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Abstract

Background: Myocardial infarction (MI) is a multifactorial disease with complex pathogenesis, mainly the result of
the interplay of genetic and environmental risk factors. The regulation of thrombosis, inflammation and cholesterol
and lipid metabolism are the main factors that have been proposed thus far to be involved in the pathogenesis of
MI. Traditional risk-estimation tools depend largely on conventional risk factors but there is a need for identification
of novel biochemical and genetic markers. The aim of the study is to identify differentially expressed genes that are
consistently associated with the incidence myocardial infarction (MI), which could be potentially incorporated into
the traditional cardiovascular diseases risk factors models.

Methods: The biomedical literature and gene expression databases, PubMed and GEO, respectively, were searched
following the PRISMA guidelines. The key inclusion criteria were gene expression data derived from case-control
studies on MI patients from blood samples. Gene expression datasets regarding the effect of medicinal drugs on MI
were excluded. The t-test was applied to gene expression data from case-control studies in MI patients.

Results: A total of 162 articles and 174 gene expression datasets were retrieved. Of those a total of 4 gene
expression datasets met the inclusion criteria, which contained data on 31,180 loci in 93 MI patients and 89 healthy
individuals. Collectively, 626 differentially expressed genes were detected in MI patients as compared to non-
affected individuals at an FDR q-value = 0.01. Of those, 88 genes/gene products were interconnected in an
interaction network. Totally, 15 genes were identified as hubs of the network.

Conclusions: Functional enrichment analyses revealed that the DEGs and that they are mainly involved in
inflammatory/wound healing, RNA processing/transport mechanisms and a yet not fully characterized pathway
implicated in RNA transport and nuclear pore proteins. The overlap between the DEGs identified in this study and
the genes identified through genetic-association studies is minimal. These data could be useful in future studies on
the molecular mechanisms of MI as well as diagnostic and prognostic markers.
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Background
Atherosclerotic heart disease is manifested by athero-
sclerosis and has a broad underlying pathophysiological
spectrum. It comprises, among others, ischemic heart
disease (IHD), coronary artery disease (CAD), stroke,
and myocardial infarction (MI), commonly known as
heart attack. Atherosclerotic heart diseases represent the
leading cause of morbidity and mortality globally, ac-
counting for 17.3 million deaths per year [1, 2], resulting
to approximately one-third of all deaths worldwide [3,
4]. CAD is a group of diseases including stable angina,
acute coronary syndrome, and sudden cardiac death; the
most important complication of CAD is MI [4]. CAD
and MI are complex and multifactorial diseases that are
attributed to the interaction of both genetic and envir-
onmental factors [5, 6]. Traditional risk factors include
smoking, physical inactivity and obesity, as well as disor-
ders such as diabetes, hypertension and dyslipidemia [7].
Cholesterol and lipid metabolism has attracted particular
interest from the researchers in the field of cardiovascu-
lar diseases. The molecular mechanisms that have been
proposed thus far to underlie the pathogenesis of MI,
apart from those related to cholesterol and lipid metab-
olism, include mechanisms related to the regulation of
thrombosis and inflammation [8–10]. More recently,
emerging roles have been also attributed to oxidative
stress and DNA damage [7].
Genome-wide association studies have revealed a great

number of inter-individual genetic variations associated
with MI, such as single nucleotide polymorphisms
(SNPs) (http://www.cardiogramplusc4d.org/). This en-
abled the development of genetic risk scores to be used
in parallel with traditional cardiovascular risk scores
such as Framingham score [11]. Large-scale gene expres-
sion profiling with microarrays technology has enabled
the prediction of other disease states such as precancer-
ous condition [12] or increased oxidation and inflamma-
tion state in sickle cell disease patients [13]. Nowadays,
there is an increasing interest in identifying gene expres-
sion profiles based principally on microarrays (tran-
scriptomics) for the diagnosis of MI, as well as for risk
prediction of MI and cardiovascular death [14, 15].
The purpose of this study was to collect the available

expression data on differentially expressed genes (DEGs)
that are consistently associated with the incidence of MI
and identify key components of the molecular pathways
involved in the pathogenesis of the disease. Such ana-
lyses could also be useful in identifying key genes whose
differential expression can be used for disease diagnosis
and prognosis. Towards this end, gene expression data
from case-control studies in MI were retrieved from
multiple, independent microarray studies and a carefully
designed meta-analysis was performed following the
guidelines.

Methods
In order to identify gene expression data regarding myo-
cardial infarction, we performed a comprehensive litera-
ture search in PubMed [16] using the keywords
“microarray” AND (“myocardial ischaemia” OR “myocar-
dial infarction”). The datasets were retrieved from the
public microarray data repository GEO [17], using the
search term “myocardial infarction”. Datasets that include
gene expression data on tissues other than blood, as well
as datasets regarding the effect of drugs in the above men-
tioned diseases, were excluded from our analysis. Studies
that met the inclusion criteria but did not make their data
available could not be included in the meta-analysis, but
nevertheless they are included in the systematic review.
The overall procedure of data extraction is shown in the
PRISMA Flow Diagram (Additional file 1: Figure S1).
For each microarray study, we recorded the gene ex-

pression data matrix that represents the gene expression
summary for every probe and every sample and used it as
input to the meta-analysis. In microarrays, especially when
combining data from different platforms which use differ-
ent probes, several problems may occur. Many probes can
map to the same Gene ID for various reasons, and, con-
versely, a probe may also map to more than one Gene ID
if the probe sequence is not specific enough. A simple ap-
proach would be to use only the probes with one-to-one
mapping for further analysis; however, this approach re-
sults to loss of information. To circumvent this, and in
order to perform an analysis based on genes and not
probes, we followed the guidelines of Ramasamy and co-
workers and we converted the probe identifiers to gene
identifiers before conducting meta-analysis. To this end,
GPL files that contained infromation about the gene sym-
bols that correspond to probe id’s were used in order to
combine studies from different platforms and resolve the
“many-to-many” relationships between probes and genes,
by averaging the expression profiles for genes with more
than one probe [18].
The t-test was employed to identify the differentially

