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Abstract 

Background:  Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitaliza-
tion are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization predic-
tion models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized 
linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric 
crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predic-
tors of hospitalization.

Methods:  Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least 
one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the 
patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ 
socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy 
and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared 
and we also estimated the relative importance of each predictor variable. The best and least performing algorithms 
were compared with GLM/logistic regression using net reclassification improvement analysis and the five best per-
forming algorithms were combined in an ensemble model using stacking.

Results:  All models performed above chance level. We found Gradient Boosting to be the best performing algorithm 
(AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic 
regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improve-
ment analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. 
GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor 
variables were related to previous mental health care use.

Conclusions:  Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression 
performed average among the tested algorithms. Although statistically significant, the magnitude of the differences 
between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy 
similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.
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Background
In this paper, we evaluate and compare the performance 
of ten different machine learning (ML) algorithms to 
predict psychiatric hospitalization in the first 12 months 
after a psychiatric crisis care contact. Hospitalization 
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is traditionally a preferred care modality for patients 
with severe mental illnesses or for those experiencing 
acute psychiatric crisis [1]. Recently, it has been debated 
whether hospitalization could be prescribed less often 
than has been done in the past, as in-patient acute men-
tal health services are unpopular with service users [2, 
3]. One of the reasons for this unpopularity is that hos-
pitalization often fails to address individuals’ needs or to 
provide a safe and therapeutic environment [3-5]. Acute 
psychiatric hospitalization is also hypothesized to be 
more expensive than outpatient alternatives, although 
research on cost-effectiveness of alternatives to acute 
psychiatric hospitalization is still in its infancy [3]. Some 
patients however will still be hospitalized at some point 
during their illness and recovery. At this moment, it is 
difficult to predict which patient will be hospitalized in 
the near future, as currently a valid prognostic model for 
hospitalization after a psychiatric crisis is lacking.

Related work
Previous studies (e.g. [6–9]) have done important work 
in identifying predictors (e.g. quality of life, psychiatric 
diagnosis, impact of symptoms, living situation) that can 
be relevant for a prognostic model for psychiatric hos-
pitalization. Results show that previous (involuntary) 
admissions and the amount of previous psychiatric ser-
vice use are reliable predictors of readmission [10–12]. 
Homelessness at admission discharge [11, 13], being on 
benefits [14], being unmarried, living alone or having a 
small social network [11, 15] and being of African and/or 
Caribbean origin [14] also are known predictors of psy-
chiatric admission. Something these studies [6–15] have 
in common is that they used generalized linear model-
ling (GLM/logistic regression) for their prognostic mod-
els. Recently, papers have been published which have 
also used other modeling algorithms for their prognostic 
models, for example to predict re-hospitalization after 
heart failure [16], persistence of depression symptoms 
[17], or prediction of suicides after psychiatric hospitali-
sation [18]. Kessler and colleagues [17] found that other 
ML algorithms outperformed GLM/logistic regression in 
terms of model accuracy while in the two other studies 
[16, 18] the results of the different algorithms were quite 
similar. Hence, based on the evidence thus far we cannot 
conclude that specific ML algorithms consistently out-
perform others.

Ensemble modeling and stacking
Ensemble modeling is a machine learning approach in 
which individual models are combined into one pre-
diction model in order to improve the robustness and 
predictive accuracy of the final model [19]. Some ML 
algorithms, such as random forests, are based on the 

principles of ensemble modeling. However, with ensem-
ble modeling it is also possible to combine different ML 
models. A common approach to create an ensemble 
model consisting of different ML algorithms is model 
stacking [20]. In model stacking, a meta-model uses the 
predicted outcomes of the prediction models as input 
instead of the variables in the dataset while the predic-
tion target remains the same. The goal of stacking is to 
model under what circumstances each of the prediction 
models makes the most accurate prediction and to use 
this information in the prediction of the outcome vari-
able [20].

