in the tissue construct, evidenced by the formation of microvessel-like struc-
tures and a mineralized matrix deposition. Considering the foregoing information and our
encouraging in vitro data, in this pilot study, we sought to evaluate the in vivo efficacy of
neutrophil-mediated bone tissue regeneration.

2. Results
2.1. Clinical Observation

All animals recovered from anesthesia and the surgical procedure, and remained
healthy and active during the observation period. There were no signs of infection or
wound dehiscence during the wound healing process in any of the animals.

2.2. Micro-CT

Micro-CT images of the calvarial defect at 4 and 8 weeks postoperatively are shown in
Figure 1. The circles superimposed on each of the representative micro-CT images indicate
the margin of the original bone defect. Newly generated bone was formed only at the
margins of the defect in the control groups, whereas the SA-NP and RA-NP groups showed
signs of bony repair both at the periphery and the center of the defect (Figure 1B,D,F,H).
Interestingly, neutrophil-treated groups had a significantly higher bone volume fraction at
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4 weeks compared with the controls (p < 0.05). There was significantly higher bone volume
fraction (BV/TV) in the neutrophil-treated groups (Figure 1I). The median interquartile
range (IQR) was used to analyze the data, which showed the higher BV/TV of SA-NP
(18) and RA-NP (24) groups compared to the untreated SA-NP control (7) and RA-NP
control (14) at 4 weeks (p < 0.05) (Supplementary Table S1). The bone volume fraction was
higher in the RA-NP group compared with the SA-NP group at 4 weeks, but the difference
was not statistically significant (Figure 1D). After 8 weeks postoperatively, control groups
(Figure 1E,G) showed a slight increase in the newly formed bone. In contrast, neutrophil-
treated groups showed a considerably high bone formation (Figure 1F,H). The IQR of the
SA-NP and RA-NP groups were higher than the SA-NP control and RA-NP control groups
at 8 weeks (Figure 1I). Although the difference was not statistically significant, there was a
clear gain in the bone volume of the neutrophil-treated groups (p > 0.05).
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Figure 1. Representative micro-CT images of calvarial defects at 4 weeks (A–D) and 8 weeks (E–H) showing: the center of 
the defect of the (A,E) SA-NP control, (B,F) single application of neutrophils (SA-NP), (C,G) RA-NP control, (D,H), and 

Figure 1. Representative micro-CT images of calvarial defects at 4 weeks (A–D) and 8 weeks (E–H) showing: the center of
the defect of the (A,E) SA-NP control, (B,F) single application of neutrophils (SA-NP), (C,G) RA-NP control, (D,H), and
repetitive application of neutrophils (RA-NP). (I) New bone volume measured by micro-CT for different experimental
groups. The volume of new bone was expressed as a percentage of the total volume within the defect. Statistically significant
difference in percentage of new bone volume fraction (BV/TV, %) in neutrophil treated groups compared with respective
controls at both 4 and 8 weeks after healing (p < 0.05).
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2.3. Descriptive Histology

Representative histological images of Masson’s Trichrome and H&E staining are
shown in Figures 2 and 3. The defect sites in the control were observed to be filled mostly
with fibrous connective tissues rather than the newly formed bone at 4 weeks (Figure 2A,C
and Figure 3A,C). Histological analysis revealed minimal amounts of bony ingrowth
and very few bony islands at the defect side (Figure 2A,C and Figure 3A,C). In contrast,
neutrophil-treated groups showed considerable new bone formation at both 4 (Figure 2B,D
and Figure 3B,D) and 8 weeks (Figure 2F,H and Figure 3F,H). At 4 weeks, circular new
bony islands with the presence of early woven bone was observed, originating at the defect
margins. At 8 weeks of healing, newly formed lamellar bone was observed (Figure 2F,H
and Figure 3F,H). The RA-NP group showed more new bony islands compared with the
SA-NP group (Figure 2D,H and Figure 3D,H). Bone maturation was more extensive at
8 weeks of healing.

2.4. Histomorphometry

Histomorphometric analysis of the bone area fractions of the defects are presented
in the Box-plot analysis (Figure 3I and Supplementary Table S1). There were higher bone
area fractions in the neutrophil-treated groups compared with the respective controls
(Figure 3I). The difference between the neutrophil-treated groups and untreated controls
was significant at 4 weeks (p < 0.05). Although there was a considerable difference between
the neutrophil-treated groups and controls at 8 weeks, the difference was not statistically
significant (p > 0.05).

