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ABSTRACT

This study aimed to investigate the associations of XPC c.2815A>C, XPD c.934G>A 
and c.2251A>C, XPF c.2505T>C and ERCC1 c.354C>T single nucleotide polymorphisms 
(SNPs) of nucleotide excision repair pathway in outcome of head and neck squamous 
cell carcinoma (HNSCC) patients treated with cisplatin (CDDP) chemoradiation. 
Patients with XPC c.2815AC or CC and XPD c.934GA or AA genotypes had 0.20 and 
0.38 less chances of presenting moderate/severe ototoxicity and nausea, respectively. 
Patients with XPD c.934AA and c.2251AC or CC genotypes had 8.64, 12.29 and 3.55 
more chances of achieving complete response (CR), consistent ototoxicity and 
nephrotoxicity, respectively. AA haplotype of XPD and ACT haplotype of XPD and 
ERCC1 SNPs were associated with 9.30 and 3.41 more chances of achieving CR and 
consistent nephrotoxicity, respectively. At 24 months of follow-up, patients with XPD 
c.934AA genotype presented lower progression-free survival and overall survival 
in Kaplan-Meier estimates, and differences between groups remained the same in 
univariate Cox analysis. Patients with XPD c.934AA genotype had 2.13 and 2.04 more 
risks of presenting tumor progression and death than others in multivariate Cox 
analysis. Our data present preliminary evidence that XPC c.2815A>C, XPD c.934G>A 
and c.2251A>C, and ERCC1 c.354C>T SNPs alter outcome of HNSCC patients treated 
with CDDP chemoradiation.

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) 
is the sixth most common human cancer, with a worldwide 
incidence of 600,000 new cases and approximately 
350,000 deaths are attributed to tumor each year [1].

About two-thirds of HNSCC patients exhibit 
advanced stage disease at diagnosis [2], and cisplatin 
(CDDP) associated with radiotherapy (RT) has been used 
in their treatment [3]. RT induces DNA damage directly 
by action of photons and indirectly by liberation of free 
radicals [4]. CDDP develops adducts with cellular DNA 
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and also releases free radicals [5]. In both cases, damaged 
cells are induced to apoptosis when not adequately 
repaired, particularly by nucleotide excision repair (NER) 
pathway [6].

The xeroderma pigmentosum (XP) genes, including 
complementation group C (XPC), D (XPD), F (XPF) and 
excision repair cross-complementation group1 (ERCC1), 
operate in NER pathway, and participate of recognition, 
demarcation and removal of DNA damage induced by 
CDDP and RT [7].

Variations in tumor sensitivity to CDDP [8-21], RT 
[22, 23] and CDDP associated with RT [24-26], as well 
as in side effects of therapeutic modalities [10, 14, 27, 
28], have been attributed to distinct activities of proteins 
encoded by single nucleotide polymorphisms (SNPs) in 
genes involved in DNA repair through NER pathway.

The variant alleles of XPC c.2815A>C 
(p.Lys939Gln) (rs2228001), XPD c.934G>A 
(p.Asp312Asn) (rs1799793) and XPD c.2251A>C 
(p.Lys751Gln) (rs13181) SNPs determine activity of 
protein reduction, with consequent lower function in 
DNA repair capacity (DRC) [29, 30]. The variant alleles 
of XPF c.2505T>C (p.Ser835Ser) (rs1799801) and 
ERCC1 c.354C>T (p.Asn118Asn) (rs11615) SNPs can 
be associated with a reduction of mRNA stability or 
processing, and lower DRC [31-33].

The XPC c.2815A>C [14-17], XPD c.934G>A 
and c.2251A>C [8-10, 13, 14, 19, 20, 24, 26, 28], XPF 
c.2505T>C [26], and ERCC1 c.354C>T [10-12, 15, 16, 
18, 21, 25, 26, 28] SNPs were associated with variable 
response rate (RR), toxicity, progression-free survival 
(PFS) and overall survival (OS) in patients with different 
tumors treated with CDDP-based chemotherapy with or 
without RT; however only few studies were conducted in 
HNSCC patients [24, 25].

In the present study, we investigated whether the 
above-mentioned SNPs alter the outcome of HNSCC 
patients treated with CDDP and RT.

RESULTS

Study population

Most of 90 patients enrolled in study were male and 
with a history of tobacco and alcohol consumption. About 
two-thirds of cases had tumor in pharynx and most of 
patients presented well or moderately differentiated tumor 
and tumor in advanced stages. Human papillomavirus 
(HPV) type 16 was negative in all analyzed cases 
(Table 1).

All patients received RT with a total dose of 70 
Gy and CDDP at initial dose of 80-100 mg/m2. Thirteen 
patients with consistent side effects after the first infusion 
of CDDP, received lower dose (50-75 mg/m2) of agent in 
following administrations. Sixty-eight patients (75.5%) 
received three infusions of CDDP and 22 patients 

(24.5%) received only two CDDP infusions due to renal 
or hematologic toxicities; the median cumulative dose of 
CDDP in patients was 265 mg (range: 100 to 616). Most 
of patients (97.7%) had medium or high adherence to 
antiemetics.