Aim and research questions
GLM and nine other ML algorithms were selected for the 
current prognostic modeling study in order to achieve 
maximum variation among the tested approaches. We 
will compare the performance of the ten algorithms 
in their ability to use a set of predictors to construct a 
prognostic model for psychiatric hospitalization follow-
ing psychiatric crisis care, and we will evaluate whether 
an ensemble model of the best performing models cre-
ated using stacking leads to more accurate predictions. 
We will use a routinely collected data set [19], containing 
similar variables as in some of the previously discussed 
studies. We will address the following questions:

(1)	 Which of the evaluated ML algorithms have the 
best prognostic performance and does stacking fur-
ther increase performance?

(2)	 Which variables are the most powerful predictors 
for psychiatric hospitalization among patients on 
the verge of psychiatric crisis?

(3)	 Which of the ML algorithms perform better than 
GLM/logistic regression in terms of predictive 
accuracy?

Methods
Patient data source
We will evaluate the ten ML algorithms using histori-
cal data from the Amsterdam Study of Acute Psychiatry 
(ASAP). The aim of ASAP was to study the association 
between the incidence of (involuntary) psychiatric hos-
pitalizations and prior psychiatric history, the course 
of the psychiatric disorder, the patient’s social circum-
stances, and patient opinions and experiences [21, 22]. 
The dataset used in our study contains data from a cohort 
of patients who had an emergency consultation either 
by the Psychiatric Emergency Service Amsterdam or the 
Acute Treatment Unit in Amsterdam between 15 Sep-
tember 2004 and 15 September 2006 (the “index” con-
tact). The patients were followed-up for 12 months. After 
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the ASAP study, the intensive data collection was dis-
continued. Although some years old, this data set is still 
the largest, most extensive and complete dataset on long 
term hospitalization outcomes of psychiatric crisis care 
in the Netherlands.

Predictor variables
The variables collected at baseline are age, gender, 
domestic situation and the Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition, Text Revi-
sion axis I diagnosis. To determine the severity of psy-
chopathology, the Severity of Psychiatric Illness rating 
scale (SPI) [23] was used. The SPI contains 14 items rated 
using a four-point scale: no risk, low risk, moderate risk, 
high risk—or no information present [24].

All variables related to health care consumption, and 
the number of care contacts in the 5 years before and the 
12  months after the index contact were extracted from 
the patient health records kept by the three participat-
ing mental health institutions: JellinekMentrum (now 
Arkin), AMC de Meren (now Arkin), and GGZ inGeest. 
Table 1 presents the 39 predictor variables used to train 
our models.

All analyses were ran using routinely collected 
anonymized data from the participating institutions. 
Therefore, this study was exempted from medical ethics 
review and opt-in informed consent from participants 

was not necessary according to article 9 of the General 
Data Protection Regulation [25].

Dependent variable
The dependent variable in our analysis was a dichoto-
mized measure of hospitalization, operationalized as any 
psychiatric hospitalization in any of the three participat-
ing psychiatric hospitals in the 12 months after the index 
psychiatric crisis care contact.

Machine learning algorithms
The ten ML algorithms evaluated in this paper are GLM/
logistic regression, naive Bayes (R package klaR), sto-
chastic gradient boosting (R package gbm), neural net-
work (R package nnet), (model averaged) support vector 
machines with class weights (R package kernlab), k-near-
est neighbors (R package class), (oblique) random forest 
(R packages randomForest and obliqueRF), DeepBoost 
(R package deepboost), and Keras/TensorFlow (R pack-
age keras and the TensorFlow and Keras libraries for 
Python). All algorithms had implementations in R and/or 
Python. The ML algorithms were chosen based on their 
dissimilarity in terms of modelling approaches and to 
represent the most commonly used types of algorithms 
for machine learning classification problems.

Table 1  Predictor variables organized in three main themes

Data types cat categorical data, num numerical data

Sociodemographics SPI items Psychiatric care

Gender (cat) Suicide risk (cat) Patients’ informal social support system involved (cat)

Age (num) Danger to others (cat) Patient referrer (cat)

Living situation (cat) Severity of psychiatric symptoms (cat) Number of previous face-to-face treatment contacts up to 2 weeks
/1 month/3 months/6 months/12 months before the index crisis 
care contact (num)

Marital status (cat) Problems with self-care (cat) Number of previous psychiatric hospitalizations (last 12 months and 
last 5 years) (num)

Cultural background (cat) Substance misuse (cat) Number of previous psychiatric day care treatments (last 12 months 
and last 5 years) (num)