2.5. Local Expression of OCN

New bone formation in the calvarial defect was also analyzed by immunohistochemi-
cal staining for OCN expression (Figure 4). OCN is a key marker for the mature osteoblast
phenotype, specifically in the lamellar bone. Therefore, OCN staining can help to de-
tect osteogenesis in the regenerated bone. The appearance of a yellow-brown substance
indicates positive staining. In the control groups, minimal OCN expression was found
(Figure 4A,C,E,G). The SA-NP group showed increased levels of OCN expression in os-
teoblasts at both 4 and 8 weeks (Figure 4B,F). Compared with the control groups and the
SA-NP group, the RA-NP group showed a stronger OCN expression (Figure 4D,H).
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Figure 2. Histological sections (Masson’s Trichrome staining) of rabbit calvarial defect and the surrounding tissue at 4 
weeks (A–D) and 8 weeks (E–H). (A,E) SA-NP control, (B,F) single application of neutrophils (SA-NP), (C,G) RA-NP 
control, (D,H), and repetitive application of neutrophils (RA-NP). NB, new bone; HB, host bone; FT, fibrous tissue (scale 
bar 100 μm). 

Figure 2. Histological sections (Masson’s Trichrome staining) of rabbit calvarial defect and the surrounding tissue at 4 weeks
(A–D) and 8 weeks (E–H). (A,E) SA-NP control, (B,F) single application of neutrophils (SA-NP), (C,G) RA-NP control,
(D,H), and repetitive application of neutrophils (RA-NP). NB, new bone; HB, host bone; FT, fibrous tissue (scale bar 100 µm).
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8 weeks (E–H). (A,E) SA-NP control, (B,F) single application of neutrophils (SA-NP), (C,G) RA-NP control, (D,H) and 
repetitive application of neutrophils (RA-NP). NB, new bone; HB, host bone; FT, fibrous tissue (scale bar 100 μm). (I) 
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Figure 3. Histological sections (H&E staining) of rabbit calvarial defect and the surrounding tissue at 4 weeks
(A–D) and 8 weeks (E–H). (A,E) SA-NP control, (B,F) single application of neutrophils (SA-NP), (C,G) RA-NP control,
(D,H) and repetitive application of neutrophils (RA-NP). NB, new bone; HB, host bone; FT, fibrous tissue (scale bar 100 µm).
(I) Histomorphometric analysis of the bone area fractions in different experimental groups. The area of new bone was
expressed as a percentage of the total area available for tissue ingrowth within the defect (BA/TA, %). Statistically significant
difference in the percentage of new bone area fraction in the neutrophil treated groups compared with the controls at both
4 and 8 weeks after healing (p < 0.05).
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positive staining for the OCN protein. OCN is highly expressed in the osteoblasts at the margin of the newly formed bony 
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Figure 4. Immunohistochemical staining of osteocalcin (OCN) at 4- and 8-weeks post-surgery. Brown color represents the
positive staining for the OCN protein. OCN is highly expressed in the osteoblasts at the margin of the newly formed bony
islands in the SA-NP (B,F) and RA-NP (D,H) groups, whereas limited positive staining is seen in the SA-NP (A,E) and
RA-NP (C,G) control defect sites at both 4 and 8 weeks (scale bar 100 µm).
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3. Discussion

Ready-to-use cell-based implantation therapies are an urgent requirement in the field
of bone tissue engineering. In the present study, we examined the in vivo efficacy of
autologous neutrophils on bone repair and regeneration using a rabbit calvarial defect
model. The critical-sized 10 mm calvarial bone defect is a well-established model for
the study of bone augmentation that will not heal spontaneously, regardless of the time
given for healing. It was obvious from the findings that healing of the control defects was
considerably less than for the neutrophil-treated groups. Hence, the results demonstrated
that the neutrophils have a positive effect on in vivo bone regeneration. There was a
statistically significant higher bone regeneration in the neutrophil-treated groups, SA-NP
and RA-NP compared with the untreated controls at 4 weeks. Although a considerable
bone formation was seen in the neutrophil-treated rabbit calvarial defects at 8 weeks, the
difference did not reach statistical significance, probably due to the small sample size in
the study.

