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Abstract

Premature infants are at high risk of haemorrhage and thrombosis. Our understanding of the differences between the neona-
tal and adult haemostatic system is evolving. There are several limitations to the standard coagulation tests used in clinical
practice, and there is currently a lack of evidence to support many of the transfusion practices in neonatal medicine. The
evaluation of haemostasis is particularly challenging in neonates due to their limited blood volume. The calibrated automated
thrombogram (CAT) is a global coagulation assay, first described in 2002, which evaluates both pro- and anti-coagulant
pathways in platelet-rich or platelet-poor plasma. In this review, the current applications and limitations of CAT in the neo-
natal population are discussed.

Conclusion: CAT has successfully elucidated several differences between haemostatic mechanisms in premature and
term neonates compared with adults. Moreover, it has been used to evaluate the effect of a number of haemostatic drugs in
a pre-clinical model. However, the lack of evidence of CAT as an accurate predictor of neonatal bleeding, blood volume
required and the absence of an evidence-based treatment algorithm for abnormal CAT results limit its current application as
a bedside clinical tool for the evaluation of sick neonates.

What is Known:

o The Calibrated automated thrombogram (CAT) is a global coagulation assay which evaluates pro- and anti-coagulant pathways.
o CAT provides greater information than standard clotting tests and has been used in adults to evaluate bleeding risk.

What is New:

o This review summarises the physiological differences in haemostasis between neonates and adults described using CAT.

o The haemostatic effect of several drugs has been evaluated in neonatal plasma using CAT.
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TFCK Thrombin initiated fibrin clot kinetics
TFPI Tissue factor pathway inhibitor

™ Thrombomodulin

VLBW  Very low birth weight
Background

Preterm infants experience haemorrhage, particularly intra-
ventricular haemorrhage (IVH), while full-term neonates
typically do not [1]. Neonates have reduced levels of coagu-
lation factors [2, 3] and hypo-reactive platelets in vitro [4-6],
but higher levels of von Willebrand factor (VWF) with larger
polymers and a higher haematocrit help maintain haemostasis
[2,3,7]

Prothrombin time (PT) and activated partial thrombo-
plastin time (APTT) are the standard tests used to evaluate
haemostasis. Both are prolonged in preterm infants [8, 9],
although there is no correlation between PT/APTT and risk
of developing IVH [8, 10, 11]. PT and APTT only evalu-
ate time to initial clot formation, not overall clot formation
[12, 13]. Moreover, standard clotting tests do not evaluate for
hypercoagulability [14]. Despite these limitations, they are
often used to guide transfusion of blood products to correct
perceived coagulation disturbances in non-bleeding neonates.

The calibrated automated thrombogram (CAT) is a global
coagulation assay, which measures thrombin generation by
incubating plasma with a thrombin-specific fluorogenic
substrate following activation of coagulation (Fig. 1) [13].
CAT assesses overall haemostatic balance, evaluating activ-
ity of endogenous procoagulant and anticoagulant pathways,
particularly important in neonates, where both are reduced
[3]. CAT is performed in platelet-poor (PPP) or platelet-
rich plasma (PRP). In PRP, CAT can evaluate the impact of
platelet number and platelet function on thrombin genera-
tion [15].
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Fig. 1 The standard process for performing CAT in plasma (in dupli-
cate) (Image created with BioRender.com)
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The CAT parameters are described in Fig. 2. The lag time is
the time from the beginning of the experiment until 10 nM of
thrombin is produced [15]. Time to peak thrombin represents
the propagation phase. Peak thrombin is the maximum amount
of thrombin produced, while the endogenous thrombin poten-
tial (ETP) represents the total amount of thrombin produced
during the clotting process. ETP is the parameter most pre-
dictive of bleeding or thrombosis [16]. A shortened lag time
and increased ETP/peak thrombin suggests a hypercoagulable
status, while a prolonged lag time and reduction in ETP/peak
thrombin suggests a hypocoagulable state. In this review, the
applications and limitations of CAT in neonates are described
(Table 1; Fig. 3).
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Fig.2 A standard thrombin generation curve. The lag time, time to
peak thrombin, endogenous thrombin potential and peak thrombin are
displayed. (Image created with BioRender.com)
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Fig.3 The neonatal applications of CAT. CAT has been used to eval-
uate the differences in secondary haemostasis in preterm and term
infants compared with adults and the relative haemostatic effect of
platelets and extracellular vesicles in neonates. The use of CAT as a
mechanism to test haemostatic therapies in a pre-clinical model and
in infants at high risk of haemorrhage, particularly those undergo-
ing cardiopulmonary bypass are also described. (Image created with
BioRender.com)

