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Abstract: Circular RNAs (circRNAs) are covalently closed, endogenous non-coding RNAs and
certain circRNAs are linked to human tumors. Owing to their circular form, circRNAs are
protected from degradation by exonucleases, and therefore, they are more stable than linear RNAs.
Many circRNAs have been shown to sponge microRNAs, interact with RNA-binding proteins, regulate
gene transcription, and be translated into proteins. Mounting evidence suggests that circRNAs
are dysregulated in cancer tissues and can mediate various signaling pathways, thus affecting
tumorigenesis, metastasis, and remodeling of the tumor microenvironment. First, we review the
characteristics, biogenesis, and biological functions of circRNAs, and describe various mechanistic
models of circRNAs. Then, we provide a systematic overview of the functional roles of circRNAs
in gynecological cancers. Finally, we describe the potential future applications of circRNAs as
biomarkers for prognostic stratification and as therapeutic targets in gynecological cancers. Although
the function of most circRNAs remains elusive, some individual circRNAs have biologically relevant
functions in cervical cancer, ovarian cancer, and endometrial cancer. Certain circRNAs have the
potential to serve as biomarkers and therapeutic targets in gynecological cancers.

Keywords: circular RNA; gynecological cancer; biomarker; non-coding RNA; cancer diagnosis;
cancer treatment

1. Introduction

The Encyclopedia of DNA Elements (ENCODE) project consortium reported that only 2% of
the transcribed RNAs are translated into proteins, whereas the majority of other transcripts have no
apparent coding potential [1]. Increasing evidence suggests that a significant part of such non-protein
coding RNAs (ncRNAs) participate in complex regulatory networks composed of other nucleic acids
or proteins [2,3]. The complexity of these networks allows ncRNAs to regulate the expression of a
broad spectrum of genes [2,3].

Generally, ncRNAs can be separated into small non-coding RNAs (small ncRNAs), which are
shorter than 50 nt, medium non-coding RNAs, which are between 50–200 nt, and long non-coding
RNAs (lncRNAs), which are longer than 200 nt [4]. MicroRNAs (miRNAs) are the most studied small
ncRNAs and they typically bind to the 3′-untranslated regions (3′-UTR) of protein-coding mRNA by
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imperfect sequence-specific recognition to either degrade it or repress its translation [5]. LncRNAs can
be further subdivided into various categories, including linear RNAs and circular RNAs (circRNAs) [4].
Linear lncRNAs are involved in a broad range of biological processes and are key regulators of cancer
metastasis [6,7].

CircRNAs were first discovered in the 1970s [8,9] and were initially thought to be a non-functional
by-product of aberrant splicing in cells [10]. However, recent advances in sequencing technologies
have revealed that large numbers of circRNAs are broadly expressed in a wide range of mammalian
tissue [11]. Over 30,000 circRNAs have already been found in human tissues [12]. Due to their
circular form and lack of free ends, circRNAs are resistant to RNA degradation by an exonuclease
and have greater stability than linear RNAs [13]. Although the functions of most circRNAs are still
unknown, at least some individual circRNAs are novel players in normal physiological and pathological
conditions [14,15].

In this review, we discuss the characteristics, biogenesis, biological functions, and working
mechanisms of circRNAs, with a particular emphasis on important findings concerning
gynecological cancers.

2. General Characteristics of circRNAs

CircRNAs are covalently-closed RNA molecules, and they are produced by a non-canonical
splicing process called “back-splicing”, which takes place in the nucleus [16]. Unlike typical linear
RNAs, the 5′ cap and 3′ polyadenylation tail (poly-(A) tail) are absent in circRNAs. Therefore,
circRNAs are not easily degraded by an exonuclease and are considerably more stable than linear
RNAs. The average half-life of circRNAs in mammary cells is at least 2.5–4.8 times longer than the
median half-life of their linear counterparts [13,17]. Following biogenesis, the majority of circRNAs,
with the exception of intron-containing circRNAs that mainly exist in the nucleus, are exported to the
cytoplasm in a size-dependent manner [18].

On average, circRNAs contain 1–5 exons and are 500 nt long [16]. The expression of a circular RNA
does not often correlate with the expression of its cognate linear mRNA [16]. Of note, some circRNAs
are expressed at a much lower or higher level than their linear counterparts [16]. Many circRNAs
are highly conserved across mammals [17]. circRNAs exhibit dynamic expression levels during
development and are expressed in a tissue-specific manner [19–21].

3. Mechanisms of circRNA Formation and Degradation

Although the mechanism of circRNA formation is still unclear, the majority of circRNAs are
considered to originate from exons in the coding region of a gene, and the rest originate from the
5′- or 3′-UTRs, introns and intergenic regions, as well as from antisense RNAs [15]. According to
their structural domains, circRNAs can be divided into four categories: exonic circRNA (ecircRNA),
circular intronic RNA (ciRNA), exonic-intronic circRNA (EIciRNA) and intergenic circRNA [22].
EcircRNAs appear to be the most abundant circRNA type, accounting for over 80% of known
circRNAs [23]. There are currently three hypothetical models to explain the formation of ecircRNAs:
lariat-driven circularization, intron-pairing-driven circularization, and RNA-binding protein-mediated
circularization [24,25]. The generation of ecircRNAs is a result of pre-mRNA splicing when the 3′ splice
donor attaches to the 5′ splice acceptor [24,25]. Researchers have also demonstrated that RNA-binding
proteins can serve as activators or inhibitors in the formation of circRNAs [24,25]. For instance, Quaking
preferentially binds to a particular sequence motif on a linear RNA and bridges the two bracketing
introns together, thus facilitating the formation of circRNAs in human mammary epithelial cells [26].