The comparative differences in the bone regeneration between neutrophil-treated and
untreated groups were observed in the micro-CT analysis as well as histomorphometric
analysis. In the untreated control groups, there was minimal bone regeneration, with no
obvious reduction of the defect area. The new bone volume fraction (BV/TV) as well as new
bone area fraction (BA/TA) in the neutrophil-treated groups were found to be significantly
larger than for the untreated control groups at 4 weeks (p < 0.05). Histologically, Masson’s
Trichrome staining for bone showed large amounts of bony nodules in the neutrophil-
treated groups. As the primary aim of the present study, more focus was placed on
examining these bony islands. The newly formed bone tissue exhibited morphological
features of the normal bone. Dense connective tissues could be seen in the surrounding
area. Bone tissue contained osteoblasts lining the outer edge and osteocytes embedded in
their lacunae. The presence of mature osteoblast phenotypes was indicated by positive
staining for OCN, particularly in the newly formed bone in the neutrophil-treated groups.

Interestingly, repetitive application of neutrophils (RA-NP group) regenerated a higher
percentage of bone within the defect compared with the controls and single application
of neutrophils, i.e., the SA-NP group. This observation can be explained based on the
functional role and the contribution of neutrophils during the early stages of the bone
healing process. The biology of bone healing follows a specific regenerative pattern, and
a neutrophil-predominant, inflammatory response is the first healing response after an
injury [11]. In a normal situation where there is tissue damage, the hematoma releases
cytokines to recruit neutrophils to the wound bed in order to remove possible invasion
of microorganisms. This is indicative of the early inflammatory responses. Even though
neutrophils have a short life span (7–12-h half-life) upon migration into tissues, it has
been shown that neutrophils could remain active in the wound site for considerably
lengthy periods of time, up to 2–3 days [21]. This is evidenced by continuous recruitment
of neutrophils to the site, as well as inhibition of the normal spontaneous apoptosis of
neutrophils during the resolution of inflammation [22,23]. Therefore, supplementation
of an additional neutrophil population is an advantage in order to continue the pro-
inflammatory response at the core of the defect in the early period following injury. This
pro-inflammatory response is known to trigger bone healing and the regenerative cascade.
Neutrophils are able to secrete a myriad of pro-inflammatory mediators, pro-angiogenic
growth factors, and osteogenic factors which initiate and trigger the bone regenerative
cascade [12,13]. Hence, the data derived from the present study indicate that the addition
of supplementary doses of neutrophils at early stages of bone healing may provide a
beneficial effect on immune-modulated bone regeneration.

The in vivo results of the present study are in line with our previous in vitro data that
demonstrated the positive effect of neutrophils on osteogenesis and angiogenesis in a triple
cell co-culture model [20]. Kovtun et al. (2017) also demonstrated that neutrophil reduction
considerably impaired bone regeneration in a rat femur defect model [24]. One of the
most important aspects in the healing process is the fracture hematoma formed during
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the induction stage [25]. Kolar et al. (2010) found that washing out the fracture hematoma
delayed the early healing process of fractures [14]. The hematoma acts as a temporary
scaffold for the active invasion of additional inflammatory cells. The first cells recruited are
polymorphonuclear neutrophils (PMNs), which are attracted by a cytokine/chemokine
gradient response and rapidly accumulate during the first hours after injury. Although
PMNs are short-lived cells, they secrete several cytokines and chemokines, including IL-1,
TNF-α, IL-8, CCL2, and IL-6, and growth factors such as VEGF-A and MCP1 to initiate
and direct the bone repair and regeneration cascade [15,17]. Therefore, modulation in
the early inflammatory phase of bone repair may influence downstream processes of
fracture healing.

In the present study, we used neutrophils in the fibrin gel as a delivery system. It
has been shown that seeding cells in an encapsulated material such as fibrin gel is an
efficient and successful approach in tissue engineering [26–28]. As previously shown by He
et al., the fibrin carrier increases the surface area for cell attachment and provides growth
factors to promote cell differentiation and bone regeneration [29]. Hence, fibrin gel has
been used in similar studies in tissue engineering, as it protects the cells from external
forces, facilitates uniform cell distribution, and readily degrades during wound healing
with minimum inflammation [27,30]. Thus, we took advantage of this strategy to mix the
neutrophils with fibrin gel for delivery into the calvarial defect site. Some studies reported
the ability of fibrin gel to promote new bone formation. However, we still have to examine
if fibrin gel itself promotes osteoblast differentiation and accelerates new bone formation.

