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ABSTRACT: Warning systems with the ability to predict floods several days in advance have the potential to
benefit tens of millions of people. Accordingly, large-scale streamflow prediction systems such as the Advanced
Hydrologic Prediction Service or the Global Flood Awareness System are limited to coarse resolutions. This arti-
cle presents a method for routing global runoff ensemble forecasts and global historical runoff generated by the
European Centre for Medium-Range Weather Forecasts model using the Routing Application for Parallel compu-
tatIon of Discharge to produce high spatial resolution 15-day stream forecasts, approximate recurrence inter-
vals, and warning points at locations where streamflow is predicted to exceed the recurrence interval
thresholds. The processing method involves distributing the computations using computer clusters to facilitate
processing of large watersheds with high-density stream networks. In addition, the Streamflow Prediction Tool
web application was developed for visualizing analyzed results at both the regional level and at the reach level
of high-density stream networks. The application formed part of the base hydrologic forecasting service available
to the National Flood Interoperability Experiment and can potentially transform the nation’s forecast ability by
incorporating ensemble predictions at the nearly 2.7 million reaches of the National Hydrography Plus Version
2 Dataset into the national forecasting system.
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INTRODUCTION

Catastrophic floods impact tens of millions of peo-
ple each year and cause significant infrastructure
damage. Global statistics for the period of 2004-2014
indicate that more than 951 million people were
impacted by floods, over $324 billion in damage
occurred, and there were approximately 66,000
deaths (Guha-Sapir et al., 2015). Improvements in
flood forecasting and the ability to communicate
actionable information to emergency responders have
a substantial lifesaving and monetary benefit (Pap-
penberger et al., 2015). Because of this, one of the
first priorities of the new National Water Center in
Tuscaloosa, Alabama (http://www.nws.noaa.gov/oh/
nwc/) is to engage the academic community in the
National Flood Interoperability Experiment (NFIE)
(Maidment, 2015). NFIE aims to address several crit-
ical science and technology questions including: (1)
How can the National Hydrography Plus Version 2
(NHDPlus V2) dataset (Horizon Systems Corporation,
2011) be used to generate nationwide near-real-time
hydrologic simulations at high spatial resolution? (2)
Can such modeling lead to improved emergency
response and community resilience? (3) What is a
sustainable path from research to operations in terms
of flood forecasting (CUAHSI, 2015)? This article
begins to address these questions by presenting a
computational forecast framework and a web-based
visualization application that has the potential to be
a part of the national forecasting system with near-
real-time high-resolution ensemble flood forecasts.
This system forms part of the foundation from which
the NFIE can work to achieve the stated goals.

Advances in geospatial data, atmospheric and
weather data, hydrologic modeling, and computing
resources have led to an improved ability to make
instream forecasts. There are several essential ele-
ments of the National Weather Service’s (NWS) Hydro-
logical Ensemble Forecasting Service (HEFS) that can
be used as a model for a flood forecasting system. The
main elements include: (1) a meteorological ensemble
forecast; (2) a hydrologic processor that inputs the
meteorological data into hydrologic, hydraulic, and
reservoir models; (3) a hydrologic ensemble postproces-
sor to account for total hydrologic uncertainty; and (4)
an ensemble verification service to identify the skill
and error in the forecast (Demargne et al., 2014). In
this article, we demonstrate a method to improve the
spatial resolution of the hydrologic routing portion of a
streamflow prediction system.

The NWS hosts a web-based hydrologic prediction
system known as the Advanced Hydrologic Prediction
Service (AHPS). The predictions are created using the

Advanced Weather Interactive Processing System
(AWIPS) which consists of automated gage data, satel-
lite data, Doppler radars, weather observation stations,
advanced computer models, and super computers. The
AHPS can display the forecasted streamflow, the fore-
casted flood level, the probability of flooding, and maps
of the areas potentially affected by the flooding at many
of the 3,600 forecast stations nationwide. These predic-
tions can range from hours to months in advance
(Mcenery et al., 2005; NOAA, 2015).

In addition, global weather forecasts and hindcasts
are available from multiple sources. Dr. David Maid-
ment’s group at the University of Texas is working
on developing a high-resolution forecasting system
using United States (U.S.)-based models and datasets
for NFIE (Salas et al., 2014; Maidment, 2015). There-
fore, in this article, we focus on the global runoff
datasets generated by the European Centre for Med-
ium-Range Weather Forecasts (ECMWF). The
ECMWF global gridded runoff prediction dataset
includes surface and subsurface runoff depth in
meters derived from the Tiled ECMWF Scheme for
Surface Exchanges over Land with a revised land
surface Hydrology (HTESSEL) land surface model
(Balsamo et al., 2009; ECMWF, 2011). Modeling and
forecasting is intrinsically uncertain (Buizza et al.,
2005; Pappenberger and Beven, 2006; Slingo and Pal-
mer, 2011; Beven et al., 2015). The ECMWF produces
Numerical Weather Prediction (NWP) ensemble fore-
casts as a method for better representing and commu-
nicating the uncertainty in the forecast (Beven and
Cloke, 2012). The ECMWF also produces a dataset
for historical runoff that is an output of the global
atmospheric reanalysis ERA-Interim and begins in
1979 and extends to the present with near-real-time
updates (Dee et al., 2011).