Psychiatric diagnosis (cat) Medical condition(s) (cat) Number of involuntary treatments/hospitalizations (last 12 months 
and last 5 years) (num)

Global Assessment of 
Functioning (GAF) score 
(num)

Disturbances in patients’ family connectedness (cat) Days of psychiatric hospitalization (last 12 months) (num)

Professional functioning (cat) Any earlier psychiatric care referrals (> 1 year and > 5 years before 
current contact) (num)

Stability of patients’ living situation (cat)

Patient is motivated to receive treatment (cat)

Prescription medication compliance (cat)

Anosognosia (cat)

Patients’ family involvement in informal care (cat)

Symptom persistence (cat)
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The generalized linear model (GLM) is a generalization 
of linear regression that allows for dependent variables to 
have error distributions other than a normal distribution. 
Using link functions, generalized linear models unify 
other statistical models such as linear regression, logistic 
regression and Poisson regression [26].

Naive Bayes is a technique for constructing models that 
classify cases into labels (in our case hospitalization Yes 
or No) based on a vector of case characteristics. Naive 
Bayes classifiers [27] assume that each characteristic is 
independent. For example, an animal can be considered 
a spider if it has eight legs, two body segments, and can 
produce silk. For a naive Bayes classifier each of these 
characteristics contributes independently to the prob-
ability that this animal is a spider, regardless of correla-
tions between the characteristics.

Gradient boosting is an ML technique for regression 
and classification, which produces an ensemble of predic-
tion models (often in the form of decision trees). It builds 
the model stage-wise and it generalizes them by optimiz-
ing a loss function [28, 29]. In Stochastic Gradient boost-
ing, gradient boosting is combined with bootstrapping to 
improve the accuracy of the algorithm [26].

An (artificial) neural network is a ML model inspired 
by the biological neural networks such as in brains [30]. 
Neural networks are modelled to learn tasks based on 
provided examples, without being programmed with any 
task-specific rules. For example, neural networks might 
learn to identify images that contain spiders by analyz-
ing example images that have been manually classified as 
“spider” or “no spider” and using the results to identify 
spiders in new images. In model averaged neural net-
works, the same neural network model is ran multiple 
times and the output from each run is averaged [31].

The support vector machines algorithm works by plot-
ting each observation in n-dimensional space, where n 
is determined by the number of variables in the model 
[32]. The value of a case on each variable is the coordi-
nate in the plotting space. Next, the algorithm performs 
classification by fitting a ‘hyperplane’ which optimally 
differentiates between the two classes. A hyperplane is 
an intersection of an n-dimensional space (with n − 1 
dimensions). Using the parameters of the hyperplane, 
new observations can be classified.

K-nearest neighbors takes the k (k ≥ 1) closest match-
ing examples from the training dataset in account, and 
assigns the majority class of these closest matching 
neighbors to the case that needs to be classified [33].

Random forest is an ensemble approach and in a sense 
similar to gradient boosting. Random forest algorithms 
produce many decision trees using the training data as 
an input. Each tree calculates values of the input variable 
which optimally split cases along the classes. A decision 

tree typically consists of multiple splits (nodes). Random 
forests use all those trees to predict class membership of 
a new case [34].

Oblique random forests distinguish themselves from 
‘standard’ random forests by taking a multivariate 
approach to calculate each split [35], whereas the former 
uses one variable for each node.

DeepBoost is an ensemble learning algorithm, which 
optimizes the performance of other learning algorithms, 
which it uses to give optimally accurate classifications, 
while theoretically overcoming some of the limitations of 
other ensemble learning models [36].

As a final modelling approach, we used TensorFlow, 
an open source software library for numerical computa-
tion using data flow graphs. Nodes in the graph represent 
mathematical operations, while the graph edges repre-
sent the multidimensional data arrays (tensors) com-
municated between them. TensorFlow was originally 
developed by researchers and engineers working on the 
Google Brain Team within Google’s Machine Intelligence 
research organization for the purposes of conducting 
machine learning and deep neural networks research, but 
the system is general enough to be applicable in a wide 
variety of other domains as well [37]. We communicated 
with TensorFlow using the R package keras, which is an 
interface to Keras, the Python deep learning library capa-
ble of running on top of TensorFlow [38].