Compared to the mechanisms of circRNA formation, our understanding of circRNA degradation is
limited. Some miRNAs can direct Ago2 to degrade circRNAs in human lung cancer cells and HEK-293
cells [27,28]. A previous study reported that an endonuclease, RNase P/MRP, cuts N6-methyladenosine
(m6A)-containing circRNA in a sequence-dependent manner [29]. Upon viral infection, the activation
of the endonuclease RNase L is responsible for circRNAs degradation [30]. A good number of circRNAs
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in human tumor cells are predicted to be highly structured, and their decay is regulated by UPF1
and G3BP1, two RNA-binding proteins [31]. In addition, human tumor cells can remove cytoplasmic
circRNAs by releasing cargo-bearing extracellular vesicles, such as microvesicles and exosomes [32,33].

4. Biological Functions and Mechanistic Models of circRNAs in Tumors

In human tumor cells, circRNAs are believed to serve as miRNA (or protein) sponges, scaffolds
for proteins, regulators of transcription or splicing, and a few circRNAs can be translated into peptides
or proteins under certain conditions (Figure 1). Some circRNAs can regulate cancer metastasis and
affect the tumor microenvironment.
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Figure 1. Functional mechanisms of circular RNAs (circRNAs). CircRNAs, like mRNAs, are transcribed
from protein-coding genes by RNA polymerase II (Pol II). However, they are spliced in a non-canonical
splicing process known as back-splicing. Following biogenesis, the majority of circRNAs are exported
to the cytoplasm in a size-dependent manner. (a) CircRNAs may act as microRNA (miRNA) sponges
by binding to miRNAs and inhibiting their functions, thereby releasing downstream target genes from
miRNA-mediated repression. (b) CircRNAs that harbor binding sites for RNA-binding proteins (RBPs)
may function as protein sponges and thus regulate gene expression. In addition, circRNAs may work as
scaffolds in the assembly of protein complexes. (c) CircRNAs may associate with Pol II to enhance the
transcription of their parental genes. (d) CircRNAs may compete with their linear counterparts against
canonical pre-mRNA splicing, thus suppressing the expression of their parent genes. (e) CircRNAs
that contain internal ribosomal entry site (IRES) elements and open reading frame may be translated
into protein or polypeptide.

4.1. MiRNA Sponge

One of the most frequently studied functions of circRNA is its ability to act as a miRNA sponge.
Recent observations have found that some lncRNAs act as competing endogenous RNAs (ceRNAs),
which regulate other RNA transcripts by competing for shared miRNAs [25] (Figure 1a). CircRNAs
that harbor multiple binding sites for miRNAs can function as efficient miRNA sponges to indirectly
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regulate the expression of protein-coding genes [34]. For example, circHIPK3 modulates tumor cell
growth by silencing nine miRNAs [23]. Despite the consistency of these findings, there are a few
examples that challenge this ceRNA hypothesis for circRNAs [35,36]. For example, bioinformatics
analysis has indicated that miRNA-binding sites are generally not enriched in circRNAs any more than
could be expected by chance, with the exception of the reported circRNA, ciRS-7 [35]. In another study,
the circRNAs downloaded from the circBase database were screened for Ago2-bound regions [36].
As a result, 58,063 circRNAs were found to own Ago2-bound regions. Six circRNAs were selected,
and the potential ability of these circRNAs to interact with miRNAs was explored using RNA-binding
protein immunoprecipitation-PCR experiments. The results revealed that these six circRNAs did not
exhibit strong potential to serve as miRNA sponges [36].

4.2. Protein Sponge and Scaffold

RNA-binding proteins are a class of proteins that bind RNAs to regulate the metabolic processing of
RNAs by mediating their maturation, transport, localization, translation and turnover [37] (Figure 1b).
CircRNAs that contain multiple complementary binding sites to one or multiple proteins might
function as protein sponges. Several circRNAs were suggested to sequester HuR, an extensively
studied RNA-binding protein, which consequently affects its action on target gene regulation [38–40].
The interactions between circRNAs and RNA-binding proteins have been shown to influence cancer
progression [41]. In addition, circRNAs were observed to act as dynamic scaffolds that bring different
proteins together to form a complex [41]. In mouse fibroblast cells, circ-Foxo3 can interact with both
p21 and CDK2 to form a ternary complex that results in the inhibition of cell cycle progression [42].

4.3. Transcription and Splicing

Unlike ecircRNAs, which are located in the cytoplasm, ciRNAs and EIciRNAs are primarily
enriched in the nucleus. Previous studies have shown that a class of EIciRNAs interact with RNA
polymerase II (Pol II) and accumulate at transcription sites, thereby promoting the transcription of
their parental genes [43,44] (Figure 1c). Moreover, certain circRNA can compete with their linear
counterparts against canonical pre-mRNA splicing, thus suppressing the expression of their parent
genes [45,46] (Figure 1d).