The Global Flood Awareness System (GloFAS),
developed by ECMWF and the Joint Research Centre
of the European Commission, is a coupled hydro-
meteorological model that generates ensemble
streamflow predictions for large-scale river basins
globally for up to 15 days in advance (Alfieri et al.,
2013). The GloFAS grid cell size (0.1°) is too large for
determining local impacts for watersheds smaller
than 10,000 km2; hence, high-resolution hydrologic,
hydraulic, and flood impact models are required for
more detailed forecasts capable of producing action-
able information at the local level.

Although the AHPS provides national coverage
and GloFAS provides global coverage, both are lim-
ited to a relatively coarse spatial resolution for
streamflow predictions. The resolution gap can be
bridged by routing the ECMWF runoff predictions
through the NHDPlus V2 stream network using the
Routing Application for Parallel ComputatIon of
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Discharge (RAPID) model (David et al., 2011; David,
2013). This ECMWF-RAPID integration generates
streamflow predictions at a local scale corresponding
to the U.S. NHDPlus V2 dataset. The ECMWF-
RAPID integration has the potential to be incorpo-
rated into the national forecast system to increase
the resolution to nearly 2.7 million forecast points
with predictions as an ensemble. However, before this
can occur, several improvements need to occur in the
current ECMWF-RAPID system such as initializa-
tion, calibration, and adding reservoir routing. This
system has been developed for use at the NFIE Sum-
mer Institute (Tuscaloosa, Alabama, summer 2015)
where further testing, comparison, and application
will continue to provide a pathway that transforms
the spatial density of forecasting while incorporating
ensemble forecasts that can better communicate
uncertainties involved.

METHODS

The goal of this work was to produce higher spatial
resolution streamflow predictions and provide an intu-
itive method for viewing the predictions. This was
achieved by developing a preprocessing method using
ArcGIS tools to downscale both the ECMWF gridded
runoff prediction dataset and ERA-Interim reanalysis
gridded runoff dataset to the catchment level to create
input data for RAPID. The RAPID model is run for the
period 1980-2014 using the ERA-Interim runoff to
generate approximate historical streamflow and
return period data. Then, the RAPID model is run for
each of the 52 ECMWF forecasts in the ensemble
every 12 h using a distributed computational work-
flow. When the process repeats, future forecasts are
initialized using the average of the forecasted stream-
flows from the previous forecast for each reach. Warn-
ing points are generated at the locations where the
forecasted streamflow exceeds the estimated 20-year,
10-year, and 2-year return periods. Finally, a web app
was created using Tethys Platform (Jones et al., 2014;
Swain, 2015) to manage and visualize the high-resolu-
tion stream forecasts and warning points for decision-
makers in a standardized, intuitive format. The appli-
cation also incorporates AHPS predictions and U.S.
Geological Survey (USGS) observed streamflows for
comparison and validation so that improvements can
be made in subsequent iterations of the system.

The ECMWF global runoff forecast ensemble and
ERA-Interim global reanalysis runoff dataset were
used in this research. The ECMWF global runoff
ensemble provides 52 separate predictions every 12 h
that estimate cumulative runoff depths. The first 51

predictions represent an ensemble of equally probable
conditions and are created at a lower resolution on a
~0.28-degree grid cell (up to day 10, ~0.56-degree grid
cell thereafter) with a 6 h accumulated runoff time
step and a 15-day lead time. The 52nd forecast is a
deterministic “best estimate” solution produced at a
higher resolution with a ~0.14-degree grid cell and a
varying time step of accumulated runoff with a 10-
day lead time. The ERA-Interim dataset used has a
T511 grid (~39 km grid cell), has a daily time step,
and spans the years 1980-2014.

The RAPID model was used to route the ECMWF
runoff through the NHDPlus V2 stream networks.
RAPID is an open source model used to route runoff
of surface and groundwater inflow to rivers down-
stream with any density stream network (David
et al., 2011). The NHDPlus V2 dataset combines the
National Hydrography Dataset, the Watershed
Boundary Dataset, and the National Elevation Data-
sets (NED) and adds attributes that define stream
order and facilitates rapid stream network traversal
and query (Horizons Systems Corporation, 2011).
Reach routing with RAPID is based on the traditional
Muskingum routing method which has two main
parameters k and x, where k is a storage constant
with a time dimension and x characterizes reach
properties that contribute to wave diffusion, is dimen-
sionless, and is stable from 0 to 0.5 (Cunge, 1969).

The high-resolution nature of the NHDPlus V2
stream network necessitates geoprocessing to convert
the ECMWF runoff forecasts into the format required
to route with RAPID. To this end, a collection of free
and open source Python tools has been developed as
geoprocessing tools for ArcGIS. The NHDPlus V2
dataset is conveniently available as an ArcGIS geo-
database. The ArcGIS tools are used to prepare
inflow to each reach in the stream network by con-
verting the ECMWF model forecast from a gridded
runoff depth to runoff volume using the NHDPlus V2
catchments (we will refer to this process as “down-
scaling”), and by generating other ancillary inputs for
the RAPID flood routing model to ensure smooth and
efficient data transfer between models. The following
preprocessing operations are performed using the
ArcGIS tools (version 10.3 or greater):

1. Create the stream network connectivity file by
traversing the NHDPlus V2 network and consid-
ering upstream and downstream connectivity.