Partial response and stable disease were seen in near 
80.0% of patients. About two-thirds and one-third of cases 
had moderate/severe nausea and vomiting, respectively, 
one-third to half of cases presented moderate/severe 
hematologic toxicities and half of cases had moderate/
severe nephrotoxicity or ototoxicity (Table 2).

The mean ± standard deviation of urinary CDDP 
was 237.0 μg/mg ± 116.2.

The median follow-up time of 90 HNSCC patients 
enrolled in study was 18.6 months (range: 3.3-48.9). The 
estimated probabilities of 24-months PFS and OS were 
37.6% and 42.4%, respectively. At the date of analysis, 
September 2015, 31 patients were alive, 7 of them with 
HNSCC and 24 without HNSCC and 59 patients died, 56 
of them by the tumor effects and 3 by unrelated causes.

The linkage disequilibrium (LD) analysis revealed 
a LD between XPD c.934G>A and XPD c.2251A>C (D’= 
64%), XPD c.934G>A and ERCC1 c.354C>T (D’= 54%), 
and XPD c.2251A>C and ERCC1 c.354C>T (D’= 51%) 
SNPs. From the theoretical eight possible XPD haplotypes 
for c.934G>A and c.2251A>C SNPs, four were found to be 
common (frequency > 1%: GA, GC, AA, AC). Only seven 
out of eighteen possible XPD and ERCC1 haplotypes for 
c.934G>A, c.2251A>C and c.354C>T SNPs were found 
to be common (frequency > 1%: GAC, GCC, AAC, ACC, 
GAT, GCT, ACT). The common haplotypes of referred 
SNPs were included in further analysis.

Polymorphisms, response rate and toxicity

The frequencies of referred genotypes and 
haplotypes of HNSCC patients stratified by RR and 
toxicity to chemoradiotherapy are presented in Table 
3. The XPC c.2815AC or CC genotypes were less 
common than AA genotype in patients with moderate/
severe ototoxicity (40.4% versus 65.2%). Patients with 
AC or CC genotypes had 0.20 less chance of moderate/
severe ototoxicity than others. The XPD c.934AA 
variant genotype was more frequent than GG or GA 
genotypes in patients with complete response (CR) after 
chemoradiotherapy (42.9% versus 18.2%). Carriers of 
variant genotype AA had 8.64 more chances of achieving 
CR than others. The maximum changes from baseline 
in the sum of reference diameters of target lesions in 
HNSCC patients with XPD c.934G>A SNP genotypes 
are presented in Figure 1A and 1B; patients with variant 
genotype had more median change than those with 
wild-type or heterozygous genotypes of XPD c.934G>A 
SNP (-63.0% versus -52.5%) of presenting response to 
chemoradiotherapy. The XPD c.934AA genotype was also 
more frequent than the GG or GA genotypes in patients 
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with moderate/severe ototoxicity (85.7% versus 44.4%). 
Patients with AA genotype had 12.29 more chances of 
consistent ototoxicity than others. In contrast, the XPD 
c.934GA or AA genotypes were less common than the 
GG genotype in patients with moderate/severe nausea 
(48.8% versus 66.0%). Carriers of variant A allele had 
0.38 less chance of moderate/severe nausea than those 
with the wild-type genotype. An excess of XPD c.2251AC 
or CC genotypes compared to the AA genotype were seen 
in patients with moderate/severe nephrotoxicity (62.2% 
versus 31.3%). Carriers of variant C allele had 3.55 more 
chances of consistent nephrotoxicity than others. The AA 
haplotype (variant allele of XPD c.934G>A and wild-type 
allele of XPD c.2251A>C) was more common in patients 
with CR than those with other common haplotypes 
(44.4% versus 19.0%). Individuals with AA haplotype 

had 9.30 more chances of achieving CR than others. 
The ACT haplotype (variant alleles of XPD c.934G>A, 
XPD c.2251A>C and ERCC1 c.354C>T; respectively) 
was also more common in patients with moderate/severe 
nephrotoxicity than other haplotypes (70.0% versus 
44.1%). Individuals with ACT haplotype had 3.41 more 
chances of consistent nephrotoxicity than others.

Similar frequencies of genotypes, alone or 
combined, and haplotypes of corresponding SNPs were 
seen in patients stratified by hematologic toxicities and 
concentration of CDDP in urine (data not shown).

