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ABSTRACT: An array of homogeneous glycans representing
all the major carbohydrate structures present in the cell wall of .”\ {,@F',’

Chemical

the human pathogen Mycobacterium tuberculosis and other synthesis

mycobacteria has been probed with a panel of glycan-binding
receptors expressed on cells of the mammalian innate immune
system. The results provide an overview of interactions
between mycobacterial glycans and receptors that mediate
uptake and survival in macrophages, dendritic cells, and sinusoidal endothelial cells. A subset of the wide variety of glycan
structures present on mycobacterial surfaces interact with cells of the innate immune system through the receptors tested.
Endocytic receptors, including the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact predominantly
with mannose-containing caps found on the mycobacterial polysaccharide lipoarabinomannan. Some of these receptors also
interact with phosphatidyl-myo-inositol mannosides and mannose-containing phenolic glycolipids. Many glycans are ligands for
overlapping sets of receptors, suggesting multiple, redundant routes by which mycobacteria can enter cells. Receptors with
signaling capability interact with two distinct sets of mycobacterial glycans: targets for dectin-2 overlap with ligands for the
mannose-binding endocytic receptors, while mincle binds exclusively to trehalose-containing structures such as trehalose
dimycolate. None of the receptors surveyed bind furanose residues, which often form part of the epitopes recognized by
antibodies to mycobacteria. Thus, the innate and adaptive immune systems can target different sets of mycobacterial glycans.
This array, the first of its kind, represents an important new tool for probing, at a molecular level, biological roles of a broad range
of mycobacterial glycans, a task that has not previously been possible.

lycan-binding receptors on the surfaces of macrophages, phosphatidyl-myo-inositol mannosides (PIMs).'"® In addition,
dendritic cells, and neutrophils form a key component of trehalose dimycolate, an unusual mycobacterial glycolipid,
the innate immune system for rapidly detecting and responding binds to the receptor mincle, initiating a signaling pathway
to pathogens.l’2 The protective responses mediated by these leading to secretion of interleukin 6 and TNE-a.!' These
lectins can take several forms. C-Type carbohydrate-recognition responses together allow mycobacteria to enter the macrophage

domains (CRDs) in many of the receptors target micro-
organisms for uptake by endocytosis and subsequent
destruction.> More recently, it has become clear that some
glycan-binding receptors initiate signaling responses, often
resulting in secretion of pro-inflammatory cytokines.*® Both of
these responses can direct and facilitate the adaptive immune
response, through presentation of antigens derived from
pathogens that have been internalized and degraded as well
as by cytokine stimulation.

The multiple roles of glycan-binding receptors in interactions

and appear to form part of the strategy used by the organism to
survive instead of being degraded."”

An important approach to characterizing the ligand-binding
activity of glycan-binding receptors has been to screen arrays of
immobilized glycans using labeled receptor fragments.'”'* A
primary function of many mammalian glycan-binding receptors
is to interact with carbohydrates expressed on microbial
pathogens. However, the vast majority of studies examining
the glycan-binding properties of these receptors have focused

with bacterial pathogens can be illustrated by the interactions of on arrays populated with mammalian glycans. With respect to
mycobacteria with macrophages.” Both the mannose receptor

and DC-SIGN bind tightly to lipoarabinomannan (LAM) Received: September 11, 2017

found on the mycobacterial surface, and this binding can lead to Accepted: October 19, 2017
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Figure 1. Symbol representation of the mycobacterial glycans on the array. The degree of conjugation of each glycan to bovine serum albumin, in
moles per mole, is indicated in parentheses below the glycan number. Glycans 14 and 24 have the same structure. Glycans 44 and 4$ are present on

the final version of the array but were not present in the version used for the screening results presented here.
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pathogen binding, such mammalian glycan arrays provide
critical insights into binding of glycans found on viruses,
because viral glycoproteins are glycosylated in the host. On the
other hand, there are major differences between most bacterial
and fungal glycans and their mammalian counterparts. Thus,
while there is some overlap in oligosaccharide epitopes between
mammalian and microbial glycans, the mammalian-based arrays
do not present the full spectrum of potential microbial ligands
for the receptors. Glycan arrays containing microbial glycans
are therefore essential to understanding the biological roles of
glycan-binding receptors in innate immunity and for character-
izing the specificity of anti-glycan antibodies arising from
microbial infection.