2. Calculate the Muskingum parameters (k and x)
based on stream lengths and flow wave celerity
input, and create the Muskingum parameter files
for RAPID. The wave celerity is the speed at
which the water flow wave propagates in a river
channel. The k parameter in the Muskingum
method can be computed based on the value of
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the flow wave celerity using the equation k = L/
c, where L is the length of the river reach, and c
is the celerity of the flow wave going through it.
More information on the relationship between
flow wave propagation and the Muskingum
method can be found in Cunge (1969) or in David
et al. (2011).

3. Create a weight table by overlaying the
NHDPlus V2 catchments on ECMWF runoff
grids. The weight table describes the area (Ai) of
the runoff grid cell (i) that overlays each catch-
ment (Figure 1).

4. Create the inflow file for the stream network by
computing the weighted average runoff volume
from the ECMWF forecast at each time step for the
catchment that corresponds to each stream reach.

Vj ¼
Xn

i¼1

Ai � Rji ð1Þ

where Vj is the runoff volume in m3 at time step
j, Ai is the area of the catchment in m2 in grid

cell i, and Rji is the runoff depth in meters in the
grid cell i at time step j, and n is the number of
grid cells that contribute runoff to the catch-
ment.

The ArcGIS preprocessing workflow Steps 1-3
produces static files, so they only need to be per-
formed once for each watershed that is incorporated
in the system. The resulting inflow file from Step 4
is a Network Common Data Form (NetCDF) file
compatible with RAPID and contains the incremen-
tal runoff defined at each time step of the forecast
for each catchment in the watershed.

Computational Forecast Framework

Before running the forecasts, the ERA-Interim
data is downscaled and then routed in RAPID from
1980 to 2014 to produce 35 years of daily streamflow
estimates. From this data, using a simple Weibull
distribution (Benson, 1962) with the partial duration
series method, estimates for return periods are

FIGURE 1. Weight Table Derivation Illustration with Runoff Grid and Catchment (Step 3).
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generated for each of the reaches in the continental
U.S. Due to time and computational constraints, the
NFIE Mississippi Region return period data were not
generated in this study.

The overall downscaling and routing process in
prediction mode uses a parallel computational fore-
cast framework illustrated in Figure 2. In Step 1 the
ECMWF forecast ensemble is retrieved. The down-
scaling and RAPID routing are performed in Step 2
and the simulations are distributed across multiple
machines in order to decrease computation time. The
computation can be summarized as two processes:
Step 2a the weight table preprocessed earlier by the
Esri tools is used to downscale the ECMWF runoff
forecast and Step 2b the forecasted runoff is routed
through the reaches using RAPID. From the average
of all of the forecasts generated from Step 2, in Step
3 the RAPID streamflow initialization file is created
for the next prediction to then be used in Step 2b.
In Step 4, the return period data generated from
ERA-Interim data are used to generate warning
points where the average or one standard deviation
above the average of forecasted flow from Step 2 at
each reach exceeds the return period. In Step 5 the
instream forecasts and warning points are deposited
in a CKAN data store. CKAN is an open source data

management portal that streamlines the process
sharing and publishing data (Open Knowledge Foun-
dation, 2013). Finally, in Step 6, a Tethys Platform
web app downloads the forecasts and warning points
from CKAN to display them to the user.

The ECMWF ensemble runoff forecasts are pub-
lished every 12 h, introducing a constraint on the
computation time of the downscaling and routing pro-
cess. If the entire process were to require an execu-
tion time longer than 12 h, computations on updated
datasets would be delayed, causing a lag. To prevent
this situation on the large national-scale dataset, effi-
cient computation methods are required to downscale
the forecasts in a timely manner and enable the sys-
tem to run operationally.

The method used to improve computational effi-
ciency was to distribute the computations between
computer processors. The distribution method can be
applied to a single server with multiple processing
cores or to a cluster of computers with shared pro-
cessing cores as would be available via cloud services
such as Amazon Web Services (AWS) or Microsoft
Azure. In this study, both a local compute cluster and
an AWS compute cluster, each with 52 cores, were
used to perform computations. Using this compute
cluster, it was possible to simultaneously downscale

FIGURE 2. Schematic of ECMWF-RAPID Downscaling and Routing Process in Prediction Mode.
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each of the 52 ECMWF runoff forecasts in the predic-
tion ensemble for each individual watershed. HTCon-
dor and a custom Python library named CondorPy
(https://pypi.python.org/pypi/condorpy) were used to
distribute the computations in Step 2 in the work-
flow. HTCondor is a batch-scheduling and resource
management software that distributes jobs to com-
puting resources based on resource availability
(Buyya et al., 2013). CondorPy interfaces with
HTCondor and is used to facilitate programmatic job
creation and submittal.