expressed genes (DEGs) between the case and control
groups. A drawback of the t-test in microarray data ana-
lysis is that in case most of the experiments in a study
contain only few samples in each group the assumption of
normality is not tenable. To resolve this, Bootstrap [19,
20], a statistical method for estimating the sampling distri-
bution of an estimator by resampling with replacement
from the original sample was used. Bootstrap provides an
ideal alternative method when no formula for the sam-
pling distribution is available or when the available formu-
las make inappropriate assumptions (e.g. small sample
size, non-normal distribution). The Bootstrap method has
been applied in previous microarray experiments, and em-
pirical evidence suggests that it produces accurate esti-
mates, at least for moderate sample sizes [21]. For very
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small sample sizes (i.e. < 10), various modifications to the
standard Bootstrap method have been proposed [22, 23].
Bootstrap analysis was conducted with 1000 replicates, a
relatively high number, in order to generate acurate esti-
mates of the standard errors.
The generated Bootstrap standard errors were subse-

quently used in a standard procedure for random effects
meta-analysis by employing the standardized mean dif-
ference [24, 25]. In order to account for the multiple
comparisons, various correction methods were consid-
ered in this study. These methods are grouped into two
categories, the ones that control the family-wise error
rate (FWER) and the ones that control the False Discov-
ery Rate (FDR). The most common approach to control
FWER is the Bonferroni correction [26] which is easily
applied and intuitive, but it is very conservative. Other
popular methods used for multiple testing correction are
the methods proposed by Sidak [27], Holland et al. [28]
and Holm [29]. Benjamini and Hochberg [30] proposed
a method which controls FDR instead of FWER.
FDR-controlling procedures are designed to control the
expected proportion of rejected null hypotheses that
were incorrect rejections. FDR-controlling procedures
have greater power (i.e. they detect more differences as
statistically significant), at the cost of increased rates of
Type I errors. For both FWER and FDR analyses, genes
with the FDR-corrected p-value (q-value) less or equal
to 0.01 were considered as statistically significant. Fi-
nally, the integration-driven discovery rate (IDR) pro-
posed previously [25, 31] was used in order to calculate
the DE genes identified purely by the meta-analysis. The
IDR is defined as the proportion of genes that are identi-
fied in the meta-analysis and were not identified in any
of the individual studies, using the same statistical cri-
teria. For all statistical analyses, the Stata v13 statistical
software package [32] was used.
The identified differentially expressed genes were sub-

mitted to STRING v10 [33] for in silico gene/protein
interaction analysis. STRING (Search Tool for the Re-
trieval of INteracting Genes/proteins) [33] is a compre-
hensive database of known and predicted, direct and
indirect interactions among genes/proteins, derived from
a variety of sources such as high-throughput biochem-
ical, genetic or biophysical experiments, co-expression
analyses, and others. Furthermore, statistically significant
over-represented KEGG Pathway [34] terms were identi-
fied by employing WebGestalt (WEB-based GEne SeT
AnaLysis Toolkit) [35]. Hypergeometric distribution ana-
lysis [36] was used and the p-values were adjusted with
the FDR correction [30]; the threshold for q-values was
set at 10− 3. A similar analysis was performed for genes
which are known to have polymorphisms associated with
CAD/MI (genetic association data). These genes were
obtained by a previous comprehensive analysis [37, 38],

which combined data from three diverse databases of
7158 gene-disease association data: the NCBI’s OMIM
(Online Mendelian Inheritance in Man) [39], the NIH’s
GAD [40] and the NHRI GWAS Catalog [41].

Results
A total of 162 articles and 174 datasets were retrieved from
PubMed and GEO and reviewed for eligibility. The 160 ar-
ticles from PubMed were irrelevant research articles or re-
views and were subsequently excluded from the
meta-analysis (Fig. 1A). Additional file 2 provides a detailed
list of PMIDs for the articles identified and the reasons for
their exclusion. Only one published paper could potentially
meet the inclusion criteria but the authors did not make
their data available in GEO (or any other database), so we
could not include it in the meta-analysis. Finally, 2 articles
identified by the literature search in Pubmed contain infor-
mation on GEO three datasets that had already been identi-
fied and included in our analysis. Among the GEO
datasets, four met the eligibility criteria and were included
in the meta-analysis (Fig. 1B), (Additional file 1: Figure S1).
These datasets contained data on 31,180 loci, in 93 patients
with MI and 89 healthy individuals (Table 1). The paper
published by Głogowska-Ligus and Dąbek (2012) [42] did
not make the data available (and hence it could not be in-
cluded in the meta-analysis), but the authors identified 26
DEGs (Additional file 1: Table S1). Among these genes only
three (TKT, HCK, SERPINA1) were found among the re-
sults of the meta-analysis (see below).
In our meta-analysis, we identified a total of 626 differen-

