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Abstract

Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in humans. There are no effective vaccines or
antiviral therapies currently available to control fatal outbreaks due in part to the lack of understanding of virus-mediated
immunopathology. In our study, we used hemagglutinin (HA) of H5N1 virus to investigate the related signaling pathways
and their relationship to dysregulated innate immune reaction. We found the HA of H5N1 avian influenza triggered an
abnormal innate immune signalling in the pulmonary epithelial cells, through an unusual process involving activation of
Janus kinase 3 (JAK3) that is exclusively associated with cc chain and is essential for signaling via all cc cytokine receptors. By
using a selective JAK3 inhibitor and JAK3 knockout mice, we have, for the first time, demonstrated the ability to target
active JAK3 to counteract injury to the lungs and protect immunocytes from acute hypercytokinemia -induced destruction
following the challenge of H5N1 HA in vitro and in vivo. On the basis of the present data, it appears that the efficacy of
selective JAK3 inhibition is likely based on its ability to block multiple cytokines and protect against a superinflammatory
response to pathogen-associated molecular patterns (PAMPs) attack. Our findings highlight the potential value of selective
JAK3 inhibitor in treating the fatal immunopathology caused by H5N1 challenge.
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Introduction

Highly pathogenic avian influenza (HPAI) is an extremely

contagious, multi-organ systemic disease [1]. One among multiple

subtypes of influenza virus A, H5N1 viruses have caused 520

laboratory-confirmed infections in 15 countries, 307 of which were

fatal, resulting in a fatality rate of approximately 60% since 2003

[2], which should be considered to have been a potentially serious

pandemic threat [3]. Clinical observations indicated that acute

lung injury and multiple organ dysfunction were the direct causes

of death in H5N1-infected humans [4–5]. Laboratory findings

revealed low peripheral blood T-lymphocyte counts and high

chemokine and cytokine levels in H5N1-infected individuals,

particularly in those who died. Levels of IP-10, MIG and MCP-1

(chemoattractants of monocytes and macrophages that are pro-

duced in bronchial epithelial cells and alveolar macrophages

[6–8]) were elevated in patients with avian and human subtypes of

influenza but were higher in H5N1-infected individuals and

particularly high in those who died [6]. Levels of the neutrophil

chemoattractant interleukin (IL)-8 were also elevated in H5N1-

infected individuals, particularly in those who died [6]. The IL-8

chemokine is produced by bronchial epithelial cells and may

function in the pathogenesis of acute respiratory distress syndrome

(ARDS) [9], which may be particularly relevant to H5N1 in-

fluenza, as progression to respiratory failure is associated with the

development of ARDS [10–11]. The clinical and pathological

features in H5N1-infected humans and animal models suggest that

high levels of viral replication combined with early robust host

responses play a key role in pneumonia severity and outcome

[6,10–16].

The innate immune response of the cell is the first line of

defence against viruses. Increasing evidence points to a key role

of the innate immune system with its pattern recognition receptors

(PRRs) in both infectious and non-infectious lung diseases, acute

lung injury, pneumoconiosis and asthma [17]. Of PRRs, the well-

known Toll-like receptors (TLRs) are expressed in alveolar

macrophages, lung epithelial cells and in intraepithelial dendritic

cells (DCs), which are either located at the cell surface or in

endosomal membranes. These cells respond to infections by

sensing pathogen-associated molecular patterns (PAMPs) and

respond to endogenous molecules (danger-associated molecular

patterns [DAMPs]) that are released after tissue damage [17–18].

The TLRs recruit different adapter molecules and initiate

signalling pathways leading to the activation of NF-kB–dependent
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proinflammatory gene expression and/or to IRF3/7-mediated

type I interferon (IFNa/b) expression [18–19]. An analysis of

sections from the human respiratory tract demonstrated that

H5N1 attached to the apical cell membrane of bronchiolar cells,

type II pneumocytes and alveolar macrophages [20]. Therefore,

activation of TLRs expressed in type II pneumocytes could help

mediate the response to H5N1 viruses [21], contributing to the

promotion of a destructive host immunity [22–24]. Although

neuraminidase inhibitors are effective in treating avian influenza,

especially if given within 48 h of infection, it is more difficult to

prevent the resultant hypercytokinemia from developing if the

patient does not seek timely medical assistance.

Corticosteroids have been used in some patients with HPAI

H5N1, but no definitive role for steroids has been determined [25–

26]. The evidence for corticosteroid use in other severe viral

pneumonias, including varicella-zoster virus infection and severe

acute respiratory syndrome (SARS), is also insufficient [7–8].