Streamflow Prediction Tool Web App

The final product of the downscaling and routing
process is 52 NetCDF files, one for each member of
the ensemble forecast, that contain the predicted
hydrographs for each reach of the watershed. This
information needs to be communicated to end-users
in a comprehensible format so that it can inform
decision-makers and the public at large (Pappen-
berger et al., 2013). We addressed this need by
developing a web application or web app called the
“Streamflow Prediction Tool” using Tethys Platform.
The web app medium is an effective way to share
new developments in water resources modeling,
informatics, and decision support. Tethys Platform
bridges the divide that prohibits many water
resources scientists and engineers from developing
web apps by providing (1) a suite of free and open
source software that addresses the unique data and
computational needs common to water resources web
app development, (2) a Python software development
kit for incorporating the functionality of each soft-
ware element into web apps, and (3) a customizable
web site that can be used to deploy the finished web
apps. Among the software projects included in the
Tethys Platform are GeoServer, 52 North WPS, Post-
greSQL with PostGIS, OpenLayers, Google Maps,
Highcharts JS, and HTCondor (Jones et al., 2014;
Swain, 2015).

We designed the Streamflow Prediction Tool to
consume the ensemble stream forecast produced in
Step 2 and the warning points produced in Step 4
from the CKAN data store in Step 6 as shown in the
workflow in Figure 2. This allows the computation
and visualization to operate independently, offering
flexibility in deployment of the system. The web app
automatically maintains a cache of the most recent
weeks’ worth predictions and warning points on the
server to facilitate faster access to the data. The
netCDF4-python and NumPy Python modules are
used to extract, compile statistics, and analyze the
stream forecast prediction ensemble.

The Streamflow Prediction Tool provides an intu-
itive user interface that allows the easy lookup and
visualization of results (Figure 3). GIS visualization
of the stream network and other spatial layers was
accomplished through a coupling of GeoServer 2.7.0
spatial data publishing and OpenLayers 3.2.1 spatial
mapping systems. Stream layers are served as an
Open Geospatial Consortium Web Feature Service
(OGC-WFS) and the other spatial layers are served
by GeoServer as OGC Web Map Services (OGC-
WMS) (Michaelis and Ames, 2012; Open Geospatial
Consortium, 2015a, b). OpenLayers is used to query
GeoServer using OGC-WFS and OGC-WMS and dis-
play the layers in an interactive map. On the map,
clicking on a reach will look up the forecast for that
reach.

The ensemble forecast is summarized and dis-
played on a Highcharts plot (www.highcharts.com),
which provides interactive visualization. In the plot,
the black line represents the high-resolution forecast
and the green bands represent the uncertainty of all
52 members of the prediction ensemble. Where USGS
stream gages exist, that serve observed data, the data
are added to the chart for preceding days on selected
stream reaches, which can be particularly useful for
evaluating performance when viewing older forecasts
for which now the observed data exists. If available,
AHPS stations provide streamflow predictions or
observed data for some of the reaches. The observed
USGS gage data for the station will appear as a blue
dashed line and the AHPS station data will appear
as a purple dashed line on the plot. Additionally, the
estimated return period data is also shown on the
chart with colored bands. The yellow band represents
the range of flows between the 2-year and 10-year
return period streamflows. The red band represents
the range of flows between the 10-year and 20-year
return period streamflows. And the purple band rep-
resents flows exceeding the 20-year return period
streamflow. Many of these elements are demon-
strated in the chart in Figure 3.

The app demonstrates a novel approach to display-
ing high-density stream networks, using stream order
to dynamically load streams based on the zoom level,
similar to how the pyramiding technique is applied to
high-resolution images. When the zoom level is set to
the full extent of the watershed, only reaches with
higher stream orders are displayed as illustrated by
Figure 4a. A mid-range zoom level will result in
reaches with mid-range stream orders being added to
the display as shown in Figure 4b. On the last zoom
level, reaches of all stream orders are displayed as
shown in Figure 4c.

The app also presents a new method for display-
ing high-resolution warnings at both an overview
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and at the level of each individual river reach. It
facilitates display at the NFIE Region scale by com-
bining the points within a close proximity together
and representing the group as a single icon with a
count of the number of points included. Additionally,
it divides the warning points into three main groups
corresponding to the peak flow of the average (repre-
sented by larger triangles) or the standard deviation
above the average (represented by smaller triangles)
of the ensemble forecast that exceeded the return per-
iod. The warning with the highest return period is
the only one generated for the reach if any warnings
exist. Yellow triangles represent exceedance of the 2-
year flow, red triangles represent exceedance of the
10-year flow, and purple triangles represent excee-
dance of the 20-year flow. Examples are shown for
the warnings generated for each return period during
the May 2015 flooding in Texas in Figure 5.

VALIDATION

Setup

We used the watersheds from the NFIE to validate
the performance of the downscaling and routing com-
putation framework and the Streamflow Prediction
Tool app. We performed timing tests using a local
compute cluster as well as using the Amazon Web

Service computing cloud. A map of all of the NFIE
regions is shown in Figure 6.

COMPUTATIONAL FORECAST FRAMEWORK

We compared the computational performance of
computing using a local compute cluster and the Ama-
zon Web Services (aws.amazon.com). Additionally, we
estimated the results computing serially based off of
the individual computation times as a means of mea-
suring the time saved using distributed computing.

It is apparent from Table 1 that the use of the dis-
tributed computing significantly reduces computation
time in all cases. In fact, distributed computing is essen-
tial for meeting the 12-h (43,200 s) constraint for an
operational system that covers the entire U.S.