Although the neutrophil-treated groups showed considerable new bone formation in
the bone defects, the amount of new bone formed was not adequate to completely heal the
defect. This may be due to the relatively short incubation period of 8 weeks, which is a
limitation of the study. Therefore, future studies are warranted so as to examine the long-
term efficacy of neutrophil-mediated bone regeneration approaches. A small sample size is
another limitation of this study, and future studies with a larger sample size are warranted.

To our knowledge, this is the first study to evaluate the in vivo efficacy of neutrophils
on bone regeneration using a rabbit calvarial defect model. This study has given new
insight into the possible immune-modulated bone regenerative strategies. The application
of autologous neutrophils for bone defect healing and regeneration has many advantages
over autografts, allografts, xenografts, and synthetic bone grafts. This strategy circumvents
the additional surgery needed to collect the bone graft and reduces the risk of disease
transmission and immune rejection.

4. Materials and Methods
4.1. Management of Animals

Twelve male New Zealand white rabbits (Orytolagus cuniculus) weighing between
3.0–3.5 kg were used in this study. According to the guidelines, the rabbits were kept
in separate cages under standard laboratory conditions and were fed a standard rabbit
diet throughout the duration of this study. The selection of experimental animals, their
management, and the surgical protocol was approved by the National Advisory Committee
on Laboratory Animal Research (NACLAR) Singapore.

The animals were randomly divided into two groups of six animals each viz. (i) single
application of neutrophil group (SA-NP) (n = 3), where a single dose of neutrophils mixed
with fibrin gel was added to the defect at once, while the contralateral defect was filled
with phosphate-buffered saline (PBS) with fibrin gel as the control (SA-NP control) (n),
and (ii) repetitive application of neutrophil group (RA-NP) (n = 3), where a single dose of
neutrophils was added to the defect three times on day 0, 2, and 4. Day 0 was similar to
SA NP group, where neutrophils mixed with fibrin gel was added to the defect, while the
contralateral defect was filled with phosphate-buffered saline (PBS) with fibrin gel as the
control. At days 2 and 4, a single dose of neutrophils mixed with PBS was injected to the
defect side, whereas the contralateral side was treated with PBS on the same days (RA-NP
control) (n = 3).
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4.2. Surgical Procedure

Two bilateral circular calvarial defects were made in the parietal bone on each side
of the median sagittal suture without crossing it (Figure 5). In brief, animals were fasted
overnight and received preoperatively 0.2 mg/kg of intramuscular medetomidine hy-
drochloride (Domitor®) (Orion-Farmos, Espoo, Finland) and 10 mg/kg of intramuscular
ketamine pre-operatively. An oral endotracheal tube was used to perform endotracheal
intubation and 1–3% isoflurane was used to maintain anesthesia. The animals were given
2 mg/kg of tramadol and 5 mg/kg of enrofloxacin (Baytril®) (Bayer HealthCare LLC,
Emeryville, CA, USA). The skull regions of the animals were shaved and povidone-iodine
and 0.05% chlorhexidine gluconate solutions were used to clean the area. A midline incision
was performed in the skin of the calvarium along the sagittal suture line. In order to ensure
a uniform defect size, a pre-fabricated surgical guide was employed. Using a surgical burr,
circular osseous bony defects of 10 mm in diameter were made using a surgical burr on
each side of the sagittal suture by standard methodology so as to avoid overheating and to
preserve dura.
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Figure 5. Surgical procedure. (A–C) The appearance of the bilateral 10-mm critical-sized calvarial defects in rabbit cranium.
(D) One side of the defect was filled with either SA-NP or RA-NP with fibrin gel, and the contralateral side was filled with
fibrin gel alone. (E,F) Application of collagen membrane onto the defect.

4.3. Isolation of Autologous Neutrophils from Rabbit Whole Blood

Autologous neutrophils were isolated from the animals by standard protocol, as
previously described [31,32]. Blood collection from the rabbits and isolation of neutrophils
were performed on the same day as the cranial defect surgery in order to ensure the viability
and to minimize the activation of neutrophils. In brief, 15 mL of peripheral blood was
drawn from the ear artery of each animal by venipuncture [33]. Blood was then transferred
into heparin/EDTA anticoagulant treated blood collection tubes and OptiprepTM (Axis-
Shield, Dundee, Scotland) was used to separate the neutrophils from the peripheral blood
mononuclear cells by density gradient centrifugation, according to the optimized protocol
from our group [20,34]. In brief, blood was layered on dextran and incubated for 30 min to
sediment the erythrocytes at first. Subsequently, the leukocyte-rich plasma was layered on
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OptiprepTM and then centrifuged for 30 min at 500× g, at 22 ◦C. The Hanks balanced salt
solution without Ca2+/Mg2+ was used to re-suspend the neutrophils. Residual erythrocytes
were removed with a red blood cell lysis buffer and the cell concentration was estimated
using a hemocytometer. According to the standard methodology, 0.1% trypan blue dye
staining was used to examine the viability of the isolated neutrophils.