Previously, arrays containing oligosaccharides released from
lipopolysaccharides and synthetic versions of such glycans have
been used to characterize interactions between glycans of
Gram-negative bacteria and host receptors and antibodies.>~"”
However, to date, an understanding of glycan—receptor
interactions between mycobacteria, including Mycobacterium
tuberculosis, which causes tuberculosis, and mammalian receptor
proteins and antibodies has mostly been obtained through
testing individual glycoconjugates, often isolated from natural
sources. An array displaying homogeneous glycans from the
mycobacterial surface, obtained through chemical synthesis, will
provide a broader, more detailed picture of their interaction
with host proteins. Such an array would reveal novel glycan—
receptor interactions and would provide a means of evaluating
their relative importance. Preliminary versions of such arrays
have already proven to be useful in monitoring the antibody
response during various phases of mycobacterial infection."®™>’

Mycobacteria have surface glycocon)ugates very different
from those of most other bacteria.”" In addition to LAM and its
delipidated form, arabinomannan, and PIMs, important
mycobacterial surface glycoconjugates include phenolic glyco-
lipids, glycopeptidolipids, trehalose mycolates and trehalose-
containing lipooligosaccharides, and capsular a-glucans. Many
of these compounds are difficult to obtain from natural sources
in sufficient quantities, in pure enough form, or with
appropriate linker motifs to create glycan arrays. In addition,
structurally defined fragments of these molecules, which allow
more precise detailing of glycan—receptor interactions, are
difficult or impossible to obtain from nature. However,
knowledge of their structures provides a basis for chemical
synthesis of molecules that represent the glycan portions of
such glycoconjugates.” ™" With the development of appro-
priate synthetic strategies, preparation and testing of a broad
range of different classes of glycans is possible.

Generation of an array containing 60 chemically synthesized
glycans, representing all known classes of mycobacterial surface
carbohydrates, is described in this paper. Screening of the array
with a panel of eight glycan-binding receptors demonstrates
that the receptors interacting with subsets of these glycans are
DC-SIGN, the mannose receptor, langerin, dectin-2, DC-
SIGNR (L-SIGN), and mincle. The diversity of the array
components allows novel insights into the specificity of these
glycan—receptor interactions to be uncovered.

B RESULTS AND DISCUSSION

Development of a Mycobacterial Glycan Array. To
develop an array that provides insight into a range of
mycobacterium—host interactions, target glycans were selected
from multiple classes of surface molecules found on various
mycobacteria (Figure 1). Unless otherwise indicated, the
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monosaccharide residues referenced in the discussion below
are in the pyranose form. The largest group of glycans
represents fragments of LAM, including core mannose
oligosaccharides, the arabinan domain, terminal arabinan
fragments bearing additional mannose and S5-methylthio-
xylofuranose modifications, and PIMs, which are present in
all mycobacteria. Most of the rest of the structures are glycan-
containing portions of smaller, often species-specific, extract-
able glycolipids, including the phenolic glycolipids, glycopepti-
dolipids, lipooligosaccharides, and trehalose monomycolate.
Fragments of capsular a-glucans are also present.

Each glycan was synthesized with an amine-containing linker,
which was coupled via a squarate linker to bovine serum
albumin (BSA) (Figure 2A). Synthesis of the glycans has been
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Figure 2. Array format. (A) Squaramide conjugation chemistry used to
couple oligosaccharides to BSA. (B) Degree of conjugation of
oligosaccharides to BSA for the glycans giving positive signals with
one or more of the receptors. Profiles for array results in subsequent
figures are shown in the same format, grouped on the basis of terminal
structures. Glycan numbers from Figure 1 are indicated above the bars.
(C) Screening of an array of immobilized BSA conjugates with soluble
receptor fragments.
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of the proteins face upward, with the portion of each receptor that was

described previously” >’ or is included in the Supporting

Information. Table S1 details the linkers used for the various
classes of molecules summarized in Table S2. Glycan loadings
on BSA ranged from 3.3 to 14.9 glycans/protein (Figure 1).
For the 28 glycans that give signals above background for one
or more of the receptors, the degree of substitution is compared
graphically in Figure 2B. Printing of BSA conjugates, as
opposed to free glycans, was done to facilitate generation of the
array, given that the 60 target glycans have a broad range of
hydrophobicities and many have extremely low water solubility.
The BSA conjugates provided materials that could reproducibly
be printed on arrays from aqueous solutions, although even this
strategy was insufficient to deal with exceptionally hydrophobic
molecules such as trehalose dimycolate, necessitating the use of
truncated analogues. The resulting neoglycoproteins were
spotted in triplicate on epoxy-activated glass slides (Figure 2C).