tially expressed genes in MI patients as compared to
healthy individuals at an FDR-adjusted p-value threshold of
0.01 [30]. Several methods of multiple testing correction
(Sidak [27], Bonferoni [26], Holm [29], Holland [28]) were
applied in order to reduce the number of false positives. All
FWER methods identified fewer genes as statistically signifi-
cant (Additional file 1: Table S2). A gene found to be differ-
entially expressed by meta-analysis can be likely not found
to be DE in any of the individual studies (Fig. 2). In our
study, the integration-driven discovery rate (IDR) was com-
puted in order to determine the proportion of DEGs de-
tected by meta-analysis as compared to the individual
studies [25, 31]. The IDR was estimated to be 0.527, indi-
cating that the percentage of DEGs identified through
meta-analysis is 52.7%. The 626 DEGs with their FDRs are
shown in Additional file 1: Table S3. These 626 differen-
tially expressed genes were assessed for KEGG Pathway
terms enrichment, but no enrichment could be found at
p-value< 0.05. The top-60 genes at an FDR < 10− 8 are pre-
sented in Additional file 1: Table S4. The biological pro-
cesses of the 626 DEGs, according to STRING, appear in
Table 2A. Many genes participate in the broad categories of
cellular and metabolic processes, and of particular note, 30
genes are involved in inflammatory responses while 12 in
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cytokine production. Moreover, a great number (i.e. 343) of
the gene products are membrane-associated (in plasma
membrane or organelles) (Τable 2B).

The possible interactions among the 626 DEGs were
further investigated and visualized using STRING. We
identified 88 gene products that were strongly intercon-
nected and formed a network at a high confidence level
(Fig. 3). Proteins are represented as nodes and the associa-
tions are denoted by edges (lines), corresponding to vari-
ous molecular modes of action. KEGG pathway analysis of
these genes identified genes of the Proteasome complex,
and genes involved in RNA transport, endocytosis, phago-
cytosis, glycerophosholipid metabolism and glycosamino-
glycan biosynthesis (Table 2C). Proteins with more than
six interacting partners at a confidence interaction score
of 0.7 were considered as ‘hubs’ of the network and were
selected for further analysis (Additional file 1: Table S5).
These 15 genes/proteins appear to form two distinct

subnetworks (Fig. 3). The first sub-network includes genes
involved in inflammation while the second contains pro-
teins responsible for RNA processing and nuclear import/
export. The first sub-network includes ADORA3, ARRB2,
CCL5, CXCL6, CXCR2, CXCR7, FPR2 and GPER, while
the second one contains NUP37, NUP43, RAE1 and
SRSF1 and the related genes CCAR1, CSTF3, SNRP40 or
SEH1L, SNJPN, MIOS and B9D2. A third, less intercon-
nected, much smaller sub-network consists of NOTCH1,
IGF1R, and SPI1. Remarkably, SERPIN, WDR59, RBL1,
and CTSG proteins appear as interconnecting nodes of
the first two sub-networks (Fig. 3). The pathway enrich-
ment analysis showed that among the genes correspond-
ing to the 15 most highly connected nodes (Additional file
1: Table S5) there are three significantly enriched KEGG
Pathways (Additional file 1: Table S6). Two of these path-
ways are related to immunity and inflammation (ARRB2,
CCL5, CXCL6, CXCR2 and CXCR7) and one pathway in
RNA transport (NUP37, NUP43 and RAE1). The 15 genes
were also used in logistic regression model stratified by

Fig. 1 a) Articles screened from Pubmed database b) Datasets screened from Geo Database

Table 1 Study Characteristics included in meta-analysis

References GEO Dataset Platform MI patients Healthy controls Number of probes Number of Genes

[60] GSE48060 Affymetrix Human Genome U133
Plus 2.0 Array

30 22 42,450 21,037

[61] GSE60993 Illumina HumanWG-6 v3.0 expression beadchip 7 7 35,966 25,162

[61] GSE61144 Sentrix Human-6 v2 Expression BeadChip 7 10 30,535 24,778

– GSE66360 Affymetrix Human Genome U133 Plus 2.0 Array 49 50 42,450 21,037
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study (individual patients’ data meta-analysis [43]), in
order to assess their ability to predict the outcome (i.e.,
MI). Notably, even though these genes were not selected
using existing variable selection techniques, but instead
through functional enrichment analysis, they proved to be
rather good predictors for MI, since the resulting model
yields 84% sensitivity and 86% specificity.
A comparison between the MI/CAD-associated genes

and the 626 DEGs identified in the present study was also
performed. A total of 221 genes were found to be robustly
involved in CAD/MI (Additional file 1: Table S7) by ana-
lyzing a large dataset resulted from a previous comprehen-
sive study of 3854 disease-associated genes [37, 38]. The
overlap between the set of 626 DEGs and the 221 genetic
association genes was, however, minimal since only eight
common genes were found: FES, GPD1L, IMPA2, OLR1,
PGS1, PPP1R3B, ST3GAL4 and ABCB1. Interestingly,
these genes do not appear to be functionally related, since
their corresponding nodes in the interaction network are
not connected (Fig. 3). Of particular note, three of these
genes are among the top 60 DEGs with an FDR less than
10− 8 (FES, ST3GAL4 and PPP1R3B). We also performed
an enrichment analysis of the 221 MI/CAD-associated
genes, using the same settings in order to examine
whether they overlap with the 626 DEGs identified in this
work (Additional file 1: Table S8). The results showed that
there is some overlap since 6 out of the 14 biological pro-
cesses of the 626 DEGs are common with those from the
functional analysis of genetic association genes. Given that

these processes are multifaceted (i.e., cellular process,
single-organism cellular process, cellular metabolic
process, metabolic process, primary metabolic process,
single-organism process), it was expected to include nearly
50% of the identified genes. Notably, among the biological
processes found in MI/CAD-associated genes with high
significance are processes related to cholesterol and lipid
molecular processes and response to stress. Such bio-
logical processes were not identified among the DEGs, in
which inflammatory processes are common. Finally, DEGs
and MI/CAD-associated genes participate in distinctly dif-
ferent biochemical pathways according to KEGG.