Procoagulant

Physiological haemostasis

Physiological coagulation is triggered by exposure of sub-
endothelial tissues at the site of vascular injury [17]. The
extrinsic pathway is activated by sub-endothelial tissue fac-
tor (TF) and circulating activated FVII, generating thrombin
via the common pathway and activating the intrinsic path-
way. Thrombin cleaves fibrinogen to fibrin, thus stabilising
the clot. Platelets also become activated at the site of vas-
cular injury through interactions with sub-endothelial tis-
sues, von Willebrand factor, fibrinogen, and agonists such as
thrombin. To limit coagulation to the site of injury, there are
several inhibitory mechanisms, including tissue factor path-
way inhibitor (TFPI), antithrombin, protein C pathway and
fibrinolysis. Pathological changes to pro- or anti-coagulant
activity can result in excessive bleeding or thrombosis [18].

Haemostasis in healthy term neonates

While FVIII and von Willebrand factor levels are usually
within or above the healthy adult range at birth, levels of
most other procoagulant factors are lower [2, 3]. Term
infants do not display increased bleeding tendency despite
these reduced levels. Levels of several anticoagulant factors
(antithrombin, protein C, protein S) are also reduced [2, 3].

Six studies used CAT to characterise thrombin generation
in platelet-poor plasma from term newborns compared with
adults [19-24]. All demonstrated a significantly shortened
lag time and time to peak in neonates. However, neonates
had significantly reduced ETP and peak thrombin compared
with adults, although one study showed no difference [22].
Similar findings were described in neonatal platelet-rich
plasma [25].

It is hypothesised that this reduction in lag time, and time
to peak in neonates (suggestive of a hypercoagulable state) is
due to reduced TFPI, and that the reduction in ETP and peak
thrombin (suggestive of a hypocoagulable state) is due to
lower levels of pro-coagulant factors (particularly factor II)
[23, 26], which itself might be further offset by a reduction
in physiological anti-coagulant factors such as antithrombin

[3].

Haemostasis in the preterm infant

Preterm infants are at high risk of haemorrhage and throm-
bosis [27, 28] and have reduced levels of procoagulant
(FIX, FXI, FXII and fibrinogen) and anti-coagulant factors
(antithrombin, protein C and protein S) compared with term
neonates [2].

Three studies evaluated CAT in PPP from preterm com-
pared with term infants. In preterm infants > 30 weeks
gestation, ETP was higher than term controls [29]. Neary
et al. demonstrated a significantly shorter lag time and
time to peak in umbilical cord blood in preterm infants
(24-30 weeks gestation), but found no difference in ETP or
peak thrombin between groups [8].

Most recently, Tripodi et al. characterised thrombin gen-
eration in peripheral blood in very low birth weight (VLBW)
infants < 1500 g. VLBW infants had higher ETP than term
controls [9]. However, infants < 30 weeks gestation had sig-
nificantly lower ETP than infants > 30 weeks (unfortunately,
no comparison to term ETP was provided). There was no dif-
ference in ETP between small for gestational age (SGA) and
appropriately grown infants. These findings in SGA infants
replicate findings by Sokou et al. using thromboelastography
(TEG), an alternative global coagulation assay [30].