Conditions for Screening of the Array with Receptor
Fragments. Eight glycan-binding proteins found on the
surface of macrophages and/or dendritic cells were screened
against the array (Figure 3). Each receptor is a C-type lectin
containing a C-type CRD that is responsible for glycan-binding.
DC-SIGN, the dendritic cell ICAM-grabbing nonintegrin, is
expressed on dendritic cells,”® while langerin is found on
Langerhans cells in skin.”> These receptors, as well as the
mannose receptor, found on macrophages and sinusoidal
endothelial cells,”” and the macrophage galactose receptor’**
have endocytic activity and are involved in uptake of pathogens.
In contrast, three receptors associate with the common FcRy
subunit and initiate intracellular signaling pathways: mincle
from macrophages and other antigen-presenting cells, dectin-
2 from macrophages and dendritic cells,”* and blood dendritic
cell antigen 2 (BDCA-2), found exclusively on plasmacytoid
dendritic cells.” DC-SIGNR (L-SIGN) on liver and lymph
node sinusoidal endothelial cells®® is less well understood, as it
does not appear to have endocytic or signaling activity.
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All of the receptors are composed of transmembrane
polypeptides, and in each case, a fragment representing most
or all of the extracellular portion of the protein was expressed.
DC-SIGN and DC-SIGNR are tetramers, while langerin and
the macrophage galactose receptor are trimers stabilized by
coiled-coil domains. These oligomeric structures are preserved
in the expressed fragments. The extracellular domain of the
mannose receptor consists of multiple lectin-like domains in a
single polypeptide. The CRD from mincle and BDCA-2 were
expressed with biotin tags to facilitate array screening through
streptavidin binding. The receptors tested were human forms,
except for mincle. Bovine receptor mincle was used because of
the difficulty of working with the human form. Ligand-binding
characteristics of human and bovine mincle are similar.””

Several methods were used to detect binding to the array.
Receptor fragments chemically labeled with fluorescent groups
and fluorescently labeled streptavidin complexed with biotin-
tagged receptor fragments were detected directly and also
following secondary binding of fluorescently labeled antibodies
to the initial fluorescent tags and to streptavidin. As shown
below, similar results were obtained for proteins labeled in
different ways, and the binding profiles were robust between
replicates and at different dilutions. Because of the reproduci-
bility of binding data using these different screening methods,
results from different experiments can be compared with
confidence.

Interaction of DC-SIGN with Diverse Mycobacterial
Surface Glycans. DC-SIGN directly labeled with fluorescein
yielded consistent results over a 10-fold concentration range,
with the differences between the amounts of bound ligand
becoming less distinct at higher concentrations (Figure 4).
Similar concentration independence of the binding results was
observed for all of the other receptors. The relative intensities
of the signals from bound receptors reflect the combined effects
of different affinities for various glycans and different degrees of
substitution of BSA with each glycan (Figure 2B). For instance,
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Figure 4. Binding of the extracellular domain of DC-SIGN to mycobacterial glycans. After incubation with the glycan array at various concentrations,
bound DC-SIGN labeled with Alexa Fluor 555 was detected by fluorescence. Data for all glycans and all receptors are provided in Table S3.

the low intensity of the signals for 56—58 reflects the relatively
low degree of substitution in these three glycans. Similarly,
substitution of 25 at roughly half the level of other glycans
probably also contributes to the low intensity of the signal.
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Nevertheless, multiple glycans with similar degrees of
substitution can be compared to gain a semiquantitative

indication of specificity for one structure compared to others.
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In agreement with previous studies, the predominant class of
ligand for DC-SIGN in the mycobacterial cell wall is LAM.”*®
Comparison of related glycans representing part of the LAM
structure provides insight into the mode of interaction of DC-
SIGN with different portions of the polysaccharide. Strikingly,
all of the glycans targeted by DC-SIGN contain mannose
residues, and none consisting exclusively of arabinofuranose
residues give signals above background. When the low levels of
conjugation of 56—58 and 25 are taken into account, the results
do not reveal a clear preference for particular types of glycans.
Oligosaccharides bind better than simpler structures, but the
binding site accepts many linkages.