The computation time vs. the number of reaches
from Table 1 is shown in Figure 7 with polynomial
order 2 trend lines having coefficients of determina-
tion of 0.99. As expected, the computing time
increases with the size of the computing problem (i.e.,
the number of river reaches). Note that the good fit
with a second order polynomial order suggests that
the solving procedure might include two inner loops.
This is likely due to the default RAPID option for
solving linear systems (an iterative Richardson
method) being used in this study. Alternative
approaches using noniterative solvers (David et al.,

FIGURE 3. Screenshot of Streamflow Prediction Tool App.
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FIGURE 4. Stream Network Zoom Levels with Dynamic Stream
Densities: (a) High Stream Order, (b) Mid-Level Stream Order, (c)

Complete Stream Network.

FIGURE 5. Warning Points for Texas Floods for May 2015: (a)
2-Year Warnings, (b) 10-Year Warnings, (c) 20-Year Warnings.
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2015) could help in decreasing computing time for
this application.

This is especially true of the local cluster, where the
rate of computation of the Mississippi region is half
that of the Colorado region. The slowdown is not likely
caused by the processing algorithms, because the
Amazon cloud and local compute cluster curves do not
slow at the same rate. There are various factors at
play, but the slowdown may be caused by differences
in hardware or possibly overhead of the computing
environments. The efficiency of the system running on
the local cluster could be improved significantly by

dividing the Mississippi watershed into two or three
watersheds with 400,000-600,000 reaches each.

Streamflow Prediction Tool Web App

The GIS visualization capabilities of the Stream-
flow Prediction Tool app successfully displayed all of
the NFIE regions. The loading time is relatively fast,
averaging around 7 s to load. Displaying large high-
density stream networks is currently limited to
stream networks defined by the NHDPlus V2 dataset

FIGURE 6. National Flood Interoperability Experiment (NFIE) Regional Divisions.

TABLE 1. Results of Computation Time Based on Area and the Number of Reaches.

Watershed Name Area (sq km) Number of Reaches

Compute Time (seconds)

Serial Amazon Web Services Local Cluster

NFIE Souris-Red-Rainey Region 213,488 29,053 7,343 49 141
NFIE Rio Grande Region 564,840 55,854 9,083 64 175
NFIE New England Region 169,445 65,858 10,906 63 210
NFIE Texas-Gulf Region 464,493 66,373 10,417 68 200
NFIE Great Basin Region 367,058 96,269 8,589 43 165
NFIE Great Lakes Region 324,434 104,645 15,873 115 305
NFIE Mid-Atlantic Region 277,755 125,398 16,900 109 325
NFIE California Region 421,995 140,759 22,367 164 430
NFIE Colorado Region 660,454 187,010 28,105 210 540
NFIE Pacific Northwest Region 814,493 231,806 24,325 180 468
NFIE South Atlantic-Gulf Region 675,734 360,175 41,083 319 790
NFIE Mississippi Region 3,302,913 1,242,008 316,930 1,558 6,095
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as it has the stream order defined, making dynamic
display of stream networks possible.

POTENTIAL NFIE COMPARISON

From May 24 to May 28 of 2015 major flooding
occurred in the Austin, Texas region. In this section,

we will demonstrate how participants at NFIE can
compare the forecasted results from ECMWF-RAPID
with USGS stations using an example at the reach
with COMID 5781369 in Onion Creek (coordinates
30.175347, �97.656148) and USGS station 08159000.

Four days before the beginning of the flood event,
the ECMWF-RAPID forecast shows that there is an
event that will occur as shown in Figure 8. However,
the predicted average of the magnitude and timing of
the event is significantly off. In addition, the two

FIGURE 7. Computation Time vs. Number of Reaches.

FIGURE 8. Forecast Comparison Beginning May 20, 2015 (four days before flood).

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA959

A HIGH-RESOLUTION NATIONAL-SCALE HYDROLOGIC FORECAST SYSTEM FROM A GLOBAL ENSEMBLE LAND SURFACE MODEL



events seem to be merged into one event. Nonethe-
less, the high-resolution ensemble seems to capture
the timing of second event, though the peak flow is
overestimated. Due to the under prediction of the
magnitude of both storms, only a minor 2-year warn-
ing was developed as shown by the small yellow tri-
angle in the middle of the stream in Figure 9.

Then, at two days out, the ECMWF-RAPID forecast
mean is beginning to show two distinct events as shown
in Figure 10. However, while the timing and magnitude
of the events are closer, they are still predicting flood
peaks lagging behind what actually happened with
peaks captured only in the upper extremes of the

prediction. Similar to the forecast from 20 May, only a
minor 2-year warning was developed as shown by the
small yellow triangle in the middle of the stream in
Figure 11.

On the day of the beginning of the flood event, the
forecast more closely aligns with the timing and mag-
nitude of the event. However, for both peaks, the
mean predicted streamflow is significantly below the
actual streamflow as shown in Figure 12. Because
the predicted series that was a standard deviation
above the average had a peak flow above the 20-year
threshold, a small purple warning point was gener-
ated. Also, because the peak flow of the average

FIGURE 9. Onion Creek Warning Point Produced, May 20, 2015.