Experimental procedures
First, a dataset was created consisting of the 39 predic-
tor variables and the dependent variable. Data from 
patients with missing hospitalization data, missing SPI 
data, or from patients that died during the study’s fol-
low-up period were removed. As some of the used sta-
tistical techniques cannot adequately handle missing data 
points, the remaining missing data were imputed using 
the mice package [39] with random forests in R.

All numeric predictor variables were centered and 
scaled in the pre-processing phase. Categorical variables 
were recoded into dummy variables. In the base case 
analysis, we have not applied balancing of the two levels 
of the dependent variable (hospitalized/not hospitalized); 
in a sensitivity analysis, all analyses were replicated under 
a balanced scenario which was created by under-sam-
pling the most prevalent outcome. We used the default 
tuning hyperparameter optimisation approach in the 
R package  caret  [40], which is grid search. In this grid 
search, 3 different sets of values for the hyperparameters 
are evaluated; the best performing values are chosen for 
the final model. For each ML algorithm a corresponding 
grid search function is available in caret. An overview 
of the hyperparameters and the grid search functions 
per ML approach is included as Additional file  1. For 



Page 5 of 11Blankers et al. BMC Med Inform Decis Mak          (2020) 20:332 	

TensorFlow, which is not available in caret, a custom grid 
search function was written, which has led to the optimi-
sation of the number of dense layers and nodes. The final 
model has five dense layers with 4, 24, 8, 8, 68 nodes, and 
a 2 node output layer. We used the Adamax optimizer 
[41], the batch size of this model was 32 and the number 
of epochs was 16.

The ML algorithms were first applied to training data 
to parameterize and fit the model. Next, each model was 
validated using independent test data. We used K-fold 
cross-validation (with K = 10) to validate the model 
parameters. For K-fold cross-validation, K successive 
mutually exclusive test sets are created. Algorithm fit-
ting is iteratively done on the training datasets. Predicted 
classifications are then calculated for the test set. With 
K = 10, at each iteration another 10% of the data is set 
aside from the original dataset for validation purposes. 
In the end, each observation in the original data set has 
a predicted classification that was obtained when it was 
part of the test set [42]. We chose K = 10 as a simulation 
study by Kohavi [43] indicated that for real word data-
sets the best method to use for model selection is tenfold 
stratified cross-validation.

Confusion matrices, accuracy scores, sensitivities, 
specificities and the Area under the Receiver Operating 
Characteristic (ROC) curves (AUC, or c-statistic) were 
calculated for each model. The AUC measures the area 
under the plot of the ROC curve and is an aggregate 
measure of the performance of the model [44]. Theoreti-
cally the AUC can have any value between 0 and 1, with 
0 corresponding with 100% wrong predictions, and 1 cor-
responding with 100% correct predictions.

We also estimated the relative unique importance of 
each individual predictor variable for the overall AUC 
score using the filterVarImp function in the R package 
caret [40]. We standardized the AUC associated with 
each variable by dividing the absolute deviation for each 
variable by the absolute AUC deviation associated with 
the most impactful variable.

In order to evaluate the predictive accuracy of the 
most accurate model against the GLM-based model and 
against the least accurate model, we calculated the Net 
Reclassification Improvement (NRI). The NRI is an index 
that provides an estimate (with a confidence interval and 
a z-test) of how well a model classifies subjects compared 
to another model [45].

To evaluate the merits of ensemble modeling when 
predicting future psychiatric hospitalizations, we created 
a stacked (meta-)model comprising the five best per-
forming ML models based on the calculated AUCs. For 
stacking, we have used the caret [40] package, in which 
we used the same preprocessing steps as we did for the 
underlying ML models. We used gradient boosting as 

the algorithm to create the stacked model and we used 
tenfold cross-validation to validate the meta-model 
parameters.

Results
The original dataset contained data from 2707 patients. 
After removal of data from patients who had missing 
hospitalization data, completely missing SPI data, or who 
died during the follow-up period, data from 2084 patients 
remained. The completeness rate of this data set was high 
with only 4.2% missing data.