Polymorphisms and survival analysis

At 24 months of follow-up, shorter PFS was 
observed in patients with advanced tumor stage (34.4% 

Table 1: Clinical characteristics and tumor aspects of head and neck squamous cell carcinoma patients

Variable Median (range) or N (%)

Age (years) 56 (27-74)

Gender

 Male 83 (92.2)

 Female 7 (7.8)

Body mass index (kg/m²) 19 (13-31)

Tobacco consumption

 Smokers 88 (97.8)

 Non-smokers 2 (2.2)

Alcohol consumption

 Drinkers 83 (92.2)

 Abstainers 7 (7.8)

Tumor location

 Oral cavity 12 (13.3)

 Pharynx 55 (61.1)

 Larynx 23 (25.6)

Histological grade*

 Well + moderately 60 (82.2)

 Poorly + undifferentiated 13 (17.8)

Tumor stage

 I + II 6 (6.7)

 III + IV 84 (93.3)

Human papillomavirus type 16*

 Positive 0 (0.0)

 Negative 57 (100.0)

(N) number of patients. *The number of patients differed from the total quoted in the study (n= 90), because it was not 
possible to obtain consistent information about histological grade and human papillomavirus type 16 status in some cases.
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Table 2: Responses and toxicities to chemoradiotherapy of head and neck squamous cell carcinoma patients

Variable
Ideal or mild Non-ideal, moderate or severe

Type of response or grade 
of toxicity

N (%) Type of response or grade 
of toxicity

N (%)

Response rate
CR+PR 68 (93.2) SD 5 (6.8)

CR 15 (20.5) PR+SD 58 (79.5)

Gastrointestinal toxicities

 Nausea G0+G1 37 (42.0) G2+G3 51 (58.0)

 Vomiting G0+G1 59 (67.0) G2+G3+G4 29 (33.0)

Hematologic toxicities

 Anemia G0+G1 37 (44.0) G2+G3+G4 47 (56.0)

 Leukopenia G0+G1 47 (56.0) G2+G3+G4 37 (44.0)

 Neutropenia G0+G1+G2 67 (79.8) G3+G4 17 (20.2)

 Lymphopenia G0+G1+G2 42 (50.0) G3+G4 42 (50.0)

 Thrombocytopenia G0 54 (64.3) G1+G2+G3+G4 30 (35.7)

Nephrotoxicity G0+G1 36 (52.2) G2+G3+G4+G5 33 (47.8)

Ototoxicity G0+G1 36 (51.4) G2+G3+G4 34 (48.6)

(N) number of patients; (CR) complete response; (PR) partial response; (SD) stable disease; (G) grade of toxicity. The 
total number of patients differed from the total quoted in the study (n= 90), because it was not possible to obtain consistent 
information about response rate, nausea and vomiting, hematologic exams, glomerular filtration rate or audiometry test after 
chemoradiotherapy in some cases.

Table 3: Frequencies of XPC c.2815A>C, XPD c.934G>A, XPD c.2251A>C, XPF c.2505T>C and ERCC1 c.354C>T 
single nucleotide polymorphisms genotypes and haplotypes of head and neck squamous cell carcinoma patients 
stratified by response rate and toxicity to chemoradiotherapy

Variable
Response rate Nausea Vomiting Nephrotoxicity Ototoxicity

CR+PR
N (%)

SD
N (%)

CR
N (%)

PR+SD
N (%)

G0+G1
N (%)

G2+G3
N (%)

G0+G1
N (%)

G2-G4
N (%)

G0+G1
N (%)

G2-G5
N (%)

G0+G1
N (%)

G2-G4
N (%)

XPC c.2815A>C

AA+AC 57 (93.4) 4 (6.6) 12 (19.7) 49 (80.3) 32 (42.1) 44 (57.9) 52 (68.4) 24 (31.6) 28 (48.3) 30 (51.7) 30 (51.7) 28 (48.3)

CC 11 (91.7) 1 (8.3) 3 (25.0) 9 (75.0) 5 (41.7) 7 (58.3) 7 (58.3) 5 (41.7) 8 (72.7) 3 (27.3) 6 (50.0) 6 (50.0)

P-value 0.80 0.34 0.79 0.46 0.07 0.65

OR (95% CI) 0.72 (0.05-8.93) 2.20 (0.42-11.51) 1.19 (0.31-4.51) 1.63 (0.43-6.09) 0.23 (0.05-1.14) 1.36 (0.34-5.41)

AA 24 (100.0) 0 (0.0) 7 (29.2) 17 (70.8) 11 (34.4) 21 (65.6) 20 (62.5) 12 (37.5) 12 (52.2) 11 (47.8) 8 (34.8) 15 (65.2)

AC+CC 44 (89.8) 5 (10.2) 8 (16.3) 41 (83.7) 26 (46.4) 30 (53.6) 39 (69.6) 17 (30.4) 24 (52.2) 22 (47.8) 28 (59.6) 19 (40.4)

P-value 0.99 0.32 0.27 0.65 0.79 0.01

OR (95% CI) NE 0.52 (0.14-1.88) 0.58 (0.22-1.52) 0.80 (0.30-2.10) 0.87 (0.30-2.49) 0.20 (0.06-0.70)

XPD c.934G>A

GG+GA 61 (92.4) 5 (7.6) 12 (18.2) 54 (81.8) 32 (41.0) 46 (59.0) 53 (68.8) 25 (32.1) 33 (53.2) 29 (46.8) 35 (55.6) 28 (44.4)

AA 7 (100.0) 0 (0.0) 3 (42.9) 4 (57.1) 5 (50.0) 5 (50.0) 6 (60.0) 4 (40.0) 3 (42.9) 4 (57.1) 1 (14.3) 6 (85.7)