4.4. Translation of circRNAs

CircRNAs were initially regarded as ncRNAs that lack protein-coding abilities, owing to the
absence of a 5′ cap structure and poly-(A) tail. However, subsequent studies have revealed that
some circRNAs carry open reading frames, and can be translated into peptides or proteins [47,48]
(Figure 1e). The presence of internal ribosomal entry sites (IRES) was shown to drive circRNA
translation through a cap-independent mechanism [49]. N6-methyladenosine (m6A) refers to the
methylation that occurs in the mRNAs, and the presence of m6A on circRNA has the potential to
initiate cap-independent translation [50]. The peptides or proteins encoded by circRNAs have critical
functions in mediating cancer development [51,52]. Therefore, it seems necessary to determine whether
the proteins originating from circRNA translation are functional in gynecological cancers.

5. Methods for Detecting and Characterizing circRNAs

The detailed description of bioinformatic tools, laboratory techniques and general workflow used
for circRNA research has been reviewed elsewhere [53–57].

Previous studies have demonstrated that tumor-adjacent tissues have similar molecular changes
to those found in the tumor tissues or present a unique intermediate state between healthy and tumor
tissues [58–60]. One example is miR-29c, which is significantly upregulated in tumor-adjacent tissues
when compared with gastric cancer tissues as well as non-cancerous tissues [60]. Most of the previous
studies that analyze circRNA global expression in human cancer tissues have only used matched
tumor-adjacent samples as normal control [61,62]. The results indicate that the expression of circRNAs
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in cancer tissues is frequently downregulated when compared with the matched tumor-adjacent
tissues [61,62]. However, some circRNAs are actually overexpressed in tumor-adjacent tissues in
comparison to cancer samples and normal samples without cancer [63], suggesting that the use of
tumor-adjacent tissues for comparison purposes may lead to experimental biases regarding the true
circRNA expression profile associated with tumors [63].

The functional characterization of circRNAs is commonly conducted by following two types of
strategies: RNA interference (RNAi)-induced circRNA silencing and gain-of-function studies using
circRNA expression plasmids. One of the challenges for circRNA overexpression is that the vectors
used for overexpressing circRNA might generate many undesired transcripts, such as linear RNAs or
concatenated and/or intertwined circRNAs [64,65]. Therefore, it might be difficult to determine if a
specific circRNA has an impact on a particular phenotype in tumor cells. Although recently developed
expression vectors were believed to efficiently drive circRNA formation, but not linear RNAs [66],
the combination of RNAi-based gene silencing with vector-mediated overexpression approaches may
present more opportunities to fully understand the exact functions of circRNAs in tumor cells.

Recently, the novel CRISPR/Cas13-based approaches using guide RNAs, which target the
circRNA-specific back-splicing junction sites, have been used to achieve precise and robust circRNA
silencing without disturbing their linear cognate mRNAs [67,68]. These studies suggest that the
application of CRISPR/Cas-based circRNA engineering systems may be a promising method for
performing functional studies of circRNA in human cancers.

6. Evidence Acquisition

This review included literature from the PubMed and Google Scholar databases published up to
20 February 2020, using the following keywords: circular RNA, circRNA, cervical cancer, endometrial
cancer, ovarian cancer, vaginal cancer and vulvar cancer. All studies recognized were assessed for
relevance by two authors by checking the title and abstract. After excluding the irrelevant articles,
studies without access to the full-text of the publication, case reports, letters, expert opinions, meeting
proceedings, review articles and non-English articles, our screening identified 83 articles that addressed
the expression, roles and mechanisms of circRNAs in cervical cancer (CC), ovarian cancer (OC) and
endometrial cancer (EC). These selected articles were evaluated independently by two authors. A flow
diagram of the study selection process was shown in Figure 2.
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7. The Expression, Functions and Mechanisms of circRNAs in Gynecological Cancers

7.1. CircRNAs in CC

CC is the fourth most common female malignancy in the world and kills more than 300,000 deaths
worldwide each year [69]. High-risk subtypes (16 and 18) of human papillomavirus (HPV) are well
established as the causative agents responsible for CC [69]. Massive studies have shown that a large
number of circRNAs were differentially expressed in CC tissues compared with adjacent normal
cervical tissues, and play oncogenic or tumor-suppressive roles in the initiation and progression of
CC [70–105]. All of the circRNAs that are abnormally expressed in CC are summarized in Table 1,
and their functions in CC are shown in Figure 3. As demonstrated by many studies, circRNAs function
as miRNA sponges to regulate different aspects of CC progression through regulating multiple signaling
pathways (Figure 3). These studies demonstrate that the circRNA-miRNA-mRNA regulatory networks
and an HPV E7 oncoprotein-encoding circRNA play crucial roles in controlling CC tumorigenesis
and progression.
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Table 1. The expression and mechanisms of circRNAs in cervical cancer (CC).