Table  2 presents some key characteristics of the full 
study sample (n = 2084) and for those hospitalized and 
not hospitalized in the year following the index con-
tact separately. Based on chi-square tests, male partici-
pants have a higher probability of becoming hospitalized 
than female participants (37% vs. 31%, p = 0.001) and 
diagnosis (X2 = 120.1, df = 5; p < 0.0001), cultural back-
ground (X2 = 12.16, df = 5; p = 0.033) and living situa-
tion (X2 = 30.33; df = 5; p < 0.0001) are also associated 
with future hospitalization, while age (p = 0.33) is not 
(Table 2).

Figure  1 presents the AUC statistics for the models 
using the ML algorithms based on the tenfold cross-val-
idation tests using all 39 predictor variables. What can 
be observed foremost from Fig. 1 is that most confidence 
intervals of the models overlap. The Gradient Boosting-
based model shows the best prognostic performance 
(AUC = 0.77), and K-Nearest Neighbors model has the 
least prognostic performance (AUC = 0.70). The perfor-
mance of the GLM-based model is slightly above aver-
age (AUC = 0.76). The Gradient Boosting model also has 
the highest accuracy (0.744, see also Table  3). All mod-
els have an accuracy which is significantly above the ‘no 
information rate’ of 0.659, which is the proportion of not 
hospitalized patients in the dataset.

Figure  2 presents data on the relative importance of 
each variable for the AUC. Results are averaged over 
the ten models; in Additional File 2 we have presented 
the variable importance data for each model separately. 
Overall, it can be observed that the number of earlier 
psychiatric hospitalizations in the 5  years before the 
index contact and the number of face to face contacts the 
patient has had with professionals working for the partic-
ipating mental health care center in the 12 months before 
have the strongest association with hospitalization in the 
year after the index contact.

In the NRI analysis the Gradient Boosting model led to 
9.9% more correct classifications of hospitalized patients 
(z = 5.42, p < 0.0001) than the K-nearest Neighbors model 
and 1.5% more correct classifications of non-hospital-
ized patients, which was a non-significant improvement 
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(z = 1.56, p = 0.12). Gradient Boosting led to an 11.3% 
increase in correctly classified patients overall in this 
comparison (z = 5.53, p < 0.0001).

Also the GLM/logistic regression model outperformed 
the K-nearest Neighbors model, and led to 8.7% more 
correct classifications of hospitalized patients (z = 4.64, 
p < 0.0001). The classification of not-hospitalized patients 
did not differ significantly between GLM/logistic regres-
sion and K-nearest Neighbors (− 0.3%, z = 0.31, p = 0.76). 
GLM/logistic regression led to an 8.4% increase in cor-
rectly classified patients overall in this comparison 
(z = 4.00, p < 0.0001).

Compared to GLM/Logistic regression, Gradient 
Boosting led to 1.1% more correct classifications of hos-
pitalized patients (z = 0.88, p = 0.377), 1.8% more cor-
rect classifications of non-hospitalized patients (z = 2.57, 
p = 0.010), and a 2.9% increase in correctly classified 
patients overall (z = 1.99, p = 0.046).

In a final step, after training and evaluating mod-
els created using the individual ML algorithms, we 
have created a stacked model consisting of the mod-
els trained using Gradient Boosting, Oblique Random 
Forest, DeepBoost, Random Forest and GLM (Logistic 
Regression). The correlations between the outcomes of 
the five models were quite high (range 0.77–0.91). The 
final stacked model had an accuracy of 0.745, a sensitiv-
ity of 0.47 and a specificity of 0.89; the AUC was 0.764.