Several studies involving patients with sepsis and ARDS have

suggested that high-dose corticosteroids actually increase the risk

of secondary infections [27]. Thus, there is an urgent need to find

ways of treating acute hypercytokinemia without compromising

overall immunity. Because hemagglutinin, the major surface

glycoprotein of H5N1, is responsible for viral binding to host

receptors and initiating immediate signalling transduction upon

viral invasion [28], the recombinant HA of H5N1 avian influenza

virus (AIV) was used in the present study to investigate the signal

transduction mechanisms for the dysregulated innate immune

reaction. We have demonstrated that challenging respiratory

epithelial cells with H5N1 HA exploited the JAK2/3/STAT1 and

NF-kB signalling axis and resulted in a large release of cytokines,

initiating a destructive innate immune response at early stages.

Additionally, we found that a selective JAK3 inhibitor (JAK3inh)

targeted to the key signal molecule in the inflammatory signal

cascades has potential roles in the treatment of the inflammatory

disorders, thereby protecting against a superinflammatory re-

sponse to PAMPs attack.

Results

Morphological changes of the cultured pulmonary
epithelial cells after exposure to the recombinant HA of
AIV H5N1

The cultured human pulmonary epithelial A549 cells were

challenged with recombinant HA at 40 mg/ml. After 12 h of

stimulation, the cells became swollen, rounded and irregular in

size and shape with the appearance of intracellular vacuoles

(Figure 1Bb) whereas the control cells did not (Figure 1Ba).

Activation of JAK/STAT and NF-kB signalling in relation
with innate immune inflammation in HA-challenged
pulmonary epithelial cells

We next tested if the recombinant HA could induce activation of

JAK/STAT and NF-kB signal pathways, which are responsible for

transcriptional activation of chemokines/cytokines genes and lead

to an innate immune response against pathogens. We found that

A549 cells exposed to HA have increasing levels of phosphorylation

of JAK2, JAK3, STAT1 and NF-kB (Figure 2A), but not of JAK1

and STAT5 (data not shown), in a time-dependent manner.

Previous studies have demonstrated that phosphorylated

STAT1 dimerises and translocates into the nucleus to activate

the transcription of a number of genes, including IFN regulatory

factor-1 (IRF-1). IRF-1 functions as a transcriptional factor for

many antiviral genes, resulting in the production of chemokines

(e.g., IP-10) that play critical roles in the infiltration of leukocytes

into the site of inflammation [29]. Additionally, NF-kB dimers

bind to kB sites within the promoter of the IP10 gene [30]. We

therefore examined the transcription of IP-10 and IRF-1 genes in

the HA-challenged A549 cells. As expected, our results showed an

increased transcriptional induction of both genes following HA

exposure (Figure 2B). Correspondingly, we detected a dose-

dependent release of IL-6, IL-8, MCP-1, MIP-1a, MIP-1b and

RANTES into the culture supernatants of the A549 cells 12 h after

HA stimulation, as shown in Figure 2C.

Effect of JAK3 activation on JAK/STAT and NF-kB
signalling pathways in response to HA

Compared with the IFN-triggered JAK/STAT pathway, acti-

vation of JAK3 seems to be a characteristic feature of A/chicken/

Guangdong/191/04 (H5N1) HA-triggered JAK/STAT signalling.

We therefore examined if targeting JAK3 could block the

induction of transcriptional activation of IP-10 and IRF-1 by

HA. As shown in Figure 3A, B, we demonstrated the ability of

the JAK3 inhibitor VI (Calbiochem) to attenuate the phosphor-

ylation of JAK3 while suppressing active NF-kB (Figure 3A) in

the A549 cells challenged with HA, thus blocking the induction of

IP-10 and IRF-1 gene expression (Figure 3B). In addition, we

also observed significantly lower levels of cytokines/chemokines,

including IL-6, IL-8, MCP-1, MIP-1a, MIP-1b and RANTES, in

the HA-stimulated A549 cells following treatment with the JAK3

inhibitor VI compared to those with HA stimulation alone

(Figure 3C).

Attenuation of the immunopathologic reaction in the
Jak3 knockout mice upon HA challenge

To confirm if the activation of JAK3 enhances HA-driven innate

immunity, Jak3 knockout mice were subjected to challenge with an

intratracheal instillation of HA. In the lung tissues from HA-

challenged Jak3+/+ mice, pathologic examination observed diffuse

alveolar damage combined with edema, interstitial exudation and

hyaline membrane formation; marked thickening of the interalve-

olar septa; and dense interstitial infiltration by inflammatory cells

(Figure 4A). However, HA-challenged Jak32/2 mice (Figure 4C)

or Jak3+/+ mice treated with JAK3 inhibitor prior to HA addition

(Figure 4E) showed a significant decrease in inflammatory cell

infiltration with a mild injury score (Figure 4F).