Discussion
In this systematic review and meta-analysis, we
combined, for the first time to our knowledge, all the
available literature and microarray data on MI and per-
formed a meta-analysis in order to identify differentially
expressed genes that can potentially be utilized as risk
prediction factors. One of the main problems concerning
microarray experiments is the lack of standardization.
As a result, the data collected from different microarray
platforms cannot be compared accurately or replicated.
In a recent evaluation study, it was found that a large
proportion of published studies could not be reproduced
either completely or partially [44]. This was mainly at-
tributed to data unavailability and incomplete data anno-
tation or specification of data processing and analysis.
The authors called for stricter publication rules that
would enable public data availability and explicit de-
scription of data processing and analysis. The issue of
comparing data generated by different platforms has
long been under investigation [45] and filtering of
probes has been shown to significantly improve
intra-platform data comparability [46]. Of note, the
problem of data availability emerged also in this
meta-analysis, since the systematic review that we per-
formed identified one additional published study that
met all the inclusion criteria but its data were not avail-
able. The list of DEGs identified by this study was, as ex-
pected, smaller and had little overlap with the list of 626
DEGs identified by the meta-analysis.
In this work, by applying formal statistical methodolo-

gies for meta-analysis, we identified 626 statistically sig-
nificant DEGs. It is worth mentioning that approximately
half of the genes identified in this meta-analysis could not
have been detected by any individual study using the same
criteria. These findings reinforce the robustness and the
value of the meta-analysis in the field of high-throughput
data analysis. Additionally, based on bioinformatics ana-
lyses we attained the visualization of the interactions
among these genes/gene products, the identification of
their biochemical pathways, their cellular topology and
their gene ontology function.

Fig. 2 Venn diagram comparing DEG sets identified by the
individual studies and by meta-analysis. The results obtained by the
meta-analysis (626 DEGs) are compared with DEGs identified by at
least one study and DEGs identified by at least two studies
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Table 2 Enrichment Analysis of the 626 DEGs according to STRING

A: Functional enrichment of the 626 DEGs for Biological Processes according to STRING

Biological Process (GO)

pathway ID pathway description count in gene set false discovery rate

GO:0009987 cellular process 363 5.80E-07

GO:0071704 organic substance metabolic process 265 0.000675

GO:0044237 cellular metabolic process 256 0.000684

GO:0008152 metabolic process 283 0.000785

GO:0006954 inflammatory response 30 0.00134

GO:0044238 primary metabolic process 253 0.00504

GO:0044699 single-organism process 296 0.0303

GO:0051186 cofactor metabolic process 21 0.0303

GO:0045321 leukocyte activation 25 0.0329

GO:1901564 organonitrogen compound metabolic process 66 0.0329

GO:0002274 myeloid leukocyte activation 11 0.0381

GO:0006807 nitrogen compound metabolic process 174 0.0381

GO:0001816 cytokine production 12 0.043

GO:0044763 single-organism cellular process 282 0.043

B: Cellular Component enrichment of the 626 DEGs for Cellular Component according to STRING

Cellular Component (GO)

pathway ID pathway description count in gene set false discovery rate

G0:0044424 intracellular part 370 1.47E-05

GO:0005622 intracellular 376 1.59E-05

G0:0043227 membrane-bounded organelle 343 1.59E-05

G0:0043226 organelle 354 4.39E-05

G0:0043231 intracellular membrane-bounded organelle 309 0.000327

GO:0043229 intracellular organelle 326 0.000596

GO:0005623 cell 393 0.00139

G0:0044464 cell part 391 0.00195

G0:0005737 cytoplasm 294 0.00216

GO:0005575 cellular_component 423 0.00292

GO:0035859 Seh1-associated complex 4 0.0049

G0:0044194 cytolytic granule 3 0.0103

G0:0044444 cytoplasmic part 221 0.0137

G0:0061700 GATOR2 complex 3 0.0216

G0:0042581 specific granule 4 0.033

C: KEGG Pathway enrichment of the 88 DEGs that were strongly interconnected and formed a network according to STRING.

#pathway ID pathway description observed gene count false discovery rate

3050 Proteasome 6 0.000298

3013 RNA transport 8 0.00253

4144 Endocytosis 9 0.00253

564 Glycerophospholipid metabolism 6 0.00596

532 Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 3 0.0256

4666 Fc gamma R-mediated phagocytosis 5 0.0256

5323 Rheumatoid arthritis 5 0.0256
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Several methods for combining different datasets in a
meta-analysis have been proposed which can help re-
searchers to overcome some of the problems mentioned
above [47]. However, issues such as the lack of
standardization present important obstacles in the applica-
tion of such methods. Several studies in the literature com-
pare the different microarray meta-analysis methods [24,
48, 49]. Notably, the lack of standardization is also apparent
in the literature pertinent to studies in the meta-analysis of
microarrays, since different methods and combinations of
these methods have been used in the recent literature. A re-
cent systematic search in PubMed, resulted in the empirical
evaluation of the articles that reported microarray
meta-analysis [50]. The results of this evaluation were very
interesting, since a large proportion of the published studies
was found to be conducted using the so-called

“inappropriate” method of pooling datasets. This is a
well-known issue in the meta-analysis literature, and this
approach of pooling datasets in order to simply create a lar-
ger one is not recommended, as it can lead to various types
of bias. Inappropriate is also the so-called method of
“vote counting”, in which genes are considered DEGs
only if they are found to have statistical significant
differences in expression in the majority of the pub-
lished studies. The Cochrane Handbook for System-
atic Reviews of Interventions [51], states precisely:
“Vote counting … should be avoided whenever possi-
ble…(and that it) … might be considered as a last re-
sort in situations when standard meta-analytical
methods cannot be applied”. We need to mention that
the comparison of the DEGs identified by single stud-
ies was performed precisely to make this point clear:

Table 2 Enrichment Analysis of the 626 DEGs according to STRING (Continued)

601 Glycosphingolipid biosynthesis - lacto and neolacto series 3 0.0391

4721 Synaptic vesicle cycle 4 0.0408

5120 Epithelial cell signaling in Helicobacter pylori infection 4 0.0495

Fig. 3 Gene/protein association network of the 88 MI DEGs displayed in the action view. Lines of different colors indicate predicted modes of
action shown in the inset with a confidence interaction cut-off score of 0.7. The network was constructed using STRING
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single studies are underpowered and in a combined
analysis many genes, that did not appear significant
in any study, may show differential expression.
Moreover, bioinformatics analysis revealed a rather

small set of 88 highly interconnected genes/gene products
identified as differentially expressed in MI. Based on meta-
bolic pathway analysis, these genes are implicated into in-
flammatory/thrombotic/wound healing processes and
RNA transport. The first sub-network consists of the
genes ADORA3, ARRB2, CCL5, CXCL6, CXCR2 (IL8RB),
CXCR7, FPR2 and GPER. Of those, ADORA3, CXCR2,
CXCR7, FPR2 and GPER are G protein-coupled receptors
(GPCRs), while the rest (ARRB2, CCL5, CXCL6) are
ligands for GPCRs. Of particular note, MI mainly results
from atherosclerosis, a disease manifested by chronic in-
flammatory response of white blood cells (WBCs) in the
walls of arteries [52]. Platelets are shown to play a pivotal
role in atherogenesis. Many platelet-derived chemokines
can alter the differentiation of T-cells and
macrophages by inhibiting neutrophil and monocyte
apoptosis, or by triggering atherogenic monocyte re-
cruitment on endothelium cells such as CXCL4 and
CCL5. However, other chemokines display atheropro-
tective activity such as CXCL12, the ligand of CXCR7.
CXCL12 has angiogenic properties [53, 54], since it is
involved in regenerative processes by attracting
progenitor cells and accelerating endothelial healing
after injury [55]. ARRB2 is implicated in IL8-mediated
granule release in neutrophils [56]. Ligand FPR2
(FPRL1) acts as a powerful chemotactic factor/agent for
neutrophils. GPER is activated by the female sex hormone
estradiol and plays a cardioprotective role by reducing car-
diac hypertrophy and perivascular fibrosis. The aforemen-
tioned proteins, which belong to the first sub-network, are
all ligands or receptors, mainly involved in chemokine sig-
naling, and constitute a fine tuned network that regulates
the atherogenetic or atheroprotective processes before,
during and after MI [52, 57].
A smaller sub-network including NOTCH1, PRKCD,

IGF1R, and SPI1 connected to the previous sub-network
via ARRB2 is also formed (Fig. 3). NOTCH1 and IGF1R
are transmembrane receptors. PRKCD is a
Calcium-independent serine/threonine-protein kinase
and regulates platelet functional responses. On the other
hand, SPI1 is a transcriptional activator that may be spe-
cifically involved in the differentiation or activation of
macrophages or B-cells; it also binds RNA and may
modulate pre-mRNA splicing [33]. Another major sub-
group consists of NUP37, NUP43, RAE1 and SRSF1 that
are connected to CCAR1, CSTF3, SNRP40 or SEH1L,
SNJPN, MIOS and B9D2. These genes/gene products
are involved in RNA processing, transport and
localization, cell cycle regulation as well as in glucose
transport. Four of these proteins are implicated in the

mitotic envelope disassembly and almost all of them are
localized on nuclear membrane and especially on nu-
clear pores [33]. RNA transport and nuclear pore genes
have not been proposed to be associated with MI. To
our knowledge, it is the first time that such a mechan-
ism/pathway is suggested to be involved in the develop-
ment or recovery of MI.
Finally, we should mention five genes that constitute

intermediate nodes between the two major sub-networks,
the cytokine-receptor inflammatory genes and the trans-
port genes. These are SERPINA1, SERPINB2, WDR59,
RBL1 and CTSG. They are linearly connected to each
other in a path (Fig. 3). Of those, two are serpin peptidase
inhibitors (SERPINA1, SERPINB2), while CTSG is a
serine protease with trypsin- and chymotrypsin-like speci-
ficity. WDR59 is a component of the GATOR
sub-complex that functions as an activator of the amino
acid-sensing branch of the TORC1 pathway. RBL1, retino-
blastoma like 1 protein, is involved in the regulation of
entry into cell division. Of note, the 4G/5G polymorph-
ism of SERPINE1, another serpin peptidase inhibitor,
has been shown in a meta-analysis conducted by
Tsantes et al. to be significantly associated with MI
and venus thrombosis [58]. The fact that our
meta-analysis method identified genes known to be
associated with MI highlights the importance of the
novel finding of this study which is the involvement
of RNA transport genes in MI.
Of particular importance, the genes found to be differ-