Using thrombomodulin (TM), a key regulator of the pro-
tein C pathway, ETP-TM ratio was higher in preterm infants,
suggesting a resistance to Protein C and thus a procoagulant
imbalance in preterm plasma [9]. Interestingly, the presence
of a procoagulant imbalance in preterm plasma may predis-
pose to IVH, possibly due to an increased risk of venous
infarction and venous haemorrhage. This hypothesis is sup-
ported by data describing increased IVH risk associated with
hereditary thrombophilia [10]. Moreover, a study using TEG
demonstrated a trend towards hypercoagulability in pre-
mature infants with IVH, compared to those without [31].

@ Springer
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While these findings are not conclusive, they highlight the
inability of standard clotting tests (PT/APTTs) to accurately
reflect the true complexity of haemostatic balance in vivo.

Evaluating the effect of neonatal platelets

Although thrombocytopenia is common in sick neonates
[32], platelet number is a poor predictor of severe haemor-
rhage [33]. In the PlaNeT 2 study, more liberal platelet trans-
fusions were associated with a significantly higher incidence
of mortality or severe haemorrhage, in thrombocytopenic
infants [34]. The cause of this is not yet clear [35], although
several differences exist between neonatal and adult platelets
[4, 7]. While neonatal platelets are hyporesponsive to mul-
tiple agonists in vitro [4—6], the in vivo haemostatic conse-
quences of this are poorly understood.

CAT in PRP is performed using a reagent which contains
tissue factor only (without a source of exogenous phospho-
lipids). This renders the assay dependent upon the phospho-
lipid content of PRP.

Haidl et al. compared thrombin generation in PRP from
term cord blood and adults [25]. In neonatal PRP, there
were no differences in any thrombin generation parameters
at platelet counts of 10,000/uLL and 100,000/uL, suggest-
ing that neonatal thrombin generation is not dependent on
absolute platelet number. In contrast, thrombin generation
in adult PRP is dependent on platelet count [15, 36]. CAT
was evaluated in TFPI-depleted adult PPP, following the
addition of high or low concentrations of TFPI, and vary-
ing concentrations of platelets [25]. Lower levels of TFPI
(to represent neonatal plasma) were associated with lower
platelet dependency of thrombin generation. Although
endogenous TFPI activity levels in cord blood and adult
samples were not described and would have been useful to
confirm the hypothesis, reduced TFPI activity in neonates
has been reported [26, 37].

The respective effects of neonatal and adult platelets
on thrombin generation were evaluated by CAT, follow-
ing the addition of platelets (neonatal/adult) to PPP (neo-
natal/adult) [38]. Newborn and adult platelets supported
thrombin generation comparably. This suggests that CAT
parameters were primarily determined by the plasma pre-
sent (neonatal/adult). These results differ from a similar
study using TEG, which found that the “transfusion” of
neonatal platelets resulted in a shorter reaction time in
both neonatal and adult blood, while the transfusion of
adult platelets to cord blood resulted in a greater maxi-
mal amplitude and clot firmness, compared to neonatal
platelets [39].

Schlagenhauf et al. demonstrated that upon stimulation,
neonatal platelets release fewer inorganic polyphosphates,
a pro-coagulant substance released from dense granules of

@ Springer

activated platelets [22]. Using CAT, exogenous polyphos-
phates had a lower relative impact on thrombin generation
parameters in neonatal PPP, but exerted their maximal effect
at lower concentrations than in adults. Lower TFPI levels
rendered neonates more sensitive to the effect of polyphos-
phate, while limiting the potential impact.

Different PRP preparation techniques were used in the
platelet studies, which may explain some variability in the
findings. Haidl et al. centrifuged whole blood at 200X g
for 10 min and diluted this with PPP to produce a specific
platelet count (10, 50, 75 and 100 x 10"9/L) [25]. Peterson
et al. centrifuged whole blood at 100 X g for 10 min, before
diluting with PPP to achieve a standard platelet count of
50x 10"9/L [40]. Bernhard et al. pelleted and washed plate-
lets, before re-suspending them in PPP and adjusting “to
similar counts” [38]. The International Society on Throm-
bosis and Haemostasis recommends centrifugation at 200 X g
for 10 min with no brake to produce PRP [41]. These recom-
mendations, to reduce red cell contamination and maintain
platelet quiescence, derive from an adult study [42]. In CAT,
PPP is often added to PRP to standardise platelet counts.
The study by Haidl et al. suggests that in term neonates,
PRP platelet counts do not influence thrombin generation
parameters [25].