In addition, we observed that the spleen tissues from the

Jak3+/+ mice after 72 h of HA intratracheal instillation exhibited

swelling, destruction of the local structure of germinal centres and

dead lymphocytes (Figure 5Ab, c). These changes were not

observed in Jak32/2 mice, which appeared normal despite HA

treatment (Figure 5Ae, f). Compared to the control, the levels of

IFN-c inducible chemokines/cytokines (e.g., IP-10, MCP-1a and

RANTES) released from the splenocytes of the HA-pretreated-

Jak3+/+ mice were significantly increased under basal conditions

(P,0.05) (Figure 5B), but this effect was not seen in the Jak32/2

mice with the HA pretreatment. No significant difference was

detected in the expression levels of chemokines in Jak32/2 mice

following either PBS or HA instillation (Figure 5B). Previous

studies have demonstrated that Jak3-dependent cytokine signals

were required for the optimal production of IFN-c in differenti-

ated CD4+ T cells but not for naı̈ve primary CD4+ T cell

proliferation and cell cycle regulation in vitro, suggesting that these

signals promoted the maximal transcription of the IFNc gene [31].

Taken together, these data indicate that activation of JAK3 signals

by HA of H5N1 has a critical role in inducing an intense host

response.

JAK3: A Drug Target for H5N1-Induced Injury?
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Modulation of a superinflammatory response by
inhibition of JAK3-dependent cytokine signals

Given that the JAK3 inhibitor VI has the capability to down-

regulate NF-kB activation in pulmonary epithelial cells exposed to

HA challenge, we tested whether targeting JAK3 signals could

prevent superinflammatory responses following bacteria/endotox-

in attack. This was tested due to the natural course of the virus,

which is highly cytopathic to bronchial and bronchiolar epithelial

cells, extending rapidly and diffusely down the respiratory tree and

damaging the epithelium sufficiently to breakdown the mucocil-

iary barrier [32].

Both Jak3+/+ and Jak32/2 mice were intratracheally inoculated

with 90 mg HA or PBS. After 72 h of instillation, the spleen cells

were isolated from both groups of mice and cultured in the

presence or absence of bacterial endotoxin-LPS at a concentration

of 10–50 mg for 12 h and 24 h.

In the splenocytes of Jak3+/+ or Jak32/2 mice pretreated with

PBS, the stimulation of LPS induced an increase in levels of

RANTES and MCP-1a (Figure 6A). However, significantly

elevated levels of IP-10, RANTES, IFN-c and MCP-1a were

observed in the splenocytes of HA-pretreated mice upon LPS

challenge (Figure 6B), which were significantly higher in Jak3+/+

mice than in Jak32/2 mice, as shown in Figure 6B. In response

to LPS treatment, the splenocytes from the Jak3+/+ mice with HA

pretreatment produced higher levels of chemokines/cytokines

compared to the PBS-pretreated mice and to the Jak32/2 mice

with HA pretreatment (Figure 6C). We further made a

comparison of the fold increase of the induced chemokines/

cytokines between both groups of Jak3+/+ and Jak32/2 mice.

Except for IFN-c, there was a much lower fold increase of

chemokines/cytokines in the splenocytes with a Jak3 genetic

deficiency compared to those with wild-type Jak3 (Figure 6D).

The injury index of the cultured spleen cells at 12 h (Figure 7A)

or 24 h (Figure 7B) after LPS stimulation was LPS-dose-

dependently higher in the Jak3+/+ mice than in mice that received

PBS pretreatment only or Jak32/2 mice that received the HA

pretreatment (P,0.05) (Figure 7).

These results indicate that sustained JAK3-dependent cytokine

signals following virus antigenic challenge predispose the animal to

an increased virulence for the subsequent bacterial infection.

Discussion

Respiratory infection with highly pathogenic influenza A viruses

is characterised by the exuberant production of cytokines and

Figure 1. Evaluation of the expression and function of recombinant hemagglutinin protein (HA) of AIV H5N1. (A) Preparation of the
recombinant HA protein. Identification of the Bacmid/HA recombinant (a) M, Marker, Lane 1, PCR product of Bacmid-HA. Recombinant HA purified
from Bacmid/HA-transfected SF9 cells by Ni-NTA affinity chromatography (Coomassie Brilliant Blue staining) (b) M, prestained protein marker, Lane 1,
Control (from SF9 cells transfected with blank bacmid), Lane 2, HA Purified from Bacmid/HA-transfected SF9 cells. Confirmation of HA recombinant by
western blot analysis (c) M, Marker, Lane 1, HA Purified from Bacmid/HA-transfected SF9 cells, Lane 2, control. (B) Morphology changes in the
recombinant HA-treated human pulmonary epithelial cells. A549 cells treated with 40 mg/ml HA (b) or the control (a) for 12 h (bar = 50 mm). The cells
treated with HA become swollen, rounded and irregular in size and shape.
doi:10.1371/journal.pone.0031721.g001