P-value 0.99 0.04 0.67 0.40 0.42 0.03

OR (95% CI) NE 8.64 (1.04-71.76) 0.73 (0.17-3.11) 1.84 (0.43-7.86) 2.00 (0.36-10.96) 12.29 (1.19-126.04)

GG 36 (94.7) 2 (5.3) 8 (21.1) 30 (78.9) 16 (34.0) 31 (66.0) 33 (70.2) 14 (29.8) 21 (58.3) 15 (41.7) 17 (47.2) 19 (52.8)

GA+AA 32 (91.4) 3 (8.6) 7 (20.0) 28 (80.0) 21 (51.2) 20 (48.8) 26 (63.4) 15 (36.6) 15 (45.5) 18 (54.5) 19 (55.9) 15 (44.1)

P-value 0.66 0.77 0.04 0.58 0.23 0.54

(Continued )
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Variable
Response rate Nausea Vomiting Nephrotoxicity Ototoxicity

CR+PR
N (%)

SD
N (%)

CR
N (%)

PR+SD
N (%)

G0+G1
N (%)

G2+G3
N (%)

G0+G1
N (%)

G2-G4
N (%)

G0+G1
N (%)

G2-G5
N (%)

G0+G1
N (%)

G2-G4
N (%)

OR (95% CI) 0.65 (0.09-4.38) 0.83 (0.25-2.79) 0.38 (0.14-0.98) 1.29 (0.50-3.33) 1.83 (0.68-7.97) 0.73 (0.26-2.01)

XPD c.2251A>C

AA+AC 60 (92.3) 5 (7.7) 13 (20.0) 52 (80.0) 35 (43.8) 45 (56.2) 55 (68.7) 25 (31.3) 33 (54.1) 28 (45.9) 31 (50.0) 31 (50.0)

CC 8 (100.0) 0 (0.0) 2 (25.0) 6 (75.0) 2 (25.0) 6 (75.0) 4 (50.0) 4 (50.0) 3 (37.5) 5 (62.5) 5 (62.5) 3 (37.5)

P-value 0.99 0.95 0.16 0.09 0.61 0.76

OR (95% CI) NE 1.05 (0.14-7.63) 3.50 (0.58-20.95) 4.11 (0.77-21.84) 1.51 (0.29-7.66) 0.77 (0.14-4.26)

AA 32 (91.4) 3 (8.6) 7 (20.0) 28 (80.0) 17 (39.5) 26 (60.5) 27 (62.8) 16 (37.2) 22 (68.7) 10 (31.3) 16 (47.1) 18 (52.9)

AC+CC 36 (94.7) 2 (5.3) 8 (21.1) 30 (78.9) 20 (44.4) 25 (55.6) 32 (71.1) 13 (28.9) 14 (37.8) 23 (62.2) 20 (55.6) 16 (44.4)

P-value 0.73 0.81 0.46 0.40 0.01 0.75

OR (95% CI) 1.39 (0.20-9.63) 1.15 (0.34-3.87) 0.70 (0.27-1.80) 0.65 (0.24-1.75) 3.55 (1.27-9.87) 0.85 (0.31-2.34)

XPF c.2505T>C

TT+TC 60 (92.3) 5 (7.7) 14 (21.2) 52 (78.8) 33 (40.7) 48 (59.3) 53 (65.4) 28 (34.6) 33 (53.2) 29 (46.8) 34 (53.1) 30 (46.9)

CC 8 (100.0) 0 (0.0) 1 (14.3) 6 (85.7) 4 (57.1) 3 (42.9) 6 (85.7) 1 (14.3) 3 (42.9) 4 (57.1) 2 (33.3) 4 (66.7)

P-value 0.99 0.65 0.28 0.21 0.49 0.41

OR (95% CI) NE 0.58 (0.05-6.46) 0.39 (0.07-2.16) 0.23 (0.02-2.28) 1.77 (0.33-9.26) 2.17 (0.33-14.07)

TT 25 (86.2) 4 (13.8) 7 (24.1) 22 (75.9) 16 (40.0) 24 (60.0) 28 (70.0) 12 (30.0) 20 (66.7) 10 (33.3) 13 (44.8) 16 (55.2)

TC+CC 43 (97.7) 1 (2.3) 8 (18.2) 36 (81.8) 21 (43.8) 27 (56.2) 31 (64.6) 17 (35.4) 16 (41.0) 23 (59.0) 23 (56.1) 18 (43.9)

P-value 0.11 0.53 0.69 0.56 0.07 0.30

OR (95% CI) 7.17 (0.64-80.32) 0.67 (0.19-2.34) 0.83 (0.33-2.05) 1.32 (0.51-3.40) 2.56 (0.92-7.11) 0.58 (0.20-1.64)

ERCC1 c.354C>T

CC+CT 57 (93.4) 4 (6.6) 12 (19.7) 49 (80.3) 33 (45.2) 40 (54.8) 48 (65.8) 25 (34.2) 33 (57.9) 24 (42.1) 31 (52.5) 28 (47.5)

TT 11 (91.7) 1 (8.3) 3 (25.0) 9 (75.0) 4 (26.7) 11 (73.3) 11 (73.3) 4 (26.7) 3 (25.0) 9 (75.0) 5 (45.5) 6 (54.5)