To date, no studies have evaluated the effect of premature
platelets on neonatal haemostasis.

The effect of extracellular vesicles
on haemostasis

Extracellular vesicles (EVs) are nanoparticles (ranging from
50 to 1000 nm) released from cells [43], surrounded by a
lipid bi-layer. A majority (>70%) of plasma EVs are derived
from platelets [44], typically released upon their activation
[45]. EVs may play a role in haemostasis, increasing the
phospholipid surface for the enzymatic reactions of the
coagulation cascade and potentially increasing the local
concentration of TF present [46]. TF bearing EVs originate
from many cells, including endothelial cells and monocytes
[47, 48]. Several studies have demonstrated an increase in
the number of platelet-derived EVs and procoagulant EV
activity in neonates compared with adults [37, 49-53].

CAT was used to evaluate the procoagulant effect of EVs
in term cord blood compared with adults [21]. CAT was per-
formed using Thrombinoscope BV PPP reagent (tissue factor
and phospholipid) and microparticle (MP) reagent (phos-
pholipid only). The MP/PPP ratio was used to evaluate the
relative effect of TF-EVs on thrombin generation. TF-EVs
had a greater impact on thrombin generation in neonates
than adults. This increased procoagulant EV activity sup-
ports the possible compensatory role of EVs in the neonatal
haemostatic system.
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CAT as a predictor of clinical bleeding
in neonates

Standard clotting tests do not accurately predict the risk of
bleeding [8, 10, 11]. Numerous studies have evaluated CAT
as a predictor of bleeding in adults [54, 55], but few have
in neonates. Peterson et al. found that CAT did not predict
post-operative bleeding after cardiopulmonary bypass (CPB)
[40]. Tripodi et al. found no difference in ETP measure-
ments at birth, between VLBW infants that developed an
IVH and those that did not [9]. Similarly, Neary et al. dem-
onstrated no difference in any thrombin generation param-
eters between infants who developed a severe (or any) IVH
and those that did not [56]. The current clinical application
of CAT in neonates is limited by a lack of evidence to sup-
port CAT as a predictor of bleeding.

CAT to evaluate haemostatic therapies
in neonates

Sick neonates frequently receive blood products and hae-
mostatic drugs, but few randomised controlled trials have
evaluated their use in this population [34, 57]. Neonatal
doses are frequently extrapolated from adult regimens, and
guidelines are often consensus agreements. PlaNeT 2 has
raised awareness of the potential harms of blood products
in neonates [34]. Haemostatic drugs must be evaluated in
neonates, given the differences in neonatal factor levels [2,
3]. CAT has been used as a pre-clinical tool to evaluate the
potential haemostatic effects of drugs in neonates.

Cvirn et al. evaluated the anti-coagulant effect of Mela-
gatran, a direct thrombin inhibitor, in neonatal cord blood
and adult PPP [20]. While a similar concentration of Mel-
agatran was required to prolong the lag time and time to
peak in both groups, both ETP and peak thrombin were sup-
pressed by over 50% using a much lower drug concentration
in cord blood plasma than that required to achieve the same
effect in adult plasma. These distinct patterns of sensitiv-
ity to the same anticoagulant drug highlight the variability
in endogenous haemostatic pathway activity which exists
between neonatal and adult plasma, detectable by CAT.

CAT assessed the effect of ex vivo addition of Novo-
Seven® (recombinant factor VIIa) or three-factor pro-
thrombin complex (3f-PCC) (containing FII, FIX, FX,
and a small amount of FVII) to PPP of term infants post
CPB [58]. While NovoSeven® reduced the lag time only,
3f-PCC also significantly increased peak thrombin and
velocity index, above pre-CPB levels.

Franklin et al. studied the effect of two “four-factor
prothrombin complex concentrates” (4f-PCCs), one which
contained FVII and the other FVIIa, in PPP from term

infants who had undergone CPB [19]. While both concen-
trations increased the peak thrombin and velocity index,
only the preparation containing FVIIa reduced lag time to
pre-CPB levels. The lower dose of both drugs tested was
sufficient to enhance thrombin generation in neonates.