JAK3: A Drug Target for H5N1-Induced Injury?
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chemokines and the enhanced recruitment of innate inflammatory

cells. Although alveolar macrophages were originally described as

the cell type responsible for pulmonary monocyte recruitment

during AIV infection, a recent study by Herold et al. suggests

instead that the majority of the recruitment results from alveolar

epithelial cells that produce high levels of CCL2 (MCP-1), a ligand

for CCR2, following infection [33]. This result is in agreement

with our findings that show activation of JAK/STAT and NF-kB

Figure 2. Impact of H5N1 HA on JAK/STAT and NF-kB signalling in the challenged pulmonary epithelial cells. (A) Detection of
phosphorylated/nonphosphorylated JAK2, JAK3, STAT1 and NF-kB. Using specific antibodies, western blotting was performed in the A549 cells
treated with the HA (40 mg/ml) for the indicated time periods. Representative blots from 3 replicates are shown. (B) The mRNA expression of IP-10
and IRF-1 on the HA-treated A549 cells. A549 cells were treated with the HA (40 mg/ml) for 1–4 h (Lane 1, 0 h; Lane 2, 1 h; Lane 3, 2 h; Lane 4, 4 h) or
with the HA for 1 h at the indicated doses (Lane 5, control; Lane 6, 20 mg/ml; Lane 7, 40 mg/ml; Lane 8, 80 mg/ml) and then subjected to RT-PCR
analysis for IP-10 and IRF-1. Representative gels from 3 replicates are shown. (C) Levels of IL-6, IL-8, MCP-1, MIP-1a, MIP-1b and RANTES in the
supernatant of A549 cells treated with the indicated doses of HA for 12 h. *P,0.05 vs. control group; #P,0.05 vs. 20 mg/ml HA group; & P,0.05 vs.
40 mg/ml HA group.
doi:10.1371/journal.pone.0031721.g002

JAK3: A Drug Target for H5N1-Induced Injury?
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signalling pathways in pulmonary epithelial cells upon challenge

with HA of H5N1 (Figure 2A), leading to rapid induction of the

IP-10 and IRF-1 genes (Figure 2B). In addition, high levels of

cytokines/chemokines were produced (Figure 2C). These data

may represent a mechanism whereby virus antigenic challenge of

alveolar epithelial cells constitutes an initiating event for the

development of dysregulated innate immunity. It is worthwhile to

point out that HA-triggered signalling events are characterised by

an unusual process involved in the phosphorylation of JAK3.

The Janus kinases, including JAK1, JAK2, JAK3 and Tyk2, are

cytoplasmic protein tyrosine kinases that play an important role in

the receptor binding-triggered signal transduction that is mediated

through the STAT proteins [34]. The expression patterns of Janus

kinase 3 contrast sharply with that of other Janus kinases, which

are ubiquitously expressed. JAK3 was found to be more limited in

its expression and is found in nature killer (NK) cells and in an

NK-like cell line but not in resting T cells or in other tissues [35].

In the present study, we have provided evidence that HA

treatment immediately caused phosphorylation of JAK2/3 and

STAT1/NF-kB in A549 cells (Figure 2A) and mediated the

release of cytokines/chemokines (Figure 2C), whereas targeting

to JAK3 can turn off the signal transduction cascades (Figure 3).

Figure 3. The role of JAK3 activation in JAK/STAT and NF-kB signalling upon challenge of HA. (A, B) Modulation of the phosphorylation
of JAK3 and NF-kB and of the expression of the IP-10 and IRF-1 genes in the HA-treated A549 cells in the presence and absence of the JAK3 inhibitor
VI. Western blot analysis (A) and RT-PCR (B) were performed to assess the signal pathways and the gene expression in the A549 cells challenged with
HA (40 mg/ml) for 1 h in the absence and presence of the JAK3 inhibitor VI (760 nM). The measurement of the expression of GAPDH was performed
simultaneously. Representative gels or blots from 3 replicates are shown. (C) Effects of treatment with the JAK3 inhibitor VI on the release of
cytokines/chemokines from the HA-challenged A549 cells. A Liquidchip assay was performed on the supernatants of the A549 cells incubated with
HA (40 mg/ml) for 12 h in the absence and presence of the JAK3 inhibitor VI (760 nM). *P,0.05 vs. control group; #P,0.05 vs. HA group.
doi:10.1371/journal.pone.0031721.g003

JAK3: A Drug Target for H5N1-Induced Injury?
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Our results suggest that JAK3 is inducible upon activation in type

II pneumocytes. Following the activation of H5N1 by HA,

pulmonary epithelial cells, which actively express JAK3, acquire

the capability for the recruitment of inflammatory monocyte-

derived DC, NK cells and T cells due to significantly increased

release of cytokines/chemokines.