Comparison of specific glycans reveals further details about
binding of DC-SIGN to LAM. Glycans interact with the
primary binding site in C-type CRDs through a conserved Ca**
that ligates the equatorial 3- and 4-OH groups in mannose and
other monosaccharides. Similar binding of 3 and 7 indicates
that DC-SIGN must be able to bind internal mannose residues,
because the 4-OH group of the reducing end mannose residue
in 7 is blocked with a S-methylthio-xylofuranose residue. A
similar observation can be made comparing 4 and 9. Structural
analysis of the CRD of DC-SIGN bound to oligosaccharide
ligands suggests a mechanism for binding of subterminal
mannose residues substituted on the 2-OH group,””* but the
array results provide direct evidence of such binding in the
context of the underlying arabinan polysaccharide. DC-SIGN
also binds to single mannose residues at the nonreducing
termini of 2, §, and 12. However, the stronger signal for 12
suggests that the position of such mannose residues on the
arabinan may affect accessibility to the DC-SIGN-binding site.
Direct comparison of the binding for multiple substructures
from LAM facilitated by the array thus reveals that DC-SIGN
interacts with multiple different mannose cap structures found
on LAM. Such precise information would be difficult or
impossible to obtain from glycans isolated from nature and
fractionated either before or after hydrolysis and/or depolyme-
rization.

Other glycans on the array represent mannose core
structures of LAM, some of which resemble portions of the
high-mannose structures on N-linked glycans that mediate
binding to viruses such as human immunodeficiency virus. A
key motif for DC-SIGN binding is a cluster of three mannose
residues that form a branch structure corresponding to 17.”
Given the high degree of conjugation of 17 to BSA, this glycan
does not appear to be a good ligand compared to many of the
terminal LAM structures. Importantly, many of the mannose
residues in these core oligosaccharides in LAM may be
inaccessible to binding because of substitution with arabinofur-
anose and because they are occluded by other carbohydrate
structures in the cell wall.”!

DC-SIGN also binds 23, a PIM derivative (PIMy), which has
a terminal Manal—2Man epitope like those in the LAM caps.
The ability of DC-SIGN to interact effectively with ligands
bearing single mannose residues such as those in 2, 5, and 12 is
also consistent with reports of binding to mannose-containing
O-linked glycans in glycoproteins of M. tuberculosis."'

Mannose Receptor Binding to Terminal Residues on
Mycobacterial Glycans. DC-SIGN and the mannose
receptor have been extensively studied as routes for internal-
ization of mycobacteria into macrophages and dendritic
cells.*”" The array reveals key differences in the ligands
bound by these receptors. The primary known target for the
mannose receptor is LAM.** On the array, the mannose
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receptor shows a binding pattern that overlaps with DC-SIGN
(Figure S). The observed binding is mediated through the C-
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Figure 5. Comparison of full length and truncated mannose receptor
binding to the glycan array. Both the full extracellular domain fragment
and the extracellular domain lacking the N-terminal R-type CRD and
the fibronectin type II repeat were labeled with Alexa Fluor 55S. The
array was screened at 10 pg mL™".

—

type CRDs, because a truncated form of the mannose receptor
lacking the N-terminal R-type CRD and the fibronectin type 2
repeat shows a binding pattern that is very similar to that of the
full extracellular domain. The R-type CRD binds primarily to
sulfated glycans that are not similar to any of the glycans
present on the array and would thus not be expected to
contribute to binding.*

Binding to the mannose receptor is determined predom-
inantly by the presence of exposed mannose residues at the
nonreducing termini of glycans. While DC-SIGN gives similar
signals for 3 and 7, the mannose receptor shows very little
binding to 7, in which the terminal mannose residue is blocked
by a S-methylthio-xylofuranose residue. Similarly, 9 binds well
to DC-SIGN but not to the mannose receptor. Several glycans
bearing a single terminal mannose residue, including a phenolic
glycolipid (42), also bind to the mannose receptor. Glycan 42
is the only phenolic glycolipid with a terminal mannose residue
in which both 3- and 4-OH groups are exposed; 41 does not
bind because the 3-OH group is methylated. Addition of
methyl groups and addition of capping 5-methylthio-xylofur-
anose residues are potential mechanisms by which bacteria can
modulate binding to receptors, which could form part of escape
mechanisms analogous to those used to evade antibody
binding.46 Strong signals for both 6 and 17, which do not
share any common linkages, support the hypothesis that the
presence of nonreducing terminal mannose residues is the
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predominant factor determining binding to the mannose
receptor. Binding is roughly proportional to the number of
exposed nonreducing terminal mannose residues.