entially expressed in MI in this study, or the subset of
these genes that form the functional network, are not
the same as the genes carrying polymorphisms which
were previously identified in genetic association studies
or GWAS [59]. Only eight out of 626 genes were com-
mon with those identified by genetic association studies.
This is of no surprise, since GWAS mainly identify genes
the polymorphisms of which are associated with the dis-
ease, whereas microarray studies, such as the ones in-
cluded here, identify genes differentially expressed in the
disease (and in particular, in blood). Genes of the former
category are more likely to be the initiators of the dis-
ease (i.e. a transcription factor, a non-functional enzyme
in metabolism and so on), whereas genes of the latter
category are more likely to participate in subsequent
events in the progression of the disease (indicators of
the manifestation of the disease and so on). This is also
exemplified in the enrichment analysis performed, which
showed that DEGs participate mainly in inflammatory
processes, whereas MI/CAD-associated genes participate
mainly in lipid and cholesterol metabolism processes.
The eight common genes are involved in lipid metabol-
ism (GPD1L, OLR1, PGS1), membrane transport and
signaling cascade (FES, IMPA2 and ABCB1), as well as
glycogen and glucose metabolism (PPP1R3B, ST3GAL4).
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Of importance, three of these genes, namely, FES,
ST3GAL4 and PPP1R3B, rank among the top 66 genes
with the highest strength of association (smaller
q-value). Despite the small number of common genes,
this finding reflects the way gene polymorphisms and
their corresponding proteins contribute to the develop-
ment of cardiovascular lesions that eventually lead to
MI. The eight genes common in both approaches,
should be considered important since for these genes we
know that they have variants associated with the disease
and at the same time they are differentially expressed in
the disease and should be investigated further.
This meta-analysis has certain limitations that should be

acknowledged. First of all, public microarray data are often
poorly annotated with respect to the outcome of patients
after a primary myocardial infarction event. Second, we
concentrated on blood samples taking into consideration
the potential application of the identified DEGs as MI bio-
markers. Gene expression data from other tissues, such as
myocardium, muscle or liver, might have provided a differ-
ent insight regarding the aetiology and the progression of
the disease. However, such data are not readily available
and are not likely to be used in clinical practice. Third, the
use of microarray technology in studying gene expression
is being surpassed by RNAseq, a method that provides a
potentially more accurate quantification of the abundance
of different transcripts; however, there are currently no
available data on MI.
Nevertheless, the use of meta-analysis is required more

than ever for the extraction of meaningful information con-
tained in the huge amount of gene expression data that
have been produced and stored in public repositories. In
terms of methodology the present study has certain
strengths. First, we retrieved all the publicly available
microarray datasets on MI patients. Second, we applied
several well-documented statistical techniques in the
meta-analysis of these data and were able to identify sets of
genes that are differentially expressed and could not be de-
tected in the individual microarray studies. Third, bioinfor-
matics approaches allowed us to gain important insight
into the network formed by these particular genes/gene
products. The increasing number of microarray datasets
poses the need for the efficient management, processing,
analysis, interpretation and clinical utility of these data. The
combination of genetic risk factors with gene expression
profiles and traditional risk predictors, such as Framingham
score, may potentially provide a more accurate risk predic-
tion model for identifying people at high risk for death after
MI. They could also enable personalized treatment and
health providers to make effective clinical decisions.

Conclusions
In summary, in this comprehensive meta-analysis we
identified a total of 626 genes that are differentially

expressed between MI patients and healthy individuals.
Based on functional enrichment analyses, DEGs were
shown to be mainly involved in inflammatory/wound
healing, RNA processing/transport mechanisms and a
yet not fully characterized pathway involved in RNA
transport and nuclear pore proteins. Moreover, there
was a minimal overlap of these genes with genes identi-
fied by genetic association studies, but among these
there are genes involved in lipid metabolism (GPD1L,
OLR1, PGS1), membrane transport and signaling cas-
cade (FES, IMPA2 and ABCB1), and glycogen and glu-
cose metabolism (PPP1R3B, ST3GAL4). These data
could be useful in future studies on the molecular mech-
anisms of MI as well as in the clinical setting as diagnos-
tic and prognostic markers.

Additional files

Additional file 1: This file includes the Meta-analysis Prisma flowchart
and the supplementary results regarding the data analysis of the article.
(DOCX 756 kb)

Additional file 2: PMIDs for each article and the excluding reasons. This
file provides a detailed list of PMIDs for the articles identified and the
reasons for their exclusion. (TXT 3 kb)

Abbreviations
CAD : Coronary Artery Disease; DEGs : Differentially Expressed Genes; FDR : False
Discovery Rate; FWER : Family-Wise Error Rate; GEO : Gene Expression Omnibus;
IDR : Integration-driven Discovery Rate; IHD : Ischemic Heart Disease; MI
: Myocardial Infarction; OMIM : Online Mendelian Inheritance in Man; SNPs
: Single Nucleotide Polymorphisms; STRING : Search Tool for the Retrieval of
INteracting Genes/proteins; WebGestalt : WEB-based GEne SeT AnaLysis Toolkit

Acknowledgments
The authors would like to thank the anonymous reviewers for their helpful
suggestions and comments.

Funding
This work was supported by “IKY FELLOWSHIPS OF EXCELLENCE FOR
POSTGRADUATED STUDIES IN GREECE- SIEMENS PROGRAM”. The Funding body
provided the financial support for the post-doctoral research of Panagiota Kontou
(PK), but it had no intervention whatsoever in the design of the study, in the
collection, analysis and interpretation of the data, or in writing the manuscript.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the GEO
(Gene Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo/) repository.
[GSE48060 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48060),
GSE60993 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60993),
GSE61144 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61144),
GSE66360 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66360)].

Authors’ contributions
PB conceived the study and its design. PK drafted the first version of the
manuscript. PK, AP, ND and SBo made substantial contributions to
acquisition of data and analysis. PK, AP, GB, SBa and PB made substantial
contributions to the interpretation of results. All authors participated in
drafting the article and revising it critically for important intellectual content.
All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Kontou et al. BMC Medical Genomics          (2018) 11:109 Page 9 of 11

https://doi.org/10.1186/s12920-018-0427-x
https://doi.org/10.1186/s12920-018-0427-x
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48060
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60993
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61144
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66360


Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science and Biomedical Informatics, University of
Thessaly, 35131 Lamia, Greece. 2Izmir Biomedicine and Genome Institute,
Dokuz Eylül University Health Campus, 35340 Izmir, Turkey. 3Department of
Hygiene and Epidemiology, University of Ioannina School of Medicine,
Stavros Niarchos Av, 45110 Ioannina, Greece. 4School of Medicine, New York
University, New York NY 10016, USA. 5Lamia, University of Thessaly,
Papasiopoulou 2-4, 35131 Lamia, Greece.