P-value 0.67 0.79 0.15 0.61 0.06 0.47

OR (95% CI) 0.58 (0.05-6.90) 1.23 (0.26-5.67) 2.50 (0.69-9.03) 0.71 (0.19-2.58) 4.00 (0.95-16.69) 1.63 (0.42-6.38)

CC 20 (95.2) 1 (4.8) 6 (28.6) 15 (71.4) 11 (44.0) 14 (56.0) 16 (64.0) 9 (36.0) 12 (63.2) 7 (36.8) 12 (60.0) 8 (40.0)

CT+TT 48 (92.3) 4 (7.7) 9 (17.3) 43 (82.7) 26 (41.3) 37 (58.7) 43 (68.3) 20 (31.7) 24 (48.0) 26 (52.0) 24 (48.0) 26 (52.0)

P-value 0.87 0.54 0.88 0.47 0.13 0.68

OR (95% CI) 0.82 (0.07-8.58) 0.66 (0.18-2.44) 1.07 (0.39-2.95) 0.68 (0.24-1.94) 2.43 (0.75-7.85) 1.27 (0.39-4.11)

XPD+XPD

AA 8 (88.9) 1 (11.1) 4 (44.4) 5 (55.6) 7 (58.3) 5 (41.7) 6 (50.0) 6 (50.0) 5 (71.4) 2 (28.6) 4 (44.4) 5 (55.6)

Other haplotypes 128 (93.4) 9 (6.6) 26 (19.0) 111 
(81.0) 67 (40.9) 97 (59.1) 112 (68.3) 52 (31.7) 67 (51.1) 64 (48.9) 68 (51.9) 63 (48.1)

P-value 0.87 0.01 0.13 0.24 0.49 0.63

OR (95% CI) 0.83 (0.08-7.98) 9.30 (1.67-51.77) 0.36 (0.09-1.38) 2.05 (0.60-7.00) 0.55 (0.10-3.03) 1.42 (0.33-6.11)

XPD+XPD+ERCC1

ACT 18 (94.7) 1 (5.3) 3 (15.8) 16 (84.2) 11 (47.8) 12 (52.2) 15 (65.2) 8 (34.8) 6 (30.0) 14 (70.0) 9 (50.0) 9 (50.0)

Other haplotypes 118 (92.9) 9 (7.1) 27 (21.3) 100 
(78.7) 63 (41.2) 90 (58.8) 103 (67.3) 50 (32.7) 66 (55.9) 52 (44.1) 63 (51.6) 59 (48.4)

P-value 0.70 0.56 0.36 0.97 0.02 0.79

OR (95% CI) 1.54 (0.16-14.26) 0.66 (0.16-2.63) 0.64 (0.24-1.66) 1.01 (0.38-2.70) 3.41 (1.18-9.87) 1.15 (0.39-3.42)

(CR) complete response; (PR) partial response; (SD) stable disease; (G) grade of toxicity; (N) number of patients; (OR) odds 
ratio adjusted by age, cumulative dose of cisplatin, body mass index and tumor location to response rate, adjusted by age, 
cumulative dose of cisplatin and antiemetic adherence to nausea and vomiting, adjusted by age, cumulative dose of cisplatin 
and body mass index to nephrotoxicity and adjusted by age, cumulative dose of cisplatin and tumor location to ototoxicity; 
(CI) confidence interval; (NE) not evaluated. The total number of patients differed from the total quoted in the study (n= 90), 
because it was not possible to obtain consistent information about response rate, nausea and vomiting, glomerular filtration 
rate or audiometry test in some cases. Significant differences between groups are presented in bold letters.
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versus 83.3%, P= 0.03) and XPD c.934AA genotype 
(10.0% versus 41.2%, P= 0.02) (Figure 1C); a shorter 
OS was also observed in patients with advanced tumor 
stage (38.4% versus 100.0%, P= 0.02) and XPD c.934AA 
genotype (10.0% versus 46.9%, P= 0.02) (Figure 1D) at 
this time (Kaplan-Meier estimates).

Associations of clinical and tumor characteristics 
and referred genotypes with survival of HNSCC patients 
in Cox analyses are presented in Table 4. In univariate 
Cox analysis, a tendency for shorter PFS and shorter 
PFS were seen in patients with advanced tumor stage 
and in those with XPD c.934AA genotype, respectively. 
Only the XPD c.934AA genotype was associated with 
shorter PFS in multivariate Cox analysis; individuals 
with XPD c.934AA genotype had 2.13 more risks to 
present tumor progression than those with the remaining 
genotypes. In univariate Cox analysis, a shorter OS was 
seen in patients with advanced tumor stage and in those 
with XPD c.934AA genotype. Only the XPD c.934AA 
genotype was associated with shorter OS in multivariate 
Cox analysis; individuals with XPD c.934AA genotype 
had 2.04 more risks of death than those with the 
remaining genotypes.