Additional Mannose-Binding Receptors That Interact
with Mycobacteria. Three additional mannose-binding
receptors, langerin, dectin-2, and DC-SIGNR, show distinct
recognition patterns on the array (Figure 6). Nevertheless,
many of the ligands giving the strongest signals are common to
all three receptors and to the mannose receptor. In each case,
there is little binding to 7 and 9, with S-methylthio-

xylofuranose caps, compared to the uncapped versions,

709
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50 1
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Figure 6. Comparison of glycan array results for mannose-binding
receptors. Binding was detected for (A) langerin labeled with Alexa
Fluor 555, at 10 pg mL™"; (B) dectin-2 labeled with Alexa Fluor 555,
at 5 ug mL™"; and (C) DC-SIGNR labeled with fluorescein, at S g
mL™!, followed by detection with a Cy3-labeled antibody to
fluorescein.

11 7

2996

underscoring binding largely to exposed mannose residues at
the nonreducing ends of glycans.

Langerin shows significant binding to 2, 5, 12, and 42, which
bear single terminal mannose residues, although it also binds
more complex LAM structures (Figure 6A). The array results
provide evidence for binding to both PIMs and mannose-
containing phenolic glycolipids in addition to LAM. Interaction
of Mycobacterium leprae with Langerhans cells is mediated in
part by binding of langerin to mannose-containing O-linked
glycans on M. leprae superoxide dismutase.”” The relatively
strong signals observed for simple, terminal mannose residues
are consistent with binding of langerin to the small glycans
associated with mycobacterial glycoproteins.

Dectin-2, which binds to mycobacterial LAM,* interacts
with the Manal—2Man disaccharide.”® Structural analysis,
combined with the ability of dectin-2 to bind yeast mannans
and selected bacterial polysaccharides, indicates that this
disaccharide motif can be either at a nonreducing terminus or
internally in a polysaccharide. The binding site can accom-
modate terminal mannose residues in other linkages, but at
reduced affinity. These features are consistent with enhanced
binding of cap structures on LAM that contain Manal—2Man
(3, 4, and 6) with lower levels of binding to other mannose-
containing compounds (Figure 6B). The absence of binding to
7 and 9 is consistent with structural data showing that
derivatization of the 4-OH group of the nonreducing end
mannose in Manal—2Man results in a steric clash.’’

The sinusoidal endothelial cell receptor DC-SIGNR binds to
a specific subset of mannose-containing glycans (Figure 6C).
All of the strongest signals are for glycans with al1—2-linked
mannose units, consistent with evidence that Manal—2Man is
the preferred disaccharide ligand®" and that DC-SIGNR shows
restricted binding to mammalian oligosaccharides compared to
DC-SIGN.” The difference in specificity likely derives from
subtle differences in the binding site that restrict access by
many oligosaccharides in DC-SIGNR.

Mincle Binding to a Distinct Set of Mycobacterial
Glycans. The fluorescently labeled mincle—streptavidin
complex can be detected directly or following the addition of
a secondary antibody, with similar results (Figure 7A). The
signals for multiple glycans on the array that bear one or more
nonreducing terminal mannose or glucose residues are very
small compared to those for ligands containing trehalose. Thus,
the binding specificity cannot be simply described on the basis
of a single terminal monosaccharide residue but depends on the
presence of the trehalose disaccharide.”” The importance of
binding of mincle to trehalose dimycolate (cord factor) is well-
documented, but screening against the full array provides
several novel insights that are summarized in Figure 7B. The
trehalose-containing glycans 38, 39, 54, and 55 bind strongly
despite the variation in substituents.