The effect of NovoSeven® in umbilical cord blood and
adult PRP was investigated [25], due to the high incidence
of reported thrombotic adverse events in the neonatal
population [59]. NovoSeven® altered clot dynamics; it
did not alter ETP in either group but shortened the lag
time and reduced the peak height in both groups, most
significantly in the neonatal group. The effect of rFVIla
did not appear to be platelet dependent in vitro. Moreover,
the dose response to rFVIIa was comparable between the
neonates and adult PRP.

CAT cannot replace trials to evaluate the clinical effects
of these drugs, but it may provide some insights into the
relative effects of haemostatic therapies in supporting nor-
mal coagulation, at least in vitro.

CAT in specific populations
Infants undergoing cardiopulmonary bypass

Infants who require neonatal surgical correction of cardiac
malformations with CPB are at high risk of post-operative
haemorrhage, due to a dilution of coagulation fac-
tors, exposure to heparin anti-coagulation and activation
of blood cells as a result of interactions with extravascular
tissue and artificial tubing [60]. Neonates typically receive
blood products and pro-coagulant drugs to overcome these
challenges.

Two studies evaluated thrombin generation in neonates
pre- and post-CPB (following the reversal of heparin and
the administration of blood products) [19, 58]. Both dem-
onstrated a prolonged lag time post-CPB and an increase
in peak thrombin compared with pre-CPB samples.

Peterson et al. evaluated CAT in PRP compared with
other coagulation assays, assessing heparin reversal and
rebound effect, in neonates undergoing CPB [40]. CAT
results were compared with thrombin-initiated fibrin clot
kinetics (TFCK). Peak thrombin inversely correlated with
high TFCK ratios (blood samples with the highest heparin
activity).

Factor VIl deficiency
Neonates with factor VIII deficiency can develop severe
haemorrhage [61]. CAT evaluated the effect of factor VIII

levels in neonates in cord blood PPP, with varying levels of
factor VIII, anti-thrombin and TFPI [24].
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Factor VIII depleted neonatal plasma showed a slight
prolongation in lag time and time to peak, with no change
in peak thrombin. In a neonate with confirmed factor VIII
deficiency, the lag time and time to peak were slightly pro-
longed; however, the peak thrombin was reduced by 25%.

An increase in TFPI levels resulted in a prolonged lag
time and time to peak, but had little effect on peak height
or ETP. In contrast, an increase in the anti-thrombin level
resulted in a large reduction in ETP (64%) and peak height
(33%) but no change to the lag time. This study illustrated
the mechanisms by which the inhibitory pathways impact on
thrombin generation parameters in neonates.

Cholestatic liver disease

Preterm infants are at risk of cholestasis due to prolonged
parenteral nutrition use. Cholestasis reduces vitamin K
absorption, and thus, vitamin K—dependent coagulation fac-
tors. It was hypothesised that infants with intestinal failure
associated liver disease may have impaired thrombin genera-
tion [62]. CAT was performed in PPP at birth and day 30
in the presence of thrombomodulin. In spite of prolonged
standard clotting tests in the liver disease group, there was
no difference in ETP between groups at either timepoint.

Strengths and limitations of CAT compared
with alternative global coagulation assays

CAT is a useful tool to evaluate in detail the mechanisms
of haemostasis in neonates, and to explore how these differ
from adults. CAT evaluates for both hypo- and hypercoagu-
lability [15] and has good intra- and inter-individual reli-
ability [15]. Plasma CAT is a useful method of evaluating
the function of specific plasma coagulation proteins.