CircRNA Samples or Cell Lines Expression Function Mechanism Ref.

circ0018289 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Sponges miR-497 [76]

circ000284 HeLa and SiHa cells Up Oncogene Increases Snail-2 expression via sponging miR-506 [77]

circ0023404 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Activates YAP pathway via promoting TFCP2 expression by sponging miR-136 [78]

circ8924 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Increases CBX8 expression via sponging miR-519a-5p [79]

circ0067934 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Increases EIF3C expression via sponging miR-545 [80]

circ0000263 HeLa and C33A cells Up Oncogene Inhibits p53 levels by upregulating MDM4 expression via sponging miR-150-5p [81]

circSMARCA5 CC and adjacent normal tissues; HeLa and C33A cells Down TS Sponges miR-620 [82]

circ101996 CC and adjacent normal tissues; SiHa and CaSki cells Up Oncogene Increases TPX2 expression by sponging miR-8075 [83]

circEIF4G2 CC and adjacent normal tissues; HeLa and C33A cells Up Oncogene Increases HOXA1 expression by sponging miR-218 [84]

circATP8A2 CC and adjacent normal tissues; HeLa and SW756 cells Up Oncogene Increases EGFR expression by sponging miR-433 [85]

circ0023404 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Increases VEGF-A expression by sponging miR-5047 [86]

circE7 CaSki cells - Oncogene Codes HPV E7 oncoprotein [87]

circMTO1 HeLa and SiHa cells Up Oncogene Increase S100A1 expression by sponging miR-6983 [88]

circ0000745 CC and adjacent normal tissues; CaSki and SiHa cells Up Oncogene Inhibits E-cadherin expression [89]

circ0007534 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Increases BMI-1 expression by sponging miR-498 [90]

circ0005576 CC and normal cervical tissues; HeLa and SiHa cells Up Oncogene Increases KIF20A expression by sponging miR-153 [91]

circ0000285 CC and adjacent normal tissues; C33A cells Up Oncogene Increases FUS expression [92]

circAGFG1 HeLa and SiHa cells Up Oncogene Activates MEK/ERK pathway via promoting RAF1 expression by sponging miR-370-3p [93]

circ0075341 CC and normal cervical tissues; CaSki and SiHa cells Up Oncogene Increases AURKA expression by sponging miR-149-5p [94]

circ0000515 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Increases ELK1 expression by sponging miR-326 [95]

circ0001038 CC and adjacent normal tissues; HeLa and SW756 cells Up Oncogene Increases Cyclin-M3/MACC1 expression by sponging miR-337-3p [96]

circAMOTL1 CC, adjacent normal tissues and normal cervical tissues;
CaSki and HeLa cells Up Oncogene Increases AMOTL1 expression by sponging miR-485-5p [97]

circMYBL2 CC, and adjacent normal tissues; CaSki and HeLa cells Up Oncogene Sponges miR-361-3p [98]

circCLK3 CC and adjacent normal tissues; HeLa and SiHa cells Up Oncogene Induces EMT via promoting FoxM1 expression by sponging miR-320a [99]

ciRS-7 CC, cervical intraepithelial neoplasia and normal cervical
tissues, HeLa, CaSki, C33A and SiHa cells Up Oncogene Increases N-cadherin/Vimentin expression and decreases E-cadherin expression [100]

circSLC26A4 CC and adjacent normal tissues; CaSki and HeLa cells Up Oncogene Increases HOXA7 expression by sponging miR-1287-5p [101]

circSMARCA5 CC and adjacent normal tissues; CaSki and HeLa cells Up Oncogene Increases EGFR expression by sponging miR-432 [102]

circITCH CC and adjacent normal tissues; HeLa cells Down TS Increases FOXK2 expression by sponging miR-93-5p [103]

circHIPK3 CC and adjacent normal tissues; HeLa and C4I cells Up Oncogene Increases HIF-1α expression by sponging miR-338-3p [104]

circCSPP1 CC and adjacent normal tissues; HeLa cells Up Oncogene Increases Integrin β1 expression and activate the PI3K/AKT pathway via sponging miR-361-5p [105]

TS: tumor suppressor; up: upregulation; down: downregulation.
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7.1.1. CircRNAs as Oncogenes in CC

CircRNAs Promote CC Growth, Survival, Invasion, EMT and Chemoresistance

Diverse circRNAs (such as circEIF4G2, circ0007534, circ0005576, circ0075341, circ0000515,
circAMOTL1, and circSLC26A4) were previously described to promote the tumorigenesis of CC
by increasing the respective downstream targets mRNAs, including HOXA1, BMI-1, KIF20A, AURKA,
ELK1, AMOTL1 and HOXA7 via sponging miRNAs [84,90,91,94,95,97,101]. Additionally, circRNAs
(such as circ0018289, circ0000285 and circMYBL2,) were found to be overexpressed in CC tissues,
and their upregulation enhanced CC cell invasion and metastasis [76,92,98].