As a sensitivity analysis, we have performed all analy-
ses on a balanced dataset as well, in which the preva-
lence of hospitalized and non-hospitalized patients 
was fixed to 0.5 and 0.5 respectively by under-sam-
pling of the non-hospitalized patients. The results of 
the balanced dataset were very similar to those of the 
presented unbalanced dataset, including the differ-
ences between the most accurate algorithm (Gradi-
ent Boosting), GLM/Logistic regression and the least 
accurate algorithm (K-nearest Neighbors). Therefore, 

Table 2  Descriptive statistics for the 2084 patients in the first year after a psychiatric crisis care contact

Variable All participants 
(n = 2084)

Hospitalized (n = 710) Not hospitalized 
(n = 1374)

X2 (df) p

M (SD)|n (%) M (SD)|n (%) M (SD)|n (%)

Age

 Years 40.8 (15.1) 41.0 (13.8) 40.7 (15.7) 0.94 (1) 0.33

Sex

 Male 1083 (52.0%) 405 (57.0%) 678 (49.3%) 10.81 (1) 0.001

 Female 1001 (48.0%) 305 (43.0%) 696 (50.7%)

Diagnosis 120.2 (5) < 0.0001

 Psychotic 807 (38.7%) 373 (52.5%) 434 (31.6%)

 Depressive 285 (13.7%) 98 (13.8%) 187 (13.6%)

 Substance related 239 (11.5%) 84 (11.8%) 155 (11.3%)

 Manic/bipolar 34 (1.6%) 12 (1.7%) 22 (1.6%)

 Other 561 (26.9%) 103 (14.5%) 458 (33.3%)

 No or deferred 158 (7.6%) 40 (5.6%) 118 (8.6%)

Living situation 35.35 (5) < 0.0001

 Alone 1018 (48.8%) 385 (54.2%) 633 (46.1%)

 With partner/other(s) 564 (27.1%) 142 (20.0%) 422 (30.7%)

 With parents 235 (11.3%) 73 (10.3%) 162 (11.8%)

 Homeless 96 (4.6%) 42 (5.9%) 54 (3.9%)

 Institutionalized 68 (3.3%) 31 (4.4%) 37 (2.7%)

 Other 103 (4.9%) 37 (5.2%) 66 (4.8%)

Cultural background 12.16 (5) 0.033

 Dutch 1151 (55.2%) 409 (57.6%) 742 (54.0%)

 Surinamese/Antilles 303 (14.5%) 124 (17.5%) 189 (13.8%)

 Moroccan 145 (7.0%) 44 (6.2%) 101 (7.4%)

 Turkish 82 (4.0%) 22 (3.1%) 60 (4.4%)

 Other non-western 243 (11.7%) 78 (11.0%) 165 (12.0%)

 Other western 160 (7.7%) 43 (6.1%) 117 (8.5%)
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these results are not included in the main text but we 
included these as Additional File 3.

Discussion
In this paper, we evaluated and compared the perfor-
mance of prognostic models based on ten ML algorithms. 
We tested which models most accurately predicted 

hospitalization and which variables are the strongest pre-
dictors of psychiatric hospitalization.

All ten models had AUC scores > 0.7 and only three 
models (K-nearest Neigbors, TensorFlow, Neural Net-
work) had an AUC < 0.75. There was no relevant dif-
ference between the models with regards to the AUC, 
except for the K-nearest neighbors algorithm which per-
formed notably poorer than the other algorithms. Rela-
tive to the existing literature, these AUC scores could be 
considered high in the field of hospitalization prediction 
using clinical registry data. Artetxe and colleagues [46] in 
their overview of prediction models for hospital readmis-
sion in which they included 77 studies found that over 
80% of the hospital readmission models in their review 
had an AUC score below 0.75—a finding in line with an 
earlier review by Kansagara et al. [47]. For clinical appli-
cations, an AUC of < 0.75 leaves room for improvement 
and often is of limited clinical utility.

We found differences in accuracy between the ML 
algorithms in this study, mostly of modest size: the 
absolute difference in accuracy between the best and 
least performing algorithm is only 0.04. We have com-
pared the results of the best performing ML algorithm 
(Gradient Boosting) with logistic regression (GLM) and 
the least performing ML algorithm (K-Nearest Neigh-
bors). We found that the Gradient Boosting model did 
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Fig. 1  Comparison of AUC scores for the ten machine learning based models. Note AUC (or c-statistic) indicates the performance of the different 
machine learning based models. The error bars indicate ± 1 standard error intervals

Table 3  Key performance statistics of the trained models

The base rate of (non-)hospitalization = 0.659. The accuracy of each model was 
tested against this base rate, all p < 0.00001, based on 2-sided z-tests; hence each 
model led to a significant improvement in classification accuracy compared to 
an intercept only model