FIGURE 10. Forecast Comparison Beginning May 22, 2015 (two days before flood).
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series was above the 2-year threshold a large yellow
triangle was also generated. Both triangles are shown
in the center of the stream in Figure 13.

As expected, the case study illustrates that the
predictions become more accurate, the closer to the
time of the flooding event. It is clear that the system
needs further evaluation and improvement to accu-
rately capture events over the broad stream network.
However, the framework does provide participants at
NFIE and others with the ability to begin providing a
more widespread evaluation of the value of this
downscaled, high-density hydrologic forecast.

CURRENT LIMITATIONS AND POTENTIAL
IMPROVEMENTS

Using the method and tools developed by this
research and the evaluations that can be performed
through NFIE, the creation of additional tools and
improvements to the current system is needed. The
most pressing need is improving the streamflow ini-
tialization. The current method begins at zero flow
for the very first prediction and then initializes the
next prediction from the average of previously

FIGURE 11. Onion Creek Warning Point Produced, May 22, 2015.

FIGURE 12. Forecast Comparison Beginning May 24, 2015 (day of flood).
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predicted flows. This method requires multiple fore-
cast runs in order for the model to “spin-up” the
streamflow in the rivers. Additionally, initializing
from predicted streamflows may not render the best
results for what the actual streamflow will be. As
such, data assimilation methods will need to be incor-
porated into the model to provide better estimates for
initial streamflow at the beginning of each prediction
cycle. This can include incorporating real-time stream
gage data or running the model with post-processed
reanalysis meteorological data to improve the stream-
flow predictions.

Additional known improvements include items
such as methods for calibrating the model as well as
a method for including reservoir releases in the mod-
eling process. New tools could be created based on
the high-resolution stream forecasts. These new tools
could involve ideas such as predictive flood index
maps derived from the instream forecasts or
improved analysis methods to determine how likely a
flood will occur or when and how to warn the public
of oncoming floods.

CONCLUSIONS

The creation of a flood warning system that can
provide predictive information for floods days and
even weeks in advance at a high spatial resolution at
a national-scale is within reach. The implementation
developed by this research provides an important
contribution to the national aspirations to create such
a system. By downscaling runoff forecasts generated
by the ECMWF using Esri’s RAPID toolbox and

routing the runoff using the RAPID model, we were
able to produce high-density ensemble national-scale
stream forecasts. However, for this system to be fully
functional, improvements in initialization and cali-
bration as well as the addition of reservoir operations
need to be incorporated.

With Tethys Platform, we developed an interface
to display the high-density streamflow forecasts to
decision-makers that includes the ability to compare
to existing NWS forecasts and observations at USGS
gages where these data streams exist. This tool gives
decision-makers information from NetCDF datasets
containing streamflow forecasts for hundreds of thou-
sands of reaches, including a statistical summary of
the potential streamflow up to 15 days in advance.
Additionally, the tool displays warning points where
the 20-year, 10-year, and 2-year thresholds have
been exceeded in the predictions for each individual
reach. These warnings make the catchment level pre-
dictions applicable at a national-scale. As such, the
app simplifies the data access and interpretation for
decision-makers.

SOFTWARE AVAILABILITY

Esri’s RAPID Toolbox is available under the
Apache License Version 2.0 and the source code is
available on GitHub at the repository: https://github.
com/Esri/python-toolbox-for-rapid.

The code for automating the process of downscal-
ing the ECMWF prediction datasets using Esri’s
RAPID toolbox and RAPID is available under the

FIGURE 13. Onion Creek Warning Point Produced, May 24, 2015.
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BSD 3-Clause License and the source code is avail-
able on the GitHub repository: https://github.com/
erdc-cm/spt_ecmwf_autorapid_process.

The Streamflow Prediction Tool app is available
under the BSD 3-Clause License and the source code
is available on GitHub at the repository: https://
github.com/erdc-cm/tethysapp-streamflow_prediction_
tool. The Streamflow Prediction Tool app was devel-
oped using Tethys Platform. The source code for
Tethys Platform is distributed under the BSD 2-
Clause license and is available through GitHub at
https://github.com/tethysplatform/tethys. Documenta-
tion and a live demo of Tethys Platform can be
accessed at http://www.tethysplatform.org.

The source code for RAPID is available under a
Berkeley Software Distribution (BSD) 3-clause license
on the RAPID GitHub repository at https://github.
com/c-h-david/rapid and further information can be
found on the RAPID website at http://rapid-hub.org.

ACKNOWLEDGMENTS

This research is based upon work supported by the National
Science Foundation under Grant No. 1135483. C�edric H. David was
supported by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and
Space Administration. We would also like to express appreciation
to Curtis Rae for his assistance in the GIS preprocessing of the
NFIE regions.

LITERATURE CITED

Alfieri, L., P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thie-
len, and F. Pappenberger, 2013. GloFAS–Global Ensemble
Streamflow Forecasting and Flood Early Warning. Hydrology
and Earth System Sciences 17(3):1161-1175.

Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk,
M. Hirschi, and A.K. Betts, 2009. A Revised Hydrology for the
ECMWF Model: Verification from Field Site to Terrestrial
Water Storage and Impact in the Integrated Forecast System.
Journal of Hydrometeorology 10(3):623-643.