Received: 20 September 2018 Accepted: 7 November 2018

References
1. WHO: World Health Organization. Cardiovascular Disease: Global Atlas on

Cardiovascular Disease Prevention and Control. 2011.
2. Smith SC Jr, Collins A, Ferrari R, Holmes DR Jr, Logstrup S, McGhie DV,

Ralston J, Sacco RL, Stam H, Taubert K, et al. Our time: a call to save
preventable death from cardiovascular disease (heart disease and stroke). J
Am Coll Cardiol. 2012;60(22):2343–8.

3. Mortality GBD. Causes of death C: global, regional, and national age-sex
specific all-cause and cause-specific mortality for 240 causes of death, 1990-
2013: a systematic analysis for the global burden of disease study 2013.
Lancet. 2015;385(9963):117–71.

4. Wong ND. Epidemiological studies of CHD and the evolution of preventive
cardiology. Nat Rev Cardiol. 2014;11(5):276–89.

5. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ
Res. 2016;118(4):564–78.

6. Pedersen LR, Frestad D, Michelsen MM, Mygind ND, Rasmusen H, Suhrs HE,
Prescott E. Risk factors for myocardial infarction in women and men: a
review of the current literature. Curr Pharm Des. 2016.

7. Simon AS, Vijayakumar T. Molecular studies on coronary artery disease—a
review. Indian J Clin Biochem. 2013;28(3):215–26.

8. Jefferson BK, Topol EJ. Molecular mechanisms of myocardial infarction. Curr
Probl Cardiol. 2005;30(7):333–74.

9. Libby P. History of discovery: inflammation in atherosclerosis. Arterioscler
Thromb Vasc Biol. 2012;32(9):2045–51.

10. Fava C, Montagnana M. Atherosclerosis is an inflammatory disease which
lacks a common anti-inflammatory therapy: how human genetics can help
to this issue. A Narrative Review. Frontiers in Pharmacology. 2018;9:55.

11. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB.
Prediction of coronary heart disease using risk factor categories. Circulation.
1998;97(18):1837–47.

12. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K,
Pienta KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers
in prostate cancer. Nature. 2001;412(6849):822–6.

13. Jison ML, Munson PJ, Barb JJ, Suffredini AF, Talwar S, Logun C, Raghavachari
N, Beigel JH, Shelhamer JH, Danner RL, et al. Blood mononuclear cell gene
expression profiles characterize the oxidant, hemolytic, and inflammatory
stress of sickle cell disease. Blood. 2004;104(1):270–80.

14. Kessler T, Erdmann J, Schunkert H. Genetics of coronary artery disease and
myocardial infarction--2013. Current cardiology reports. 2013;15(6):368.

15. Kim J, Ghasemzadeh N, Eapen DJ, Chung NC, Storey JD, Quyyumi AA,
Gibson G. Gene expression profiles associated with acute myocardial
infarction and risk of cardiovascular death. Genome medicine. 2014;6(5):40.

16. McEntyre J, Lipman D: PubMed: bridging the information gap. CMAJ :
Canadian Medical Association journal = journal de l’Association medicale
canadienne 2001, 164(9):1317–1319.

17. Barrett T, Edgar R. Mining microarray data at NCBI's gene expression
omnibus (GEO)*. Methods Mol Biol. 2006;338:175–90.

18. Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a
meta-analysis of gene expression microarray datasets. PLoS Med. 2008;5(9):
e184.

19. Efron B: The jackknife, the bootstrap and other resampling plans, vol. 38:
SIAM; 1982.

20. Efron B, Tibshirani R. An introduction to the bootstrap. Chapman & Hall/
CRC: Boca Raton, FL; 1993.

21. Meuwissen TH, Goddard ME. Bootstrapping of gene-expression data
improves and controls the false discovery rate of differentially expressed
genes. Genet Sel Evol. 2004;36(2):191–205.

22. Jiang W, Simon R. A comparison of bootstrap methods and an adjusted
bootstrap approach for estimating the prediction error in microarray
classification. Stat Med. 2007;26(29):5320–34.

23. Neuhauser M, Jockel KH. A bootstrap test for the analysis of microarray
experiments with a very small number of replications. Appl Bioinforma.
2006;5(3):173–9.

24. Campain A, Yang YH. Comparison study of microarray meta-analysis
methods. BMC bioinformatics. 2010;11:408.

25. Choi JK, Yu U, Kim S, Yoo OJ. Combining multiple microarray studies and
modeling interstudy variation. Bioinformatics. 2003;19(Suppl 1):i84–90.

26. Dudoit SYHY, Matthew J. Callow, and Terence P. Speed: Statistical methods
for identifying differentially expressed genes in replicated cDNA microarray
experiments. Technical report # 578 2000.

27. Sidak Z. Rectangular confidence regions for the means of multivariate
Normal distributions. J Am Stat Assoc. 1967;62:626–33.

28. Holland BS, Copenhaver MD. An improved sequentially Rejective Bonferroni
test procedure. Biometrics. 1987;43(2):417–23.

29. Holm S. A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics. 1979;6:65–70.

30. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995;57(1):289–300.

31. Conlon EM, Song JJ, Liu A. Bayesian meta-analysis models for microarray
data: a comparative study. BMC bioinformatics. 2007;8:80.