ML algorithm AUC​ Sensitivity Specificity Accuracy

Gradient boosting 0.774 0.455 0.894 0.744

Oblique random forest 0.762 0.509 0.847 0.732

DeepBoost 0.760 0.461 0.871 0.731

Random forest 0.757 0.478 0.864 0.732

GLM (logistic regression) 0.756 0.444 0.876 0.729

Support vector machines 0.751 0.370 0.917 0.731

Naive Bayes 0.751 0.455 0.861 0.723

Neural network 0.749 0.528 0.828 0.726

Keras/TensorFlow 0.741 0.465 0.850 0.719

K-nearest neighbors 0.702 0.356 0.879 0.701
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outperform the GLM/logistic regression model and 
K-Nearest Neighbors model, and that the GLM/logistic 
regression model outperformed the K-Nearest Neighbors 
model in terms of classification accuracy. The reported 
differences in accuracy between the tested models are 
statistically significant but relatively small, especially for 
Gradient Boosting vs. GLM/logistic regression (2.9% 
difference in accuracy). This finding echoes the conclu-
sion of the review by Artetxe and colleagues [46] that 
although promising, the real impact of recent ML algo-
rithms in the domain of readmission risk prediction 
needs further study.

With regard to the importance of individual variables, 
we found that the number of earlier psychiatric hospi-
talizations in the last 5 years, the number of face to face 
therapy sessions in the last 12 months, and the number of 
earlier psychiatric care referrals > 12 months year before 
the initial crisis care contact were the strongest predic-
tors of future psychiatric hospitalization. Nine out of the 
ten strongest predictors measured earlier mental health 
care consumption. Over the ten models there is some 
variation in which variables are the strongest predictors 
(see Additional File 2), although for all models the num-
ber of earlier hospitalizations is among the top three 

Age (n)
Family involvement (SPI)

Family disturbances (SPI)
Cultural background (cat)

Day care treatments last year (n)
Suicide risk (SPI)

Medical condition(s) (SPI)
Substance misuse (SPI)

Involuntary treatments last year (n)
Earlier day care treatments (n)

Living alone (Y/N)
Involuntary hospitalisations last year (n)

Instable living situation (SPI)
Gender (M/F)

Social system involved (Y/N)
Self care problems (SPI)

Marital status (cat)
Patient referrer (cat)

Danger to others (SPI)
Anosognosia (SPI)

Medication compliance (SPI)
Professional functioning (SPI)

Treatment motivation (SPI)
Earlier involuntary treatments (n)

Earlier involuntary hospitalisations (n)
GAF score (n)

Hospitalisations last year (n)
Severity psychopathology (SPI)

Psychiatric diagnosis (cat)
F2F contacts last 2 weeks (n)

Symptom persistence (SPI)
Earlier referral >5y before (Y/N)

Days psych. hospitalisation last year (n)
F2F contacts last month (n)

F2F contacts last 3 months (n)
F2F contacts last 6 months (n)

Earlier referral >1y before crisis (Y/N)
F2F contacts last 12 months (n)

Earlier hospitalisations (n)

0.5 0.6 0.7 0.8 0.9 1.0
Standardised variable importance

Fig. 2  Overall variable importance plot for the machine learning based models. Note This plot presents the 39 predictors (before dummy-recoding) 
in descending order of unique predictive value. (n) indicates a numeric variable, (cat) indicates the variable is categorical, (SPI) indicates the variable 
is part of the SPI instrument, (M/F) and (Y/N) variables are dichotomous. Psychiatric care register data have a 5-year time horizon unless otherwise 
indicated
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predictors, and the ten most impactful predictors are 
predominantly related to earlier mental health care.

In order to maximize the robustness and accuracy of 
our final prediction model, we have created a stacked 
model comprising the five best performing individual 
ML models. The accuracy and AUC of the stacked model 
was almost identical to the Gradient Boosting model and 
we therefore conclude that in this study no improvement 
in accuracy was achieved by stacking multiple predic-
tion models. This may be related to the high correlations 
between the outcomes of the individual prediction mod-
els (0.77 and higher).