The PI3K/AKT signaling pathway controls multiple cellular processes including proliferation,
growth, invasion and chemoresistance, and it is one of the most frequently dysregulated pathways in
human cancers, including CC [106,107]. Integrin β1 can promote cancer initiation and progression
through the activation of multiple downstream pathways, including the PI3K/AKT signaling [108].
By sponging miR-361-5p, circCSPP1 stimulates the expression of integrin β1, allowing downstream
activation of the PI3K/AKT pathway, which contributes to CC cell proliferation and migration [105].
The RAF/MEK/ERK cascade plays a critical role in the development and progression of cancer [109].
A recent study suggested that circAGFG1 was upregulated in CC cell lines compared with normal
cervical cells, and it could induce CC cell proliferation and migration by elevating RAF1 expression
and activating the MEK/ERK pathway, via sponging miR-370-3p (a suppressor of RAF1) [93].
Epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells acquire
mesenchymal phenotypes, thus conferring the malignant properties to cancer cells including invasive
behaviors, cancer stem cell properties, and greater resistance to cancer treatment [110]. Experimental
studies have revealed that circRNAs affect the EMT program in human cancers (including CC) through
different mechanisms [77,80,89,99,100,104,111]. For instance, circ000284 indirectly increases Snail-2
expression to promote EMT and invasion of CC cells through sponging miR-506 [77]. CircCLK3 induces
the levels of FOXM1 via sponging miR-320a, and overexpression of FOXM1 could trigger EMT-like
changes, including the acquisition of Vimentin and N-cadherin expression and reduction of E-cadherin
expression [99]. Also, the upregulation of circ0067934, circ0000745, ciRS-7 and circHIPK3 in CC cells
was shown to increase the expression of mesenchymal markers and decrease the expression of epithelial
markers [80,89,100,104]. Inactivation of p53 in human tumors occurs through missense mutations in
the DNA-binding domain of the p53 protein, and can also result from the amplification/overexpression
of its specific inhibitors (such as MDM2 and MDM4) [112]. Circ0000263 can increase the expression of
MDM4 by sponging miR-150-5p, thus causing degradation of p53 in CC cells [81].

Circ0023404 enhanced chemoresistance of CC cells to cisplatin by regulating autophagy
signaling [86]. Moreover, another circRNA, circMTO1, was shown to upregulate S100A1 expression
through sponging miR-6893, thereby promoting tumorigenesis and chemoresistance in CC [88].

CircRNA Encodes HPV E7 Oncoprotein

The oncoproteins E6 and E7 encoded by HPV16 and 18 contribute to the neoplastic transformation
of squamous cervical epithelium [113]. The E6 protein from high-risk HPVs binds the p53 tumor
suppressor protein for degradation [114], whereas the E7 protein interacts with the retinoblastoma
protein and inactivates this cellular protein [115]. A recent report showed that oncogenic HPV16
generates a 472nt circular RNA called circE7, which contains the entire E7 open reading frame [87].
In this study, circE7 was shown to be translated to the E7 oncoprotein, and knockdown of circE7
in CC-derived CaSki cells reduced E7 protein levels and suppresses tumor growth and malignancy
both in vitro and in vivo [87]. These results suggest that circE7 appears to be essential for E7 protein
expression and the transformation of CaSki cells.
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CircRNAs as Tumor Suppressors in CC

Recent data suggest that circSMARCA5 was downregulated in CC tissues compared with
adjacent normal tissues, and overexpression of circSMARCA5 suppresses the proliferation and
invasion of HeLa cells by sponging miR-620 [82]. However, controversial findings have been reported
in another study showing that circSMARCA5 was expressed at higher levels in CC tissues, and
knockdown of circSMARCA5 suppressed cellular growth and invasion [102]. The oncogenic functions
of circSMARCA5 were mediated through a miR-432/EGFR axis [102]. Besides, the expression of
circITCH was significantly decreased in CC tissues compared with the adjacent normal tissues [103].
CircITCH acts as an endogenous miR-93-5p sponge to induce the levels of FOXK2 in CC cells, leading
to the suppression of the malignant behaviors [103].

7.2. CircRNAs in OC

Expression profiling studies and bioinformatics analysis have revealed significant changes in
circRNA expression between OC tissues and normal ovarian tissues [116,117], between miliary-type
OC and non-miliary OC [118], between serum samples from OC patients and those samples from
healthy controls [119], between primary and metastatic sites of OC [120], and between OC cells
and non-malignant human ovarian surface epithelial cells [62]. The expression and mechanisms of
circRNAs in OC are presented in Table 2 and their biological roles are shown in Figure 4.
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Table 2. The expression and mechanisms of circRNAs in ovarian cancer (OC).

CircRNA Samples or Cell Lines Expression Function Mechanism Ref.

circEPSTI1 OC and adjacent normal tissues; OV119 and A2780 cells Up Oncogene Increases EPSTI1 expression by sponging miR-942 [121]

circGFRA1 OC and adjacent normal tissues; OV119 and A2780 cells Up Oncogene Increases GFRA1 expression by sponging miR-449a [122]

circ0051240 OC and adjacent normal tissues; OVCAR-3 and H8910 cells Up Oncogene Increases KLK4 expression by sponging miR-637 [123]

circPIP5K1A OC and adjacent normal tissues; SKOV-3 and A2780 cells Up Oncogene Increases IGFBP5 expression by sponging miR-661 [124]

circPVT1 SKOV-3 and CAOV3 cells Up Oncogene Sponges miR-149 [125]

circABCB10 OC and adjacent normal tissues; SKOV-3 cells Up Oncogene Inhibits miR-1271, miR-1252 and miR-203 expression [126]

circSMAD7 OC and adjacent normal tissues; TOV112D cells Up Oncogene Inhibits KLF6 expression [127]

circANKRD12 SKOV-3 cells Up Oncogene Increases Cyclin-D1 expression [128]