32. StataCorp: Stata Statistical Software: Release 13. In. College Station, TX:
StataCorp LP; 2013.

33. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein
interaction networks, integrated over the tree of life. Nucleic Acids Res.
2015;43(Database issue):D447–52.

34. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res.
2016;44(D1):D457–62.

35. Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit
(WebGestalt): update 2013. Nucleic acids research 2013, 41(Web Server issue):
W77–83.

36. Chvátal V. The tail of the hypergeometric distribution. Discret Math. 1979;
25(3):285–7.

37. Kontou PI, Pavlopoulou A, Dimou NL, Pavlopoulos GA, Bagos PG. Network
analysis of genes and their association with diseases. Gene. 2016;590(1):68–78.

38. Kontou PI, Pavlopoulou A, Dimou NL, Pavlopoulos GA, Bagos PG. Data and
programs in support of network analysis of genes and their association with
diseases. Data Brief. 2016;8:1036–9.

39. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org:
online Mendelian inheritance in man (OMIM(R)), an online catalog of
human genes and genetic disorders. Nucleic Acids Res. 2015;43(Database
issue):D789–98.

40. Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database.
Nat Genet. 2004;36(5):431–2.

41. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek
P, Manolio T, Hindorff L, et al. The NHGRI GWAS catalog, a curated resource of
SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.

42. Głogowska-Ligus J, Dąbek J. DNA microarray study of genes differentiating
acute myocardial infarction patients from healthy persons. Biomarkers. 2012;
17(4):379–83.

43. Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel
model framework for meta-analysis of clinical trials with binary outcomes.
Stat Med. 2000;19(24):3417–32.

44. Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, Falchi M,
Furlanello C, Game L, Jurman G. Repeatability of published microarray gene
expression analyses. Nat Genet. 2009;41(2):149–55.

Kontou et al. BMC Medical Genomics          (2018) 11:109 Page 10 of 11



45. Jarvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kallioniemi OP,
Monni O. Are data from different gene expression microarray platforms
comparable? Genomics. 2004;83(6):1164–8.

46. Hwang KB, Kong SW, Greenberg SA, Park PJ. Combining gene expression
data from different generations of oligonucleotide arrays. BMC
bioinformatics. 2004;5:159.

47. Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M. Comparison
and meta-analysis of microarray data: from the bench to the computer
desk. Trends Genet. 2003;19(10):570–7.

48. Chang LC, Lin HM, Sibille E, Tseng GC. Meta-analysis methods for combining
multiple expression profiles: comparisons, statistical characterization and an
application guideline. BMC bioinformatics. 2013;14:368.

49. Hong F, Breitling R. A comparison of meta-analysis methods for detecting
differentially expressed genes in microarray experiments. Bioinformatics.
2008;24(3):374–82.

50. Tseng GC, Ghosh D, Feingold E. Comprehensive literature review and
statistical considerations for microarray meta-analysis. Nucleic Acids Res.
2012;40(9):3785–99.

51. Higgins JPT, Green S (eds.): Cochrane Handbook for Systematic Reviews of
Interventions: The Cochrane Collaboration, 2011; 2011.

52. Bonaventura A, Montecucco F, Dallegri F. Cellular recruitment in myocardial
ischaemia/reperfusion injury. Eur J Clin Investig. 2016;46(6):590–601.

53. Proost P, Wuyts A, Conings R, Lenaerts JP, Billiau A, Opdenakker G, Van
Damme J. Human and bovine granulocyte chemotactic protein-2: complete
amino acid sequence and functional characterization as chemokines.
Biochemistry. 1993;32(38):10170–7.

54. Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A,
Oppenheim JJ, Proost P, Van Damme J. Characterization of synthetic human
granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1
and CXCR2 and in vivo inflammatory properties. Biochemistry. 1997;36(9):
2716–23.

55. von Hundelshausen P, Schmitt MM. Platelets and their chemokines in
atherosclerosis-clinical applications. Front Physiol. 2014;5:294.

56. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI,
Nudel R, Lieder I, Mazor Y, et al. The GeneCards Suite: From Gene Data
Mining to Disease Genome Sequence Analyses. Current protocols in
bioinformatics. 2016;54(1):30–1 31 30 33.

57. Blanchet X, Cesarek K, Brandt J, Herwald H, Teupser D, Kuchenhoff H,
Karshovska E, Mause SF, Siess W, Wasmuth H, et al. Inflammatory role and
prognostic value of platelet chemokines in acute coronary syndrome.
Thromb Haemost. 2014;112(6):1277–87.

58. Tsantes AE, Nikolopoulos GK, Bagos PG, Rapti E, Mantzios G, Kapsimali V,
Travlou A. Association between the plasminogen activator inhibitor-1 4G/5G
polymorphism and venous thrombosis. A meta-analysis. Thromb Haemost.
2007;97(6):907–13.

59. Dai X, Wiernek S, Evans JP, Runge MS. Genetics of coronary artery disease
and myocardial infarction. World J Cardiol. 2016;8(1):1–23.

60. Suresh R, Li X, Chiriac A, Goel K, Terzic A, Perez-Terzic C, Nelson TJ.
Transcriptome from circulating cells suggests dysregulated pathways
associated with long-term recurrent events following first-time myocardial
infarction. J Mol Cell Cardiol. 2014;74:13–21.

61. Park HJ, Noh JH, Eun JW, Koh YS, Seo SM, Park WS, Lee JY, Chang K, Seung
KB, Kim PJ, et al. Assessment and diagnostic relevance of novel serum
biomarkers for early decision of ST-elevation myocardial infarction.
Oncotarget. 2015;6(15):12970–83.

Kontou et al. BMC Medical Genomics          (2018) 11:109 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