Strengths and limitations
The findings of this study should be interpreted in the 
light of its strengths and limitations. A strength of 
this study is the relatively large clinical dataset of 2084 
patients from which 710 patients were hospitalized dur-
ing the follow-up period, and the availability of 39 clini-
cally relevant potential predictors of hospitalization. 
For psychiatry crisis care research projects it is rare to 
achieve such sample sizes. Another strength is that the 
dataset consists of routinely collected clinical ‘real life’ 
data with high ecological validity, while missing data 
rates are modest (4.2%). Methodological strengths of this 
study include the direct comparison of ten different ML 
algorithms, and the use of K-fold cross-validation to opti-
mally use the available data to train and test the models 
[42, 43].

Limitations of our study are the fact that although the 
average missing data rate after data selection was quite 
low we still had to address data missingness via imputa-
tion, as most ML algorithms are not capable of working 
with data with missing observations. Another limitation 
is that although we have made a diverse selection of ML 
algorithms, it is a matter of debate to what extent find-
ings regarding the selected algorithms generalize to 
other algorithms; there is a possibility that better results 
could have been achieved with other ML algorithms. A 
third limitation is that the number of variables available 
in the dataset was—for ML purposes—somewhat lim-
ited. A forth limitation is that regarding the impact of the 
individual variables, only the unique variance explained 
by each variable could be assessed. This may have led 
to an underestimation of the importance of some vari-
ables when algorithms which are less well able to han-
dle correlated predictors such as GLM were applied. A 
further limitation is that not all algorithms were simi-
larly well equipped to discover relevant interactions in 
a data driven manner between predictor variables—this 
may be part of an explanation for differences in accuracy 
between the algorithms. Lastly, we do not know to what 
extend our findings related to the (non-)superiority of 

some algorithms over others generalize well beyond the 
context in which we evaluated them.

Implications
One of the findings of this study is that there may be 
slightly more accurate algorithms than GLM/logistic 
regression to develop a prognostic model for future psy-
chiatric hospitalization—although the potential gains in 
accuracy are limited in clinical impact. We found Gra-
dient Boosting to outperform the other individual algo-
rithms in this analysis, and an ensemble model based on 
the 5 best performing algorithms to perform similarly, 
but we do not know whether this finding generalizes 
beyond our study.

As long as a more definitive and validated answer is 
lacking to what the most accurate algorithm is and under 
what conditions, one could use multiple ML algorithms 
in an ensemble when creating a prognostic model. In this 
way, the risk of relying on a poorly performing algorithm 
is mitigated. More research is needed to evaluate which 
set of ML algorithms performs optimally when combined 
in an ensemble model.

Regarding the clinical implications, we can conclude 
that although the differences between the models was 
small, we were able to create an ensemble model with 
an overall 74.5% accuracy and 89% specificity to predict 
future psychiatric hospitalizations on unseen data (i.e. 
the test dataset). Although the sensitivity was quite low 
(47%), the specificity score means that from every 100 
patients for which our model indicates that he or she will 
not be hospitalized, 89 patient will in fact not become 
hospitalized in the next year. Potentially, this classifica-
tion model therefore has clinical utility. We do not yet 
know to what extent the algorithms perform equally 
well among subgroups of patients, e.g. old versus young, 
men versus women, or among patient groups with differ-
ent diagnoses. Future research should also evaluate how 
well this model performs compared to human raters, and 
whether it is feasible to integrate an automated predic-
tion model in the clinical practice of acute psychiatry.

Conclusions
In this paper, we showed it is feasible to construct a 
prognostic model for psychiatric hospitalization with an 
acceptable AUC, accuracy and specificity compared to 
previous studies, using the predictors we evaluated. Vari-
ables on previous mental health care consumption were 
the strongest predictors of psychiatric hospitalization. 
Gradient Boosting led to the highest predictive accu-
racy and AUC, and GLM/logistic regression performed 
average compared to the other algorithms. An ensemble 
model comprising the five best models performed simi-
lar to the Gradient Boosting model. Although statistically 
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significant, we conclude that the improvement of the 
best performing algorithm over GLM/logistic regression 
is limited. We also found that the difference in predic-
tive performance between the best and least performing 
model is modest. Future studies may shed light on how 
ensemble models could be of practical value in the field 
of acute psychiatry.
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