CAT is only used as a research tool in neonates, not
as a clinical assessment tool, and neonatal studies have
derived from a small number of centres internationally.
CAT requires the manual preparation of plasma and addi-
tion of reagents as described in Fig. 1. The reagents may
be prepared on site or purchased from a manufacturer. Pur-
chased reagents are costly, and CAT also requires specific
instruments and software which would not be routinely
available in clinical laboratories. There are challenges to
the interchangeability of results between sites, particularly
in relation to the pre-analytical steps and standardisation
of reagents used, although studies have shown interchange-
ability between sites to be within acceptable ranges when
standardised protocols are followed [63—-65]. Currently,
neonatal reference ranges or treatment algorithms that

Table2 A comparison of CAT with viscoelastic assays (TEG/ROTEM) in neonates [13, 15, 71]

Thrombin generation assays (CAT)

Viscoelastic assays (TEG/ROTEM)

Principle of assay

Volumes required

Timing of analysis, sample types, avail-
ability of results

Location of testing

Assesses ability to generate thrombin (the key
effector protease of the coagulation cascade) in
platelet-rich or platelet-poor plasma

Generation of fibrin clot occurs rapidly (and
prior to exhaustion of the thrombin-generating
capacity of plasma), and therefore, parameters
of thrombin generation as opposed to clot
formation may be more informative and more
reflective of the overall complexity of the hae-
mostatic balance

The assay may be modified to examine specific
components of haemostasis in isolation (e.g.
APC sensitivity). While some modifications of
this assay have been described, in general, CAT
has not been widely used for assessing whole
blood coagulation or fibrinolysis

The required volume will be dependent on the
clinical/research scenario

Only the plasma fraction of whole blood is uti-
lised; thus, larger volumes of whole blood are
typically required to yield the required plasma
sample volume

Fresh or thawed batches of frozen plasma may
be used
Analysis can take up to 1 h to complete

Laboratory-based

Auvailability of neonatal reference ranges No

Assesses fibrin clot formation and fibrinolysis in
whole blood

This will take into account the influence of plasma,
platelets, leucocytes and red cells. As fibrinolysis
is also assessed in parallel, this assay may have
more immediate clinical applications in certain
scenarios, such as in the management of major
haemorrhage

Individual components of blood coagulation can-
not be assessed

Generally, a smaller volume is required as the
entire whole blood sample is used

Immediate analysis of whole blood samples only—
not suitable for stored samples

Assay completed and results available within
minutes

Bedside point of care assay
Yes
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allow evidence-based prescribing of blood products do not
exist for CAT. Moreover, CAT does not evaluate primary
haemostasis or the effect of red or white cells, vascular
endothelium or blood flow on secondary haemostasis [15].

Alternative global coagulation assays, such as throm-
boelastography (TEG) and rotational thromboelastometry
(ROTEM), use viscoelastic techniques to evaluate clot
formation [66]. These may be useful in overcoming some
limitations of CAT (Table 2). TEG/ROTEM evaluate the
fibrinolytic system and are performed in whole blood, thus
assessing the effect of all cellular blood components, requir-
ing less time and skill to prepare, and reducing the risk of
iatrogenic platelet activation. Standard CAT in duplicate
requires up to 320 uL of plasma, while TEG requires only
340 uL of whole blood per analysis [67]. The blood volume
required limits the use of CAT in neonates. Several CAT
studies are performed in umbilical cord blood, given the
larger volumes available. However, there is some evidence
of a procoagulant imbalance in cord blood compared with
neonatal blood, which may limit its applications [68]. The
intra-assay reliability is acceptable in TEG, even in VLBW
infants [67], and neonatal TEG reference ranges exist for
both term and preterm infants [69, 70].

Conclusions

CAT studies have expanded our knowledge of crucial dif-
ferences between neonatal and adult haemostasis and poten-
tial compensatory mechanisms in neonates. These present
a narrative, that neonates, including preterm neonates, may
have equivalent haemostatic potential or even be hyperco-
agulable compared with adults. This questions the practice
of administering blood products and pro-coagulant drugs to
non-bleeding neonates with deranged standard clotting tests.

Moving forward, CAT represents a useful research tool
to evaluate haemostatic therapies and to expand our under-
standing of the intricacies of neonatal haemostasis. How-
ever, the role of CAT as a bedside clinical tool is limited,
and this function may be better suited to whole blood assays
such as TEG/ROTEM.
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