In addition, we show that in Jak3+/+ mice, but not in Jak32/2

mice, the HA intratracheal instillation caused acute injury to lungs

(Figure 4), while necrosis and depletion of lymphocytes were

observed in the spleen (Figure 5A). However, the splenocytes

from HA-pretreated Jak3+/+ mice were shown to significantly

increase production of IFN-inducible chemokines (e.g., IP10,

MCP1) without any stimulation (Figure 5B). We have previously

demonstrated that the elevation of IP-10 that emerged at the onset

of SARS was followed by progressive lymphopenia with a

concomitant increase of lactate dehydrogenase, suggesting a de-

pletion of lymphocytes in lymphoid tissues [36]. An early onset of

lymphopenia with the pronounced elevation of cytokines/

chemokines and apoptotic lymphocytes in the spleen were also

observed in patients infected with H5N1 influenza virus, especially

those with a severe infection [28]. These data indicate that the

early splenic lymphocyte elimination could occur due to an

excessive innate immune induction that is dependent on Jak3

signal activation following the antigenic challenge of H5N1, which

might contribute to high levels of viral replication.

Activation of NF-kB plays an important role in driving the

inflammatory response due to its function as a critical transcrip-

tional activator of proinflammatory cytokines involved in the

innate immune response to PAMPs/DAMPs [37]. In the present

study, we observed Jak3-dependent signals affecting NF-kB

transcriptional activation upon HA stimulation. The splenocytes

isolated from the Jak32/2 mice challenged with HA display a

resistance against the superinflammatory reaction when they are

further exposed to LPS (Figure 6B,C,D and Figure 7A,B),

indicating that active expression of JAK3 might be associated with

the exacerbation of LPS-mediated NF-kB signalling.

Our present results provide evidence that the inhibition of JAK3

activation enables the negative regulation of NF-kB signalling,

further demonstrating that JAK3 is a molecular determinant in the

dysregulated innate immune response.

Previous studies using global immune suppressants (such

as steroids) have failed to demonstrate protection against lethal

influenza virus challenge [38]. It is not surprising that such non-

specific immune suppressants confer no advantage, as a systemic

reduction in cell-mediated immunity greatly compromises virus

clearance. A recent study demonstrated that combination therapy

consisting of an inhibitor of the viral neuraminidase (zanamvir)

and two cyclooxygenase 2 (COX2) inhibitors (celecoxib and

mesalazine) greatly increased the survival rate of mice infected

with a highly pathogenic strain of influenza A/H5N1 virus [39].

Aldridge et al. [40] recently reported that prophylactic treatment

with the PPAR-c agonist pioglitazone is sufficient to reduce

morbidity and mortality associated with HP influenza A virus

infection.

A selective JAK3 inhibitor is considered to be an immunomod-

ulator with extensive application potential because of its specificity

without inducing many of the side effects usually caused by

corticosteroids. Phase I and II clinical trials proved efficacy and

safety of JAK3 inhibition in preventing transplant rejection and

eliminating the symptoms of rheumatoid arthritis and psoriasis.

CP-690550 which has a similar structure to the JAK3 inhibitor VI

[41] used in our study, is currently undergoing Phase III study in

patients with active rheumatoid arthritis [42]. Researchers found

that CP-690550 strongly inhibited the transcription of RANTES,

MIG and IP-10 at 7 days posttransplant [43]. A similar efficiency

of the JAK3 inhibitor VI to modulate the proinflammatory

cytokines/chemokines was observed in vitro and in vivo in the

present studies (Figure 3 and 4).

T cell proliferation following activation is an essential aspect for

the adaptive immune response against pathogens. When T cells

are stimulated under these conditions, their proliferation is cc

cytokine independent [44]. Selective inhibition of Jak3-dependent

cytokine signals did not affect cell cycle progression following

optimal stimulation of T cell receptor plus CD28 [45]. These

could explain our findings that a genetic deficiency in Jak3 pro-

tected splenic lymphocytes from the intense immune-mediated

destruction (Figure 5). We presume that patients with severe

viral infection may benefit from the treatment with selective JAK3

inhibitors that modulate the dysregulation of cytokine-mediated

inflammation but allow T cell proliferation for the adaptive

immune response against pathogens.

It is clear that Influenza A viruses (IAV) induces defects in

respiratory mucosal immunity that are broad-based and adversely

affect the response to a wide range of bacteria. Interactions

between the infecting virus and secondary infections due to

bacteria that colonise the upper respiratory tract could precipitate

the appearance of severe and potentially fatal bacterial pneumonia

Figure 4. Pathological examination of lung tissues in the Jak3-
deficient and wild-type mice following exposure to HA. Jak3+/+

and Jak32/2 mice were administered PBS (B, D) or the HA (90 mg per
mouse) (A, C) by intratracheal instillation. Meanwhile, the JAK3 inhibitor
VI was administered to the Jak3+/+ mice prior to the HA instillation (E).
Arrows show a marked thickening of the interalveolar septa with
infiltration of lymphocytes (black arrow) and interstitial exudation (red
arrow). The pathological examination (H&E) of lung tissues was
performed at 72 h after HA administration (bar = 50 mm). The lung
injury score was assessed in the lung tissues of the mice treated as
above (F) (n = 5 per group, , Jak3+/+ PBS, , Jak32/2 PBS, %, Jak3+/+

HA, &, Jak32/2 HA, , Jak3+/+ HA+JAK3Inh). *P,0.05 vs. Jak3+/+ PBS
group; #P,0.05 vs. Jak3+/+ HA group.
doi:10.1371/journal.pone.0031721.g004

JAK3: A Drug Target for H5N1-Induced Injury?