Benson, M.A., 1962. Plotting Positions and Economics of Engineer-
ing Planning. Journal of the Hydraulics Division 88(6):57-71.

Beven, K., H. Cloke, F. Pappenberger, R. Lamb, and N. Hunter,
2015. Hyperresolution Information and Hyperresolution Igno-
rance in Modelling the Hydrology of the Land Surface. Science
China Earth Sciences 58(1):25-35.

Beven, K.J. and H.L. Cloke, 2012. Comment on “Hyperresolution
Global Land Surface Modeling: Meeting a Grand Challenge
for Monitoring Earth’s Terrestrial Water” by Eric F. Wood
et al. Water Resources Research 48(1), DOI: 10.1029/
2011WR010982.

Buizza, R., P. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, and M.
Wei, 2005. A Comparison of the ECMWF, MSC, and NCEP Glo-
bal Ensemble Prediction Systems. Monthly Weather Review 133
(5):1076-1097.

Buyya, R., C. Vecchiola, and S.T. Selvi, 2013. Mastering Cloud
Computing: Foundations and Applications Programming. Mor-
gan Kaufmann, Waltham, Massachusetts.

CUAHSI, 2015. “National Flood Interoperability Experiment.” The
Consortium of Universities for the Advancement of Hydrologic
Science, Inc. (CUAHSI). https://www.cuahsi.org/NFIE, accessed
February, 2015.

Cunge, J.A., 1969. On the Subject of a Flood Propagation Computa-
tion Method (Musklngum Method). Journal of Hydraulic
Research 7(2):205-230.

David, C.H., 2013. RAPID v1.4.0, Zenodo, DOI: 10.5281/zen-
odo.24756.

David, C.H., J.S. Famiglietti, Z.-L. Yang, and V. Eijkhout, 2015.
Enhanced Fixed-Size Parallel Speedup with the Muskingum
Method Using a Trans-Boundary Approach and a Large Sub-
Basins Approximation. Water Resources Research 51:1-25, DOI:
10.1002/2014WR016650.

David, C.H., D.R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and
V. Eijkhout, 2011. River Network Routing on the NHDPlus
Dataset. Journal of Hydrometeorology 12(5):913-934.

Dee, D.P., S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S.
Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer,
P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bor-
mann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haim-
berger, S.B. Healy, H. Hersbach, E.V. H�olm, L. Isaksen, P.
K�allberg, M. K€ohler, M. Matricardi, A.P. McNally, B.M. Monge-
Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C.
Tavolato, J.-N. Th�epaut, and F. Vitart, 2011. The ERA-Interim
Reanalysis: Configuration and Performance of the Data Assimi-
lation System. Q.J.R. Meteorological Society 137:553-597, DOI:
10.1002/qj.828.

Demargne, J., L. Wu, S.K. Regonda, J.D. Brown, H. Lee, M. He, D.
Seo, R. Hartman, H.D. Herr, M. Fresch, J. Schaake, and Y.
Zhu, 2014. The Science of NOAA’s Operational Hydrologic
Ensemble Forecast Service. Bulletin of the American Meteoro-
logical Society 95:79-98, DOI: 10.1175/BAMS-D-12-00081.1.

ECMWF (European Centre for Medium Range Weather Forecasts),
2011. “IFS Documentation – Cy37r2 Operational Implementa-
tion 18 May 2011 - Part II: Data Assimilation.

Guha-Sapir, D., R. Below, and P. Hoyois, 2015. EM-DAT: Interna-
tional Disaster Database. Universit�e Catholique de Louvain,
Brussels, Belgium.

Horizons Systems Corporation, 2011. Weaving the National Hydro-
logic Geospatial Fabric. NHDPlus Version 2. (April 6, 2015).

Jones, N., J. Nelson, N. Swain, S. Christensen, D. Tarboton, and P.
Dash, 2014. Tethys: A Software Framework for Web-Based Model-
ing and Decision Support Applications. In: D.P. Ames, N.W.T.
Quinn, and A.E. Rizzoli (Editors), Proceedings of the 7th Interna-
tional Congress on Environmental Modelling and Software, June
15-19, San Diego, California, ISBN: 978-88-9035-744-2.

Maidment, D., 2015. A Conceptual Framework for the National Flood
Interoperability Experiment. https://www.cuahsi.org/Files/Pages/
documents/13623/nfieconceptualframework_revised_feb_9.pdf,
accessed March 2015.

Mcenery, J., J. Ingram, Q. Duan, T. Adams, and L. Anderson,
2005. NOAA’s Advanced Hydrologic Prediction Service: Building
Pathways for Better Science in Water Forecasting. Bulletin of
the American Meteorological Society 86:375-385, DOI: 10.1175/
BAMS-86-3-375.

Michaelis, C. and D. Ames, 2012. Considerations for Implementing
OGC WMS and WFS Specifications in a Desktop GIS. Journal
of Geographic Information System 4(2):161-167, DOI: 10.4236/
jgis.2012.42021.

NOAA, 2015. Advanced Hydrologic Prediction Service. National
Oceanic and Atmospheric Administration’s (NOAA) National
Weather Service (NWS). http://water.weather.gov/ahps/about/
about.php, accessed February, 2015.