DISCUSSION

We initially found that clinical and tumor aspects [3, 
22, 24, 34, 35], RR, toxicity to chemoradiation and short 
survival in advanced tumor stages [3, 34-36] in our sample 
were similar to those previously described in other parts 
of world. Therefore, they were adequate for analysis of 
new prognostic factors in disease. Low prevalence of HPV 
infection was seen in our cases, as previously reported [37, 
38], suggesting that the major factors enrolled in tumor 
development were tobacco and alcohol consumption.

Secondly, we found that XPC c.2815AC or CC 
genotype was associated with reduced ototoxicity. The 
AA genotype was related to less hearing impairment in 
osteosarcoma patients treated with CDDP [14]. Our finding 
was not expected, since the wild-type A allele of XPC 
c.2815A>C SNP was previously associated with higher 
DRC [30], and possibly with protection against hearing 
loss. However, variant C and wild-type A alleles of XPC 
c.2815A>C were also associated with similar DRC [39]. 
Thus, additional studies are required to evaluate the bind of 
XPC c.2815A>C with ototoxicity in HNSCC patients treated 
with CDDP chemoradiation.

Figure 1: Characteristics of response to cisplatin-chemoradiotherapy and probability of progression-free and overall 
survival of head and neck squamous cell carcinoma (HNSCC) patients. Panels A and B. show the waterfall plots indicate the 
maximum change from baseline in the sum of reference diameters of target lesion in with XPD c.934G>A genotypes. The dashed lines indicate 
a 30% reduction in the tumor burden in the target lesion, as defined by Response Evaluation Criteria in Solid Tumors version 1.1. Panels C 
and D. show Kaplan-Meier curve for progression-free and overall survival among HNSCC patients with XPD c.934G>A genotypes.
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Table 4: Association of clinical and tumor characteristics, XPC c.2815A>C, XPD c.934G>A, XPD c.2251A>C, XPF 
c.2505T>C and ERCC1 c.354C>T single nucleotide polymorphisms genotypes with survival of head and neck 
squamous cell carcinoma patients treated with chemoradiotherapy in univariate Cox analysis

Variables Progression-free survival Overall survival

N with 
event/N total

P value HR (95% CI) N with event/N 
total

P value HR (95% CI)

Age (years)

 ≤ 56 32/46
0.40 1.24 (0.74-2.06)

29/46
0.79 1.08 (0.57-2.05)

 > 56 28/44 30/44

Gender

 Male 54/83
0.22 1.68 (0.72-3.93)

55/83
0.86 1.10 (0.34-3.60)

 Female 6/7 4/7

Tobacco consumption

 Smokers 58/88
0.12 3.05 (0.73-

12.67)
58/88

0.72 1.43 (0.19-
10.44) Non-smokers 2/2 1/2

Alcohol consumption

 Drinkers 57/83
0.30 1.83 (0.57-5.89)

57/83
0.21 3.52 (0.48-

25.71) Abstainers 3/7 2/7

Tumor location

 Oral cavity/oropharynx 36/51
0.47 1.20 (0.71-2.03)

36/51
0.24 1.48 (0.76-2.91)

 Hypopharynx/larynx 24/39 23/39

Histological grade

 Well/moderately 39/60
0.28 1.48 (0.71-3.08)

38/60
0.44 1.32 (0.64-2.75)

 Poorly/undifferentiated 9/13 9/13

Tumor stage

 I + II 1/6
0.06 6.64 (0.91-

48.05)*

1/6
0.05 7.08 (0.97-

51.28)** III + IV 59/84 58/84

XPC c.2815A>C

 AA+AC 51/77
0.90 1.04 (0.51-2.12)

51/77
0.47 1.31 (0.62-2.77)

 CC 9/13 8/13

 AA 21/32
0.82 1.06 (0.62-1.80)

22/32
0.58 1.15 (0.68-1.96)

 AC+CC 39/58 37/58

XPD c.934G>A

 GG+GA 51/80
0.02 2.33 (1.13-

4.77)***

50/80
0.02 2.24 (1.09-

4.61)**** AA 9/10 9/10

 GG 30 / 48
0.38 1.25 (0.75-2.07)

31/48
0.75 1.08 (0.65-1.81)

 GA+AA 30/42 28/42

XPD c.2251A>C

 AA+AC 56/82
0.46 1.45 (0.52-4.02)

55/82
0.51 1.40 (0.50-3.88)

 CC 4/8 4/8

(Continued)
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Third, as previously reported, we found that AA 
genotype of XPD c.934G>A SNP was associated with 
CR in HNSCC patients [24]. The XPD c.934GA or AA 
genotypes and AA genotype were associated with reduced 
manifestation of nausea and moderate/severe ototoxicity 
in our cases, respectively. Nephrotoxicity was also more 
common in our patients with the XPD c.2251AC or CC 
genotypes. A possible explanation for these associations 
is that variant A and C alleles of XPD c.934G>A and 
c.2251A>C SNPs determine lower DRC [29], which 
could induced more apoptosis in tumor cells and normal 
outer hairs and renal tubular cells in response to CDDP 
chemoradiation. The reduced DRC in patients with 
GA or AA genotypes of XPD c.934G>A SNP may also 
induce more apoptosis in epithelial enterochromaffin 
cells of intestine of treated patients, resulting in absence 
of serotonin release, and consequent lack of stimuli in 
chemoreceptor trigger zone and vomiting center. No 
associations of XPD c.934G>A and c.2251A>C SNPs with 
RR and toxicities were seen in non-small cell lung cancer 
[8, 10, 12, 15, 19, 20, 26], osteosarcoma [14] and ovarian 
cancer [28] patients treated with CDDP with or without 
RT. The divergent results may be caused by differences in 
sample sizes, tumor types, antiemetic therapies, hydration 
conditions, and doses of CDDP in our and previously 
reported studies.