Glycans 54 and SS represent surface lipooligosaccharides
found in Mycobacterium kansasii, an opportunisitic pathogen,
but not in M. tuberculosis.”* Binding of these glycans by mincle
suggests that the binding site can accommodate additions to the
4-OH of one of the glucose residues in trehalose. The 4-OH of
the glucose residue in the secondary site is accessible, and
simple modeling shows that an additional glucose residue could
be accommodated without a steric clash (Figure 7C). In M.
kansasii, the trehalose headgroups can be acylated on the 4-OH
group of the glucose residue that is not extended with further
monosaccharides.”” Therefore, in nature, these headgroups
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Figure 7. Binding of mincle to mycobacterial glycans. (A) Mincle complexed with Alexa Fluor 488-conjugated streptavidin was used to probe the
array at 5 ug mL™" and was detected directly by measurement of fluorescence (left) or after further incubation with a Cy3-labeled anti-streptavidin
antibody (right). (B) Schematic diagram of the binding sites in mincle and the positions occupied by individual monosaccharide residues in
oligosaccharide ligands. X represents either additional monosaccharide residues or BSA to which the oligosaccharide is conjugated. Residues in green
shaded sites make favorable interactions with the surface of mincle; residues in yellow regions project away from the surface, and residues in red
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Figure 7. continued

regions would clash with the surface. (C) Model for binding of ligands containing trehalose extended on the 6-OH group. (D) Model of Glc1—4Glc
di- and trisaccharides bound to mincle. (E) Model of Glc1—6Glc disaccharides bound to mincle. The crystal structure of trehalose monobutyrate
bound to bovine mincle (Protein Data Bank entry 4ZRV) was used to model trehalose derivatives bound to mincle using PyMOL. Conformations of
glycans, taken from small molecule databases, were not modified, but irrelevant regions were removed. Superpositions of individual monosaccharide
residues, described in detail in Supporting Information 1, were performed manually. In panels D and E, regions of positive potential on the surface of
mincle are colored blue, regions of negative potential are colored red, and the bound Ca®* is colored magenta. In the ligands, carbon atoms are

colored green or orange and oxygen atoms are colored red.

would be ligands only if forms not acylated at this position are
present.

The strong signal for 38 demonstrates that binding still
occurs when a carbohydrate residue is attached at the 6-OH in
place of one of the acyl groups found in trehalose dimycolate.
The 6-OH of the glucose residue in the secondary binding site
is accessible for substitution (Figure 7C). This glucose
trisaccharide forms the core of several lipooligosaccharides
found in Mycobacterium smegmatis, and in these cases, the acyl
groups are in positions that would not interfere with binding.”*
In addition to identifying alternative ligands for mincle in
different species of mycobacteria, these results suggest possible
sites at which trehalose can be modified to generate synthetic
ligands that target this lectin. These results would be of interest
in the development of improved adjuvants that bind to mincle,
and they suggest that the array platform may be useful in
screening for additional trehalose modifications that are
tolerated.

Very weak signals are detected for binding of mincle to some
of the other glucose-containing glycans, including phenolic
glycolipid glycan 32. Because of the requirement for free 3- and
4-OH groups on glucose residues to ligate Ca®', it is possible
for 32 to bind, while the closely related 30 and 31, in which the
3-OH group is methylated, do not. Other terminal glucose
residues with exposed 3- and 4-OH groups in the a-glucan
fragments 13, 14/24, 46, 48, and 52 do not bind. These
glucose residues are all a-linked, while the glucose in 32 is S-
linked. Modeling the nonreducing end monosaccharide residue
of a f1—4-linked glucose disaccharide in the primary binding
site of mincle shows the reducing end residue projected away
from the surface of the protein (Figure 7D), accommodating
linkage to another monosaccharide, for example, rhamnose in
32. In contrast, the reducing end of an al—4-linked
disaccharide from a-glucan would be too close to the protein
surface for attachment to a larger glycan or to a carrier. A clash
with the reducing end monosaccharide of an al—6-linked
glucose disaccharide also prevents binding (Figure 7E),
although the f1—6-linked disaccharide in a fungal glycolipid
ligand for mincle can be accommodated.”’

Mincle binds a-methyl mannoside at least as well as it binds
a-methyl glucoside, but mannose-containing glycans on the
array give only very weak signals. Modeling suggests that
clashes resulting from the a-linkage, as seen with the a-glucan
fragments, preclude binding. Thus, there is complete non-
overlap between mycobacterial ligands for endocytic receptors
DC-SIGN, the mannose receptor, and langerin that facilitate
the entry of mycobacteria into cells and mincle, which initiates
signaling.