Open Geospatial Consortium, 2015a. Web Map Service. http://
www.opengeospatial.org/standards/wms, accessed June 2015.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA963

A HIGH-RESOLUTION NATIONAL-SCALE HYDROLOGIC FORECAST SYSTEM FROM A GLOBAL ENSEMBLE LAND SURFACE MODEL

https://github.com/erdc-cm/spt_ecmwf_autorapid_process
https://github.com/erdc-cm/spt_ecmwf_autorapid_process
https://github.com/erdc-cm/tethysapp-streamflow_prediction_tool
https://github.com/erdc-cm/tethysapp-streamflow_prediction_tool
https://github.com/erdc-cm/tethysapp-streamflow_prediction_tool
https://github.com/tethysplatform/tethys
http://www.tethysplatform.org
https://github.com/c-h-david/rapid&thinsp;and
https://github.com/c-h-david/rapid&thinsp;and
https://github.com/c-h-david/rapid&thinsp;and
https://github.com/c-h-david/rapid&thinsp;and
http://rapid-hub.org
http://dx.doi.org/10.1029/2011WR010982
http://dx.doi.org/10.1029/2011WR010982
https://www.cuahsi.org/NFIE
http://dx.doi.org/10.5281/zenodo.24756
http://dx.doi.org/10.5281/zenodo.24756
http://dx.doi.org/10.1002/2014WR016650
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1175/BAMS-D-12-00081.1
https://www.cuahsi.org/Files/Pages/documents/13623/nfieconceptualframework_revised_feb_9.pdf
https://www.cuahsi.org/Files/Pages/documents/13623/nfieconceptualframework_revised_feb_9.pdf
http://dx.doi.org/10.1175/BAMS-86-3-375
http://dx.doi.org/10.1175/BAMS-86-3-375
10.4236/jgis.2012.42021
10.4236/jgis.2012.42021
http://water.weather.gov/ahps/about/about.php
http://water.weather.gov/ahps/about/about.php
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms


Open Geospatial Consortium, 2015b. Web Feature Service. http://
www.opengeospatial.org/standards/wfs, accessed June 2015.

Open Knowledge Foundation, 2013. DataStore Extension. CKAN
v2.2. http://docs.ckan.org/en/ckan-2.2/datastore.html, accessed
June 2015.

Pappenberger, F. and K.J. Beven, 2006. Ignorance Is Bliss: Or
Seven Reasons Not to Use Uncertainty Analysis. Water
Resources Research 42, W05302, DOI: 10.1029/2005WR004820.

Pappenberger, F., H.L. Cloke, D.J. Parker, F. Wetterhall, D.S.
Richardson, and J. Thielen, 2015. The Monetary Benefit of
Early Flood Warnings in Europe. Environmental Science & Pol-
icy 51:278-291, DOI: 10.1016/j.envsci.2015.04.016.

Pappenberger, F., E. Stephens, J. Thielen, P. Salamon, D. Demer-
itt, S.J. Andel, F. Wetterhall, and L. Alfieri, 2013. Visualizing
Probabilistic Flood Forecast Information: Expert Preferences
and Perceptions of Best Practice in Uncertainty Communication.
Hydrological Processes 27(1):132-146.

Salas, F., M. Somos, D. Gochis, D. Maidment, C. David, K. Tolle,
C. Navarro, and R. Corby, 2014. Building Cyberinfrastructure
to Support a Real-Time National Flood Model. In: AGU Fall
Meeting Abstracts, San Francisco, December 15–19, Vol. 1, p.
1207. https://agu.confex.com/agu/fm14/webprogram/Paper25860.
html, accessed May 2016; https://www.cuahsi.org/Files/Pages/
documents/13623/poster_salasetal_buildingcyberinf.pdf, accessed
May 2016..

Slingo, J. and T. Palmer, 2011. Uncertainty in Weather and Cli-
mate Prediction. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 369
(1956):4751-4767.

Swain, N.R., 2015. Tethys Platform: A Development and Hosting
Platform for Water Resources Web Apps. All Theses and Disser-
tations, Paper 5832. http://scholarsarchive.byu.edu/etd/5832,
accessed May 2016.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION964

SNOW, CHRISTENSEN, SWAIN, NELSON, AMES, JONES, DING, NOMAN, DAVID, PAPPENBERGER, AND ZSOTER

http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://docs.ckan.org/en/ckan-2.2/datastore.html
http://dx.doi.org/10.1029/2005WR004820
http://dx.doi.org/10.1016/j.envsci.2015.04.016
https://agu.confex.com/agu/fm14/webprogram/Paper25860.html, accessed May 2016; https://www.cuahsi.org/Files/Pages/documents/13623/poster_salasetal_buildingcyberinf.pdf
https://agu.confex.com/agu/fm14/webprogram/Paper25860.html, accessed May 2016; https://www.cuahsi.org/Files/Pages/documents/13623/poster_salasetal_buildingcyberinf.pdf
https://agu.confex.com/agu/fm14/webprogram/Paper25860.html, accessed May 2016; https://www.cuahsi.org/Files/Pages/documents/13623/poster_salasetal_buildingcyberinf.pdf
http://scholarsarchive.byu.edu/etd/5832