Fourth, the AA haplotype of XPD c.934G>A and 
c.2251A>C SNPs was associated with increased chance 
of obtaining CR, and nephrotoxicity was predominately 
seen in patients with ACT haplotype of XPD c.934G>A, 

c.2251A>C and ERCC1 c.354C>T SNPs, indicating that 
the SNPs in XPD and ERCC1 genes may act together 
in DRC, with effects on clinical manifestation in those 
patients.

Finally, we found shorter PFS and OS in patients 
with XPD c.934AA variant genotype. Corroborating our 
findings, this genotype was previously reported with 
shorter OS in non-small cell lung cancer patients treated 
with platinum [9, 19]. In contrast, XPD c.934AA variant 
genotype was related with longer PFS and/or OS in 
HNSCC [24] and esophageal cancer [13] patients, and did 
not influence survival in non-small cell lung cancer [8, 10, 
12, 15, 20, 26] and ovarian cancer [28] patients treated 
with platinum or CDDP with or without RT. The variant 
allele of XPD c.934G>A SNP determines lower function in 
DRC [29], which may induced high apoptosis in response 
to CDDP chemoradiation in tumor cells and high RR in 
HNSCC. It is well known that the TP53 gene has a crucial 
role in induction of apoptosis [40]; however, the tobacco 
consumption was associated with increased risk of TP53 
mutations in previous analyzed HNSCC patients [41], and 
might have produced the same effect in our cases. Facing 
these descriptions, we hypothesized that HNSCC patients 
with XPD c.934AA variant genotype and non-functional 
TP53 protein could lead to decrease DRC induced 
by CDDP chemoradiation and consequent decreased 
apoptosis of tumor cells. This could constitute a possible 
reason for the initial sensitivity to chemoradiotherapy and 
further poor prognosis (PFS and OS) seen in our cases, 
as previously reported in small cell lung cancer patients 

Variables Progression-free survival Overall survival

N with 
event/N total

P value HR (95% CI) N with event/N 
total

P value HR (95% CI)

 AA 26/44
0.19 1.40 (0.84-2.33)

28/44
0.71 1.10 (0.66-1.83)

 AC+CC 34/46 31/46

XPF c.2505T>C

 TT+TC 56/83
0.75 1.17 (0.42-3.24)

55/83
0.85 1.10 (0.39-3.04)

 CC 4/7 4/7

 TT 26/41
0.60 1.14 (0.68-1.90)

25/41
0.40 1.24 (0.74-2.10)

 TC+CC 34/49 34/49

ERCC1 c.354C>T

 CC+CT 52/74
0.11 1.92 (0.91-4.06)

51/74
0.15 1.72 (0.81-3.65)

 TT 8/16 8/16

 CC 19/25
0.35 1.29 (0.74-2.22)

18/25
0.64 1.13 (0.65-1.98)

 CT+TT 41/65 41/65

(N) number of patients; (HR) hazard ratio; (CI) confidence interval. Significant differences between groups are presented in 
bold letters. In multivariate Cox analysis (adjusted by tumor stage and XPD c.934G>A polymorphism): *P= 0.07, HR: 6.15, 
95% CI: 0.84-44.68; **P= 0.06, HR: 6.59, 95% CI: 0.90-47.90; ***P= 0.03, HR: 2.13, 95% CI: 1.04-4.38; ****P= 0.05, HR: 
2.04, 95% CI: 1.00-4.20.
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[42]. The divergent results seen in previous studies and 
our study may be attributed to different sample sizes, 
treatment types, antiemetic therapies, hydration conditions 
and follow-up times.

In conclusion, our findings presented preliminary 
evidence that XPC c.2815A>C, XPD c.934G>A, XPD 
c.2251A>C and ERCC1 c.354C>T SNPs alter clinical 
outcome of HNSCC patients treated with CDDP 
chemoradiation. We believe that in the near future, 
pharmacogenetic studies in HNSCC can contribute to 
personalize treatment and optimize patient outcome.

PATIENTS AND METHODS

Patients, treatment and clinical variables

This prospective study comprised HNSCC patients 
seen at diagnosis at the Clinical Oncology Service of 
General Hospital of University of Campinas between 
June 2011 and February 2014. All patients were selected 
to CDDP chemoradiation as definitive treatment due to 
locoregional unresectable tumor, refusal of surgery facing 
expected functional or anatomic sequels, or an organ 
preservation protocol. Exclusion criteria were refusing 
to participate in study, low Karnofsky performance scale 
score and renal dysfunction. The study was conducted 
according to the Declaration of Helsinki and was approved 
by the institutional review board guidelines (nº 274/2011).