4.4. Application of Neutrophils to the Bony Defects

A total of 12 million neutrophils (12 × 106 cells) were mixed with 0.1 mL PBS to
prepare the standardized neutrophil suspension. For the repetitive step, we used freshly
isolated neutrophils from the same animal to obtain an autologous neutrophil sample,
similar to the procedure followed on day 0. Hence, for the repetitive administration of
neutrophils (RA-NP), a fresh blood sample was collected each day at days 2 and 4 to prepare
the fresh neutrophil suspension. Fibrin gel was prepared using TISSEEL kit according
to the manufacturer’s instructions (Baxter International Inc., Deerfield, IL, USA). Equal
volumes (0.05 mL) of human fibrinogen and thrombin solutions were first mixed together
in a mini petri dish to form a semi-solid fibrin gel (0.1 mL) as follows:

(i) SA-NP group: The standardized neutrophil suspension (0.1 mL) was mixed with
a semi-solid fibrin solution and was allowed to form a gel for 3–4 min. Afterwards, the
completely settled fibrin gel/neutrophil mixture was applied into the calvarial bony defect.
The control group was given 0.1 mL PBS mixed with fibrin gel. Each defect was covered
with a collagen membrane (Geistlich Bio-Gide®, Geistlich Pharma AG, Division Biomateri-
als, Wohusen, Switzerland). The collagen membranes came with a standard dimension of
25 mm × 25 mm. The membrane was appropriately cut to fit the calvarial defects.

(ii) RA-NP group: A standardized dose of 12 × 106 neutrophils in PBS (0.1 mL) fibrin
gel was added to the defect side at day 0, whereas the contralateral side was treated with
PBS (0.1 mL) alone. At days 2 and 4, a standardized dose of 12 × 106 neutrophils in PBS
without fibrin gel was added into the defect side using the standard injection method. We
targeted mainly the center of the defect for efficient release and retention of neutrophils.

4.5. Harvesting Tissues for Downstream Analysis

The animals were carefully monitored throughout the postoperative healing period
for any signs of adverse complications such as allergic reactions, and other complications.
The eating habits and stress levels were monitored using rabbit pain assessment (rabbit
grimace scale). The animals received antibiotics (Baytril, 5 mg/kg, IM) for 6 days post-
operatively, and analgesics (Tramadol, 1–3 mg/kg, IM) for 2–5 days post-operatively.
Three animals from each group were sacrificed at two time points, viz. 4 weeks and
8 weeks. The animals were sacrificed according to a standard protocol. Harvested tissue
sections were fixed with 10% neutral buffered formalin solution and wereprocessed for
subsequent micro-computed tomography (micro-CT), histological, histomorphometric,
and immunohistochemical analyses.

4.6. Evaluation Methods
4.6.1. Micro-CT Scanning

Micro-CT images were obtained for the entire specimen using a nanoscan SPECT/CT
system (Mediso Medical Imaging Systems, Budapest, Hungary). The specimens were
secured to the sample holder and attached to the micro-CT animal bed. A semi-circular
scan with 720 X-ray projections at a maximum field of view of 63 mm was used with a 50 kV
current and 300 ms exposure time. The binning factor was set to 1:1 for a higher resolution.
Reconstruction of the CT slices was performed immediately in the system with the set
parameters of medium in-plane voxel size and medium slice thickness to obtain CT data
with 40 µm spatial resolution. After acquisition and reconstruction, the data were exported
for processing and analysis for bone volume fraction (BV/TV) in the defective region.