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31721



[32]. Our findings showing the superinflammatory response to

LPS of PAMPs in splenocytes from mice pretreated with HA

(Figure 6, 7) raise the possibility that following viral antigenic

challenge, bacteria/endotoxin translocation prolongs and boosts

Jak3-dependent cytokine signals, leading to fatal systemic inflam-

matory response syndrome.

Thus, we suggest that the optimal treatment for the virus-

mediated ARDS or/and systemic inflammation may involve

combination therapy with efficacy-based antiviral reagents and

selective Jak3 inhibitors (e.g., JAK3VI inhibitor or CP-690550).

In summary, we found that challenging pulmonary epithelial

cells with the HA from the H5N1 strain of the influenza A virus,

resulting in a remarkable activation of the innate immune response

via triggering IFN-independent JAK/STAT and NF-kB signal

pathways, may be a key mechanism underlying the development

of lung damage and lymphocyte apoptosis that avoids immuno-

surveillance and facilitates efficient viral replication at an early

stage of the illness. JAK3 seems to serve as a central signal

molecular for the transduction of a ‘super-activated’ immune

response to AI-PAMP. We suggest that modulation of the

abnormal innate immune inflammation using a selective JAK3

inhibitor could be a novel and valuable strategy for the mana-

gement of AI-associated severe pneumonia and immune suppres-

sion, even though anti-viral therapy is an important first step in

recovery.

Materials and Methods

Purification of HA protein
Because the baculovirus expression system can produce a high

yield of recombinant protein that is usually similar in structure,

biological activity and immunological reactivity to the naturally

occurring protein, an insect-baculovirus expression system was used

for the expression of the recombinant HA protein of AIV H5N1

using the method described by Nwe et al. with minor modifications

[46]. Using sequence homology, we confirmed that the HA gene of

A/chicken/Guangdong/191/04 (H5N1) (GenBank: AY737289)

[47] was subcloned into the pFastbacHT plasmid vector, forming

a recombinant pFastBacHT-H5HA. Next, pFastBacHT-H5HA

was transposited in combination with a baculovirus shuttle vector

(bacmid) into MAX Efficiency DH10Bac competent cells by

homologous recombination. As predicted, the Bacmid/HA recom-

binant was identified by PCR amplification of a 4.1 KB DNA

fragment (Figure 1Aa) following recombination. Using nickel

affinity magnet beads, the recombinant HA (64 KDa) of H5N1 was

purified from SF9 cells transfected with Bacmid-H5HA and

Figure 5. Pathological examination of splenic tissues in the Jak32/2 and Jak3+/+ mice following exposure to HA. (A) Haematoxylin/
eosin (H&E) staining of paraffin sections of splenic tissues from the Jak3+/+ and Jak32/2 mice intratracheally administered with PBS or HA for 72 h.
Arrows show the necrosis of lymphocytes. (B) The cytokines/chemokines (IFN-c, IP-10, MCP-1a and RANTES) that were released from the splenocytes
of either Jak3+/+ or Jak32/2 mice pretreated with HA or PBS as described above. The measurement of the concentration of the cytokines/chemokines
by Liquidchip assay. *P,0.05 vs. Jak3+/+ PBS group; #P,0.05 vs. Jak3+/+ HA group.
doi:10.1371/journal.pone.0031721.g005

JAK3: A Drug Target for H5N1-Induced Injury?
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identified by western blotting with an anti-HA (H5N1) anti-

body (Cat. No. GI-003-006, GeneImmune Inc.), as shown in

Figure 1Ab, c.

Mice experiments
B6129S4-Jak3tm1Ljb mice (Jak32/2) and B6129SF2/J mice

(Jak3+/+) were purchased from Jackson Labs, United States. All

mice were housed at a constant temperature (20uC) with a 12-hour

light/dark photoperiod and allowed food and water ad libitum. The

mice were 6 to 8 weeks of age and weighed between 20 and

30 grams. All animal experiments were carried out according to

the National Institutes of Health Guide for Care and Use of

Laboratory Animals and were approved by the Bioethics

Committee of State Key Laboratory of Respiratory Disease,

Guangzhou Medical University (Approval ID: 2010-12). Briefly,

wild-type or Jak3 knockout mice were randomly divided into

two groups (n = 5 in each). After they were anaesthetised with

pentobarbital sodium (50 mg/kg), the mice were intratracheally

inoculated with 90 mg of HA diluted with 100 ml phosphate-

buffered saline (PBS). The control group received an equal volume

of sterilised saline without HA. Lung and spleen tissues from the

mice were collected 72 h after HA inoculation and fixed in

buffered 4% paraformaldehyde (pH 7.4) for histopathological

examination.