The data relating to age, gender, body mass index, 
tobacco and alcohol consumption, hematologic and 
biochemistry exams, tumor location, histological grade 
and stage were obtained from patient charts. Subjects 
were classified as smokers or non-smokers and drinkers 
or abstainers as previously reported [43]. The tumor was 
diagnosed by standard criteria [44] and staged by the 
criteria of American Joint Committee of Cancer [45].

HPV testing consisted of P16 immunohistochemistry 
in tumor fragments embedded in paraffin. Staining was 
regarded as positive if it was strong and diffuse (> 80% of 
tumor cells) and it was regarded as negative if absent or 
focal [46]. Wide spectrum HPV in situ hybridization was 
reserved for P16-positive cases. Punctate hybridization 
signals localized to the tumor cell nuclei in either analysis 
defined an HPV-positive tumor [47].

Concurrent single daily fractionated radiation (2 Gy/
day) during 35 days and intravenous CDDP at initial dose 
of 80-100 mg/m² on days 1, 22 and 43 was administered 
to patients; patients with consistent side effects during 
treatment received CDDP at lower dose [3, 48]. RR 
to chemoradiotherapy was assessed using Response 
Evaluation Criteria in Solid Tumors (RECIST) guidelines 
version 1.1 [49].

As hydration and antiemetic protocols, the patients 
received intravenous 3,000 ml of saline 0.9%, 125 ml of 
20% mannitol, ondansetron 24 mg and dexamethasone 20 
mg before CDDP infusion, as well as intravenous 2,000 

ml of saline 0.9% and oral dexamethasone 8 mg (every 
12 hours) and metoclopramida 10 mg (every 6 hours) 
during three days after each CDDP infusion [50, 51]. The 
antiemetics adherence was classified as high or medium 
adherence or non-adherence [52].

Nausea, vomiting, hematologic toxicities, 
nephrotoxicity and ototoxicity were assessed using 
information of adverse effects, hematologic exams, 
51Cr-EDTA glomerular filtration rate and audiometric 
tests performed before and after chemoradiotherapy. 
The toxicities were evaluated according to the National 
Cancer Institute (NCI) criteria version 4.0 [53], and the 
worst grade for each toxicity in each patient was included 
in analysis.

CDDP in urine of patients collected 0 to 48 
hours after each dose of CDDP was measured by high-
performance liquid chromatographic [54]. The final 
concentration of urinary CDDP was considered as the sum 
of all measurements obtained after each administration of 
agent.

Surgical tumor resection was offered to patients 
with good clinical condition and partial response or 
tumor relapse. Patients not amenable to resection and 
with progressive disease or relapse received intravenous 
methotrexate at dose of 40 mg/m2 once a week until best 
response, limiting toxicity or progression of disease [55]. 
The follow-up of patients was performed at 3-month 
intervals. The end of follow-up period was September 
2015.

DNA extraction and genotyping

The genotyping procedure was performed using 
genomic DNA obtained from peripheral blood of patients 
and involved a polymerase chain reaction followed by 
the enzymatic digestion, as reported for XPC c.2815A>C 
[56], XPD c.934G>A and XPD c.2251A>C [57], XPF 
c.2505T>C [33] and ERCC1 c.354C>T [58] SNPs. 
Positive and negative controls were used in all genotyping 
reactions. The amount of 15% of genotype determinations 
was carried out twice in independent experiments with 
100% of concordance.

Statistical analysis

The pairwise LD was performed using the 
Haploview 4.2 software to ensure that the markers were 
appropriate for inclusion in the XPD and ERCC1 haplotype 
estimates. The LD was measured by the disequilibrium 
coefficient (D’). The D’ values ≤ 1 indicate LD.

The differences between groups were analyzed by 
chi-square (χ2) or Fisher’s exact test. Logistic regression 
model served to obtain odds ratios values, adjusted 
for clinicopathological aspects with P-values ≤ 0.10, 
with 95% confidence intervals (95% CI), to assess 
associations between SNPs genotypes, RR, nausea, 
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vomiting, hematologic toxicities, nephrotoxicity and 
ototoxicity. ANOVA served to obtain values, adjusted 
for clinicopathological aspects with P-values ≤ 0.10, in 
assessment of associations between SNPs genotypes and 
urinary CDDP. This variable was transformed into ranks 
to perform the comparative analysis, since it was not 
normally distributed.

PFS and OS were defined as time interval between 
the date of diagnosis and the date of progression or relapse 
of disease, and the date of death by any causes or last 
follow-up, respectively. Kaplan-Meier method was used 
to plot PFS and OS curves, and log-rank test was applied 
to compare the distribution between groups. Multivariate 
Cox regression served to estimate hazard ratios values, 
adjusted for variables with P-values ≤ 0.10, with 95% 
CI, with the purpose of to assess the associations between 
SNPs genotypes, PFS and OS.

For statistical tests, significance was two-sided and 
achieved when P-values were ≤ 0.05. All tests were done 
using the SPSS 21.0 software.
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