circCSPP1 OC, borderline tumor and normal ovarian tissues; OVCAR-3 and A2780 cells Up Oncogene Sponges miR-1236-3p [129]

circ0061140 SKOV-3 and A2780 cells Up Oncogene Promotes EMT by increasing FOXM1 expression via sponging
miR-370 [130]

circUBAP2 OC and adjacent normal tissues; OVCAR-3 and H8910 cells Up Oncogene Increases CDH2 expression by sponging miR-144 [131]

circWHSC1 OC and normal ovarian tissues; OVCAR-3 and CAOV3 cells Up Oncogene Increases MUC1/hTERT expression by sponging miR-145/1182 [132–134]

circVPS13C-
has-circ-001567 OC and adjacent normal ovarian tissues; SKOV-3 and OV-1063 cells Up Oncogene Increases N-cadherin expression and decreases E-cadherin

expression [135]

circCELSR1 Drug-resistant/sensitive OC tissues; SKOV3 and HeyA-8 cells Up Oncogene Increases FOXR2 expression by sponging miR-1252 [136]

circPUM1 OC and normal ovarian tissues; OVCAR-3 and A2780 cells Up Oncogene Increases NF-κB/MMP2 expression by sponging
miR-615-5p/miR-6753-5p [137]

circRhoc OC and normal ovarian tissues; CAOV3 and A2780 cells Up Oncogene Increases VEGF-A expression by sponging miR-302e [138–140]

circITCH OC and adjacent normal ovarian tissues; CAOV3 and SKOV-3 cells Down TS Increases RASA1 expression via sponging miR-145 [141]

circITCH SKOV-3 cells Down TS Sponges miR-10a-α [142]

circITCH OC and normal ovarian tissues; UWB1.289 and UWB1.289 + BRCA1 cells Down TS Inhibits lncRNA HULC expression [143]

circITCH OC and adjacent normal ovarian tissues; SKOV-3 cells Down TS - [144]

circCDR1as OC and normal ovarian tissues; H8910 and A2780 cells Down TS Increases HIF1AN expression by sponging miR-135b-5p [145]

circCDR1as Drug-resistant/sensitive OC tissues; SKOV3 and A2780 cells Down TS Increases SCAI expression by sponging miR-1270 [146]

circ0007874 SKOV3 and A2780 cells Down TS Increases SOCS3 expression by sponging miR-760 [147]

circLARP4 SKOV3 and A2780 cells Down TS Increases LARP4 expression by sponging miR-513b-5p [148]

circPLEKHM3 Primary OC, metastatic OC and normal ovarian tissues; A2780 and
MDAH2274 cells Down TS

Inactivates the PI3K/AKT and Wnt/β-catenin pathways via
promoting BRCA1, DNAJB6a and KLF4 expression by sponging

miR-9
[149]

circ100395 OC and adjacent normal ovarian tissues; SKOV-3 and ES-2 cells Down TS Increases E-cadherin expression and reduces N-cadherin and Snail
expression via promoting p53 expression by sponging miR-1228 [150]

TS: tumor suppressor; up: upregulation; down: downregulation.
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7.2.1. CircRNAs as Oncogenes in OC

CircRNAs Promote CC Growth, Survival, Invasion, EMT, Chemoresistance and Metastasis

Several circRNAs (such as circEPSTI1, circGFRA1, circ0051240, circPIP5K1A, circPVT1 and
circABCB10) have been found to increase the proliferative and invasive capacities of OC cells by
acting as miRNA sponges [121–126]. Knockdown of circSMAD7 by short-hairpin RNA (shRNA) was
associated with decreased cell proliferation, migration and invasion and with increased expression of
KLF6 in CC cells [127]. Silencing of circANKRD12 reduced OC cell proliferation, probably through
downregulating the expression of cyclin D1 [128].

CircCSPP1 was shown to be highly expressed in OC tissues and borderline tumor tissues
when compared with normal ovarian tissues [129]. Further investigations suggest that circCSPP1
sponged miR-1236-p to increase the expression of ZEB1, leading to increased cell invasion and
EMT phenotypes [129]. Circ0061140, which was upregulated in OC cell lines relative to normal
ovarian epithelial cells, was reported to stimulate OC cell proliferation, invasion and EMT properties,
probably via binding to miR-370 [130]. Overexpression of FOXM1, a target of miR-370, rescued the
EMT properties that were reduced by either circ0061140 silencing or miR-370 overexpression [130].
By sponging miR-144, circUBAP2 promoted the expression of N-cadherin in OC cells [131]. CircWHSC1
was increasingly expressed in OC tissues compared with normal ovarian tissues, and there was a
tendency towards increased levels of circWHSC1 expression in poorly- and moderately-differentiated
OCs compared with well-differentiated OCs [132]. By interacting with miR-145/miR-1182, circWHSC1
was shown to elevate the levels of two EMT-inducer genes (MUC1/hTERT) in OC cells [132–134].
Inhibition of a circRNA VPS13C-has-circ-001567 by shRNA attenuated cellular invasion, resulting in
the downregulation of N-cadherin and upregulation of E-cadherin [135].

CircCELSR1 acts as a sponge for the tumor suppressor miR-1252, and suppression of miR-1252,
in turn, contributes to paclitaxel resistance in OC cells, possibly by inducing the expression of its target
gene FOXR2 [136].