Figure 6. Impact of HA intratracheal instillation on the inflammatory reaction of splenocytes from Jak32/2 mice. Liquidchip assays
were performed to determine the cytokines/chemokines (IFN-c, MCP-1a, IP-10 and RANTES) released from the splenocytes after LPS (20 mg/ml for
12 h) challenge in PBS-pretreated (A) and HA-pretreated (B) mice of either the Jak32/2 or Jak3+/+ background. (A) *P,0.05 vs. PBS group (Jak3+/+ or
Jak32/2) without LPS treatment; #P,0.05 vs. Jak3+/+ PBS group with LPS treatment. (B) *P,0.05 vs. HA group (Jak3+/+ or Jak32/2) without LPS
treatment; #P,0.05 vs. Jak3+/+ HA group with LPS treatment. A comparison of the levels of the cytokines/chemokines in the supernatants of the
splenocytes exposed to LPS from Jak32/2 and Jak3+/+ mice with or without HA pretreatment (C). (C) *P,0.05 vs. PBS group (Jak3+/+ or Jak32/2) with
LPS treatment; #P,0.05 vs. Jak3+/+ HA group with LPS treatment. A comparison of the fold increase of cytokines/chemokines released from the
splenocytes following LPS stimulation from Jak32/2 and Jak3+/+ mice with HA pretreatment (D).
doi:10.1371/journal.pone.0031721.g006
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Cell culture
A549 cells (A human alveolar epithelial cell line, CCL-185,

ATCC, USA) were grown in 75 cm2 polystyrene flasks with

DMEM (Gibco, USA) supplemented with 10% heat-inactivated

foetal bovine serum (FBS) (Gibco, NY, USA). A549 cells were

seeded at 16106 cells per well in 6-well flat-bottom cell culture

plates (Corning, NY, USA), which produced a confluent monolayer

after overnight incubation at 37uC in a 5% CO2 humidified

atmosphere. Next, the growth medium was replaced with serum-

free DMEM medium and incubated overnight. The cultured A549

cells were either treated with HA or a JAK3 inhibitor VI (760 nM)

for 30 min prior to HA addition. Supernatants were collected 12 h

after incubation with HA at different concentrations and stored at

270uC until cytokine/chemokine detection.

The spleens were removed from the Jak3+/+ and Jak32/2 mice

after the mice were intratracheally inoculated with HA for 72 h.

The spleens were mechanically disrupted by pressing them through

a nylon mesh (pore size, 165 mm) and were deposited in a 25 cm2

flask containing 5 ml of RPMI 1640 (Invitrogen Life Technologies).

The suspension was passed through a sterile nylon mesh (pore size,

50 mm) to obtain the splenocytes. After the lysis of erythrocytes by

treatment with Tris/NH4Cl buffer, the pooled splenocytes were

suspended with complete tissue culture medium consisting of RPMI

1640 supplemented with 10% of heat-inactivated FBS (Invitrogen

Life Technologies), 100 U/ml penicillin and streptomycin [48].

Western blot analysis
A549 cells were lysed in RIPA buffer [50 mM Tris (pH 7.5),

150 mM NaCl, 1% NP-40, 0.1% SDS, 1 mM EDTA, 1 mM

NaN3, 1 mM PMSF, 2 mg/ml aprotinin, 2 mg/ml leupeptin].

Lysates were cleared by centrifugation, and supernatants were

stored in aliquots at 280uC until further use. The protein was

quantified using a BCA assay kit (Pierce, USA), and 100 mg was

used for SDS-PAGE electrophoresis. After the proteins were

transferred from the gel onto a polyvinylidene fluoride membrane

(DuPont-New England Nuclear, Boston, MA), the membrane

was blocked with 5% non-fat dried milk in Tris-buffered saline

and Tween-20 for 1 h, followed by further incubation of the

membrane with 5% non-fat dried milk containing the primary

antibody at 4uC overnight. Immunodetection of target proteins

was performed with primary antibodies for total or phosphorylated

JAK1, JAK2, JAK3, STAT1 and NF-kB (Cell Signalling,

Frankfurt, Germany). After washing, the secondary antibody

[goat-anti-rabbit IgG conjugated to HRP (Cell Signalling,

Frankfurt, Germany)] was added and incubated for an additional

1 h. Immunoreactive bands were developed using an ECL

chemiluminescent substrate (Pierce, Rockford, USA), and digital

scanning was performed in an Image Station 2000 (Kodak, US).

For all experiments, GAPDH (Novus Biologicals, USA) was

detected simultaneously to confirm equal protein loading.