Receptors That Do Not Bind Any Mycobacterial
Glycans on the Array. No ligands were identified for the
macrophage galactose receptor or BDCA-2, in spite of the fact
that these protein preparations are purified by sugar affinity
chromatography and bind ligands on mammalian glycan
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arrays.””>* The lack of binding to the array glycans is consistent
with preferential binding of the macrophage galactose receptor
to GalNAc, which is absent from the array.””>> The lack of
binding to any of the array glycans provides evidence that this
specificity is quite strict. Consequently, although the macro-
phage galactose receptor can bind to some bacteria and
parasites,” > it does not likely interact with mycobacteria.

In the case of BDCA-2, although the primary binding site
does bind mannose, high-affinity binding requires additional
binding of a galactopyranose residue in a secondary binding
site,”* and no appropriate ligands are present on the array.
Murine dendritic cell activating receptor, DCAR, binds to
PIMs.>® In the absence of a clear human ortholog of DCAR, it
was suggested that BDCA-2 performs a similar function.
However, the array results rule out this possibility. If BDCA-2
had carbohydrate-binding specificity like mouse DCAR, it
would bind to several array glycans bearing terminal mannose
residues, such as 23, the glycan portion of PIMy, to which no
binding is observed.

Mycobacterial Glycans Not Bound by Any Receptors.
Roughly half of the array glycans, including glycans containing
6-deoxy-L-pyranoses fucose and rhamnose, do not bind to any
of the receptors tested. Several of the mannose-binding
receptors, including DC-SIGN, langerin, and the mannose
receptor, bind mammalian oligosaccharides containing fucose
through either the 2- and 3-OH groups or the 3- and 4-OH
groups.'”***7*® Among the fucose-containing glycans, only 33
and 34 contain fucose residues with adjacent free OH groups.
The 2-O-methyl group in these monosaccharide residues may
prevent binding to these proteins.

A lack of binding must be interpreted with some caution,
because the density of BSA-conjugated oligosaccharides does
not exactly match the density found on the surface of
mycobacteria. However, structural information can provide an
explanation for the lack of binding in some cases. For example,
although 27, 28, 35, and 60 bear rhamnose residues with
adjacent free OH groups, none of these glycans bind to any of
the receptors. The vicinal OH groups in rhamnose and fucose
are twisted in opposite senses (Figure 8A) and thus do not have
the correct geometry to interact with the primary binding site
in mannose-binding C-type CRDs.”” Rhamnose can be
accommodated in a galactose-binding site (Figure 8B).
However, attachment of a rhamnose residue at the nonreducing
end of a glycan would result in a clash with the tryptophan
residue that forms an essential part of galactose-binding sites in
C-type CRDs.’ No instance of binding of rhamnose to any C-
type lectin has been reported, but it appears that a rhamnose-
binding site could be created in a CRD lacking this tryptophan.

None of the receptors bind to arabinofuranose or
xylofuranose residues on the array. Although the binding of
furanoses to C-type CRDs has not been extensively
investigated, none have been identified as ligands.14 All of the
xylofuranose residues and the majority of the arabinofuranose
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Rhamnose

A

Arabinose

Figure 8. Modeling of glycans that fail to bind to any of the receptors
tested. (A) a-L-Rhamnose, superposed on a fucose residue in the
primary binding site of langerin. The 2- and 3-OH groups of rhamnose
are aligned with the 2- and 3-OH groups of fucose, which are ligated to
Ca’*. (B) a-L-Rhamnose superposed on a galactose residue in the
primary binding site of the scavenger receptor C-type lectin. The 2-
and 3-OH groups of rhamnose are aligned with the 4- and 3-OH
groups of galactose, which are ligated to Ca**. (C and D) Two views of
methyl a-p-arabinofuranoside overlaid on a D-mannopyranose residue
in the primary binding site of langerin. Hydrogen bonds between
carbohydrate OH groups and amino acid side chains are indicated by
dotted lines, and coordination bonds between glycan OH groups and
Ca** are shown as solid lines.

residues in the array glycans contain adjacent free OH groups.
However, these groups have a disposition significantly different
from those of the pyranoses (Figure 8C,D). The altered
geometry of the vicinal OH groups in the furanose
configuration is apparently incompatible with the Ca’*
coordination geometry required for CRD binding.