CircPUM1 was found to be highly expressed in OC tissues compared with normal ovarian tissues,
and higher circPUM1 expression was positively correlated with advanced FIGO stage [137]. Studies
in both OC cell lines and mouse OC models suggest that circPUM1 promoted cell invasiveness and
growth by sponging miR-615-5p and miR-6753-5p to upregulate NF-κB and MMP2 expression [137].
Interestingly, circPUM1 was present in OC cell-derived extracellular vesicles, and exosomal circPUM1
facilitated tumor peritoneal dissemination in vivo [137].

CircRNAs Promotes Angiogenesis in OC

Angiogenesis is influenced by the microenvironment and tightly regulated by a balance between
pro- and anti-angiogenic factors [138]. Vascular endothelial growth factor (VEGF-A) has a prominent role
in tumor angiogenesis [139]. CircRhoC, a circRNA derived from the RhoC mRNA, was overexpressed
in OC tissues relative to normal ovarian tissues, and higher circRhoC expression was detected in
advanced-stage tumors compared with early-stage tumors [140]. Suppression of circRhoC with
shRNA significantly attenuated cell migration and invasion in vitro, and inhibited the intraperitoneal
dissemination of OC cells in vivo [140]. By performing mechanistic analysis, the same study indicated
that circRhoC can serve as a sponge for miR-302e to upregulate the expression of VEGF-A, which
potentially promotes OC angiogenesis and metastasis [140].

7.2.2. CircRNAs as Tumor Suppressors in OC

Some circRNAs exert their tumor-suppressive roles in OC cells [141–150] (Table 2 and Figure 4).
According to these reports, the “miRNA” sponge seems to be the most common mechanism by which
circRNAs regulate the malignant properties of OC cells. Interestingly, one study proposed a different
potential mechanism whereby circITCH might inhibit the proliferation of OC cells by downregulating
the levels of lncRNA HULC, although the interaction between circITCH and HULC has not yet been
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defined [143]. Aberrant activation of the Wnt/β-catenin signaling plays a key role in promoting
the cancer stem cell self-renewal, metastasis and chemoresistance in OC [151]. By sponging miR-9,
circPLEKHM3 functions as a tumor suppressor to enhance the expression of BRCA1, DNAJB6 and
KLF4, which consequently inactivate the PI3K/AKT and Wnt/β-catenin signaling pathways in OC
cells [149].

7.3. CircRNAs in EC

To date, very few reports on circRNAs in EC have been published [152–156]. The expression profile
of circRNAs was found to be altered in EC tissues compared with the adjacent normal tissues [152].
Similarly, another study identified 62,167 circRNAs that were differentially expressed in grade 3 EC
tissues when compared with the adjacent normal tissues [153]. A recent study indicated a positive
correlation between RNA-binding protein QKI and circRNAs, and a negative correlation of QKI with
the activity of specific miRNAs, suggesting a potential model where QKI, circRNAs, and miRNAs form
a regulatory feedback loop in EC [154]. Another study identified differentially expressed circRNAs
(including 209 upregulated circRNAs and 66 downregulated circRNAs) in extracellular vesicles isolated
from the serum of EC patients compared with healthy controls [155]. CircPUM1 was significantly
overexpressed in EC tissues and EC cell lines, and it promoted the development of EC by regulating
the miR-136/NOTCH3 axis [156].

8. CircRNAs as Potential Biomarkers in Gynecological Cancers

Early studies have provided evidence that circRNAs could be used as biomarkers in distinguishing
cancer tissues from normal tissues and predicting the progression and prognosis, and assessment of
response to therapy in many cancer types [15]. Dysregulation of circRNAs has been reported to be closely
related to the clinicopathological characteristics of patients with CC, OC and EC [79,80,94,117,149,153].
In addition, levels of some circRNAs have been associated with survival times in patients with CC and
OC [78,80,141,142,157–160]. In an in silico analysis of an OC dataset obtained from the GEO database,
the expression of six-circRNAs was found to be an independent predictor of overall survival in patients
with OC [160].

Moreover, circRNAs can be released into the extracellular space, and subsequently detected
in body fluids (such as blood, plasma, serum and exosomes) from patients with gynecological
cancers [117,119,137,161–163]. Higher serum levels of circSETDB1 have been found in patients with
OC compared to healthy controls [161]. Serum levels of circSETDB1 were positively correlated with
chemoresistance and shorter survival in patients with OC [161]. CircBNC2 was downregulated in the
plasma of patients with OC compared to healthy individuals, and plasma levels of circBNC2 provided
a potential tool to distinguish patients with early-stage OC from healthy individuals [164].

The circRNAs that might serve as potential prognostic biomarkers in gynecological cancers are
summarized in Table 3.