RT-PCR
After treatment with HA or vehicle for the indicated period,

A549 cells were harvested, and total RNA was isolated using

TriZol Reagent (Invitrogen). Then, the reverse transcription

reaction was conducted using SuperScriptTM III reverse tran-

scription reagents (Invitrogen). We amplified previously generated

cDNA by PCR using the following specific primers for IP-10, IRF-

Figure 7. The effects of injury on the splenocytes challenged with LPS in HA-pretreated Jak32/2 mice. The splenocytes isolated from
mice pretreated with HA or intratracheal instillation with PBS for 72 h were treated with LPS for 12 h (A) and 24 h (B), and then the cells were
subjected to a CCK-8 assay for the evaluation of the injury index. The injury index = (OD value of control cells2OD of LPS-treated cells)/control cells
OD. *P,0.05 vs. PBS group (Jak3+/+ or Jak32/2); #P,0.05 vs. Jak3+/+ HA group with LPS treatment.
doi:10.1371/journal.pone.0031721.g007
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1 and GAPDH: for IP-10, forward 59- AGGAACCTCCAGTCT-

CAGCA -39 and reverse 59- GGCAGTGGAAGTCCATGAAG -

39; for IRF-1, forward 59- CTTAAGAACCCGGCAACCTC-

TGCCTTC -39 and reverse 59- GATATCTGGCAGGGAGTT-

CATG-39; and for GAPDH, forward 59- GGTGAAGGTCG-

GAGTCAACG -39 and reverse 59-CAAAGTTGTCATGGATG-

ACC-39, with product sizes of 757 bp, 405 bp and 497 bp, res-

pectively. All primers were purchased from Invitrogen (California,

USA). The PCR amplification was performed using a Biometra T-

GRADIENT thermal cycler (Nordic BioSite, Täby, Sweden) using

the following protocol: reactions were predenatured at 94uC for

120 s, denatured at 94uC for 30 s, then cycled at 55uC for 50 s

and 72uC for 60 s for 30 cycles. PCR amplicons were analysed on

1.5% agarose gels, stained with ethidium bromide, and subse-

quently visualised. To confirm use of equal amounts of RNA in

each experiment, all samples were assessed for GAPDH mRNA

expression.

Luminex assay
The quantification of multiple cytokines/chemokines was

performed using the Luminex assay LiquidChip system (Panomics,

CA, USA), which is a bead-based system for immunoassays that

allows for the simultaneous assaying of multiple analytes in a single

sample [49]. The cytokines/chemokines included IL-2, IL-4, IL-6,

IL-8, tumour necrosis factor a (TNF-a), IFN-c, IP-10, MCP-1,

macrophage inflammatory protein 1 alpha (MIP-1a), MIP-1b and

regulated upon activation normal T cell expressed and secreted

(RANTES). Supernatants of the HA-treated A549 cells were

analysed on a LiquidChip system according to the manufacturer’s

instructions. The isolated splenocytes from the Jak3+/+ and Jak32/

2 mice with or without HA pretreatment were subjected to culture

in the absence or presence of lipopolysaccharide (LPS, 20 mg/ml).

After 12 h or 24 h of culture, the supernatants of the splenocytes

were collected for the LiquidChip assay.

Lung and spleen histology
For analysis by light microscopy, lung and spleen tissues were

fixed with freshly prepared 4% paraformaldehyde in PBS (pH 7.4)

for 36 h and embedded in paraffin. Tissue sections (5 mm) were

stained with haematoxylin and eosin (H&E) to enable the

histological evaluation of lung and spleen tissues. Two investiga-

tors blinded to the group assignments analysed the samples and

determined the level of lung injury according to the semiquanti-

tative scoring outlined below. All lung fields were examined for

each sample at 620 magnification. The assessment of histological

lung injury was performed as follows: 0, normal; 1, ,25% the lung

section exhibits interstitial congestion and inflammatory cell

infiltration; 2, 25–50% the lung section exhibits interstitial con-

gestion and inflammatory cell infiltration; 3, 50–75% the lung

section exhibits consolidation and inflammatory cell infiltration.

The mean score was used for the comparison between groups.

Lymphocyte injury assay
The isolated spleen cells (16106 per well) were seeded into 96-

well tissue culture plates and stimulated with LPS at different

concentrations (10, 20 or 50 mg) or PBS for 12 or 24 h at 37uC
and 5% CO2; 2-[2-methoxy-4-nitrophenyl]-3-[4-nitrophenyl]-5-

[2,4-disulfophenyl]-2H-tetrazolium monosodium salt (WST-8,

Cell-Counting Kit-8H (Dojindo Molecular Technologies, Inc.,

Gaithersburg, MD) 10 ml per well) was added as described pre-

viously [50]. The plates were incubated for 4 h, and the optical

density (OD) at 450 nm was measured using a microplate reader

(BioRad, Hercules, CA). Each sample was analysed in three

replicates, and the injury index was calculated using the following

formula: injury index = (mean OD of control group–LPS-stimu-

lated group)/(mean OD of control group).

Statistical analysis
Comparisons among treatment groups were performed with a

one-way-ANOVA test. A P value less than 0.05 was considered

statistically significant.
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