The images were produced in 0.4 mm slices and were reconstructed in a computer
using VG studio 2.2 3D Image Viewer and Analysis Tool version 2.2 (GE Healthcare,
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Waukesha, WI, USA). A customized region of interest (ROI) was drawn at the defect site.
The ROI was cylindrical in shape, measuring 10 mm in diameter with 2 mm thickness to
cover the whole defect area. BV/TV was determined using the software. This represented
the percentage of mineralized bone detected at the defect site. BV/TV was calculated by
measuring the bone volume (BV) divided by the total volume (TV) in the selected region
of interest.

4.6.2. Histological Analysis

After micro-CT scanning, the specimens were decalcified by a slow decalcification
reagent using 10% EDTA for 28 days. It was then dehydrated using an ascending series of
alcohol, cleared in xylene, and embedded in paraffin. Leica RM2255© microtome (Leica
Microsystems GmbH, Wetzlar, Germany) was used for microtomy of the specimens. The
specimens were cut from the center of each defect and serial sectioning, starting from the
central part to a final thickness of 5 µm. Each section contained three different slices at
intervals of 20 µm to obtain maximum standardization of the cutting surface. Sections
were stained with hematoxylin and eosin (H & E) and Masson’s Trichome for descriptive
histology. Masson’s Trichome stained specimens were used to analyze the final bone area
fraction (BA/TA), which was calculated by measuring the bone area (BA) divided by the
total area (TA) in the selected region of interest.

Representative slides were prepared for each group and the final bone area fraction
was determined.

4.6.3. Histomorphometric Analsysis

The Masson’s Trichome slides were used for the histomorphometrical analysis. Slides
were scanned at 20× using a Leica SCN400 slide scanner (Leica Microsystems GmbH,
Wetzlar, Germany). The images were then exported to Slidepath Digital Image (Version 4.0,
Leica Biosystems, Wetzlar, Germany) for viewing and analysed using the Masson Trichrome
algorithm of Leica Slidepath Tissue Image Analysis software (Version 4.0, Leica Biosystems,
Wetzlar, Germany), which quantifies areas of positive Masson Blue, positive Masson Red,
and total tissue reference.

4.6.4. Immunohistochemistry

To analyze the osteogenic potential in the calvarial defect side, immunohistochem-
istry was performed using an antibody specific for osteocalcin (OCN), as previously
described [35]. Briefly, in order to deactivate the endogenous peroxidase activity, the
sections were immersed in 3% hydrogen peroxide in 0.01 M PBS for 10 min and were then
rinsed several times in PBS. Thereafter, sections were blocked with 10% goat normal anti-
serum (Vector, Burlingame, CA, USA) for 30 min at room temperature. Thereafter, sections
were treated with a primary antibody mouse monoclonal (OCG3) to osteocalcin (Abcam,
ab13420) overnight at 4 ◦C. Next, sections were incubated with the secondary antibody,
goat anti-mouse IgG (Dako) for 30 min, followed by streptavidin peroxidase for 30 min
at room temperature. The sections were incubated in the dark in a chromogen solution
containing diaminobenzidine and 0.1% hydrogen peroxide to reveal the immunoreactivity.
Finally, the sections were counterstained with hematoxylin and then mounted.

4.7. Statistical Analysis

All of the continuous data were first tested for the normality of distribution by Kol-
mogorov Smirnov statistics. The median, together with interquartile range (IQR), were
reported for continuous variables, given the non-normality of the data. Comparisons
among different NP groups were performed by the Kruskal−Wallis test and p < 0.05 was
considered statistically significant. Pairwise comparisons were carried out if a significant
result was found by the Kruskall−Wallis test. All of the analyses were done using R 4.0.5
(https://www.R-project.org/, accessed on 31 October 2021).

https://www.R-project.org/


Int. J. Mol. Sci. 2021, 22, 13016 13 of 14

5. Conclusions

In conclusion, the present study provides the first evidence that the application of neu-
trophils enhances de novo bone formation. The mechanism by which multiple application
of neutrophils enhances new bone formation still remains to be elucidated. Continuous
application of neutrophils to the defect site may have effects on various immune cells to
secrete more effector molecules and growth factors, which are vital for bone tissue healing
and regeneration. Further studies are warranted to obtain better insight into the bone
regenerative potential of repetitive neutrophil application as a bone tissue engineering
strategy. Although our results support the hypothesis that the repetitive application of
neutrophils could promote bone regeneration in defects 8 weeks after application, there is
still insufficient evidence to substantiate the long-term effects of this cellular therapy in
inducing bone healing and formation. Therefore, future long-term in vivo studies should
be conducted to validate the findings of the present study.
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