Table 3. CircRNAs as potential biomarkers in gynecological cancers.

circRNA Cancer Expression Sample Clinicopathologic Features Prognosis Ref.

circ0023404 CC Up Tissue - OS [78]

circ8924 CC Up Tissue Size, stage, tumor invasion - [79]

circ0067934 CC Up Tissue Stage, LNM OS [80]

circ101996 CC Up Tissue Stage, LNM, size OS [83]

circEIF4G2 CC Up Tissue Size, LNM OS [84]

circATP8A2 CC Up Tissue Stage, LNM, tumor invasion OS [85]

circ0000745 CC Up Tissue Grade, vascular/lymphatic invasion - [89]

circ0005576 CC Up Tissue Stage, LNM OS [91]

circ0075341 CC Up Tissue Size, stage, LNM - [94]

circ0000515 CC Up Tissue - OS [95]
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Table 3. Cont.

circRNA Cancer Expression Sample Clinicopathologic Features Prognosis Ref.

circ0001038 CC Up Tissue LNM, tumor invasion OS [96]

circAMOTL1 CC Up Tissue Tumor metastasis, stage OS [97]

circMYBL2 CC Up Tissue Stage, size, LNM - [98]

circCLK3 CC Up Tissue Grade, stage, tumor invasion OS, DFS [99]

ciRS-7 CC Up Tissue Size, stage, tumor invasion, LNM, HPV infection - [100]

circSLC26A4 CC Up Tissue - OS [101]

circ1656 OC Down Tissue Stage - [117]

circ0051240 OC Up Tissue Tumor metastasis, LNM, stage OS [123]

circPIP5K1A OC Up Tissue - OS [124]

circABCB10 OC Up Tissue Grade, size, stage OS [126]

CircCSPP1 OC Up Tissue Stage, grade - [129]

circUBAP2 OC Up Tissue Stage OS [131]

circWHSC1 OC Up Tissue Grade - [132]

circVPS13C-has-
circ-001567 OC Up Tissue Stage, LNM - [135]

circCELSR1 OC Up Tissue Chemoresistance - [136]

circPUM1 OC Up Tissue Stage - [137]

circRhoC OC Up Tissue Stage, grade - [140]

circITCH OC Down Tissue - OS [141]

circITCH OC Down Tissue Size, stage, grade OS [142]

circCDR1as OC Down Tissue chemoresistance - [145]

circPLEKHM3 OC Down Tissue Tumor metastasis OS, DFS [149]

circ100395 OC Down Tissue LNM, tumor metastasis, stage OS [150]

circ0039569 EC Up Tissue Grade - [153]

circLARP4 OC Down Tissue Stage, LNM OS, DFS [157]

circHIPK3 OC Up Tissue LNM, stage OS, DFS [158]

circEXOC6B OC Down Tissue Age, LNM OS [159]

circN4BP2L2 OC Down Tissue Age, stage, LNM PFS [159]

circSETDB1 OC Up Serum Stage, LNM, chemoresistance PFS [161]

circBNC2 OC Down Plasma Grade, histological subtype, LNM, tumor
metastasis - [164]

Up: upregulation; down: downregulation; CC: cervical cancer; EC: endometrial cancer; OC: ovarian cancer; LNM:
lymph node metastasis; OS: overall survival; DFS: disease-free survival; PFS: progress-free survival.

9. CircRNAs as Potential Therapeutic Targets for Gynecological Cancers

Recent data have proved that several circRNAs can influence the growth, survival, invasion, EMT,
angiogenesis, and drug resistance in gynecological cancers. Manipulation of circRNA abundance
has been shown to possess anti-tumor activities in experimental xenograft models of CC [88,91,95],
OC [121,123,124] and EC [156].

The introduction of circRNAs with binding sites for oncogenic miRNAs (or proteins) might
sequester miRNAs (or proteins) from native targets, and consequently inhibit the biological activities
of tumor-promoting miRNAs (or oncoproteins) in tumor cells [15]. Generally, numerous oncogenic
miRNAs are overexpressed in a given tumor, thus artificial circRNAs that contain multiple binding sites
for multiple oncogenic miRNAs would be expected to simultaneously bind and inhibit the functions of
different tumor-causing miRNAs. Alternatively, circRNAs might be used as stable carriers that deliver
tumor-suppressive miRNAs (or proteins) to tumor cells.

In addition, exosomal circRNAs could modulate the progression of cancer, the remodeling of tumor
microenvironment, anti-tumor immune response, and the occurrence of metastasis [165]. The discovery
that mRNAs from tumor cells can be transfected into dendritic cells and further translated into proteins
to function as antigens are intriguing [166,167]. Similar to mRNA, circRNA can be detected in exosomes.
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Thus, the circRNAs with protein-coding potential might function as potential antigens and be used as
potent targets for cancer immunotherapy [168]. Collectively, the research indicates the potential use of
circRNAs as therapeutic targets for the treatment of gynecological cancers.

10. Conclusions

Despite many exciting advances in the circRNA research area, there are still arguments regarding
the functionality of circRNAs [169]. At least, some individual circRNAs have biologically relevant
functions in ovarian, cervical and endometrial cancer cells [87,137,156]. Their biogenesis, functions,
and action mechanisms in gynecological cancer cells need to be fully investigated. Recent studies
suggest that circRNAs may fulfill a regulatory role in gynecological cancers by sponging miRNAs,
although the possibility of other mechanisms (such as scaffolds for protein complexes) also exists.
CircRNAs have recently been recognized as emerging prognostic biomarkers for gynecological cancers.
The unique ability of circRNAs to sponge RNAs (or proteins) and code for proteins make them valuable
as potential therapeutic tools to treat gynecological cancers.
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