Synthetic Glycan Arrays for Dissecting Host—Patho-
gen Interactions. The results reported here provide new
insights into mycobacterium—host interactions and underscore
the utility of using synthetic glycans to populate arrays. An
advantage of this approach is that the synthetically accessible
quantities of glycans ensure a continuing, reproducible supply
of arrays. For many glycans, the quantities available from
synthesis vastly exceed what can be purified from nature, in
turn allowing testing of a much wider range of ligand—receptor
combinations. Moreover, the purity of the individual glycans
makes it possible to reach reliable conclusions about binding
specificity. Finally, the preparation of a series of well-defined
fragments of polysaccharides such as LAM is difficult if not
impossible using material isolated from nature. Far better
insights can be obtained using arrays with well-defined
synthetic structures, justifying the effort required to synthesize
these materials. While quantitative comparisons must be made
with caution and do not reflect simply affinity for specific
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glycans, unambiguous distinction between ligands that bind and
those that do not can generally be obtained.

With respect to biologically important interactions of
receptors with mycobacteria, a striking outcome of this work
is the finding that largely distinct sets of glycans are recognized
by receptors that mediate internalization and receptors that
initiate signaling. The glycan array results for the mannose
receptor and DC-SIGN confirm that these receptors bind to
oligosaccharides derived from LAM and PIM¢ which is
consistent with evidence that binding to such structures
mediates internalization of mycobacteria in macrophages.®™ "’
In contrast to these mannose-binding endocytic receptors, the
signaling receptor mincle appears to be a common receptor for
different trehalose-containing ligands in various mycobacterial
species. However, in keeping with the demonstration that
dectin-2 expressed in macrophages binds to LAM,*” binding of
this receptor to a subset of LAM fragments is consistent with
the suggestion that mannose-containing glycans can also initiate
signaling.

A significant advantage of using arrays to define the glycan-
binding specificity of receptors, in addition to the speed at
which results can be obtained, is the large amount of
information about nonbinding ligands. The results described
here illustrate this point in two ways. First, the presence of
monosaccharide units that have not been commonly tested for
binding to C-type CRDs indicates that these glycans are not
likely ligands for this class of carbohydrate-binding domain. In
the absence of such data, there is always the possibility that
important classes of ligands have been overlooked simply
because they have not been tested. Key examples of biologically
relevant monosaccharides that fail to bind are rhamnose,
arabinofuranose, and xylofuranose. In each case, examination of
the orientation of adjacent OH groups in these mono-
saccharides provides an explanation for their failure to bind.
Taken together, these results provide compelling evidence that
the primary determinant of binding to C-type CRDs is the
presence of a pair of vicinal OH groups that have the
appropriate diequatorial orientation, such as the 3- and 4-OH
groups of mannose, in a pyranose ring.

The lack of binding of the receptors to furanose residues is
also noteworthgr because arabinofuranose residues are highly
immunogenic.' ~206176% The results presented here together
with structural and binding information for anti-LAM
monoclonal antibodies and antibodies in serum'®~>%%° suggest
that the innate and adaptive arms of the immune system have
evolved to recognize different sets of mycobacterial glycans.
Given that many microorganisms produce cell surface glycans
rich in furanoses, mammals could potentially have evolved
innate immune system lectins capable of binding these residues.
To date, the only mammalian lectins described that bind to
furanoses are the intelectins, which interact with S-galactofur-
anose residues via the a-diol side chain.® Furanoses may be
targeted by additional, yet to be discovered, mammalian lectins.
The array described here will facilitate detection of such
carbohydrate-binding activity, providing a rapid method for
mapping the specificity of novel proteins.

In summary, this array represents an important novel
resource for probing the biological role of mycobacterial
glycans, in particular with regard to host—pathogen inter-
actions. This tool allows rapid screening of a broad range of
mycobacterial glycans against any glycan-binding receptor of
interest, such as the receptors of the innate immune system
examined here, a task that was heretofore impossible on this
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scale. It should also be noted that a smaller subset of this array
containing only LAM fragments has been demonstrated to
provide important insights into the specificity of antibodies
generated upon infection and vaccination.'”*’ More generally,
this paper illustrates how screening of arrays populated with
chemically synthesized pathogen-specific glycans can provide a
comprehensive overview of their interactions with host
receptors. In addition, screening of the receptors against
broader ranges of glycans provides novel insights into their
binding specificity beyond what can be learned with
mammalian glycans.

B METHODS

The Supporting Information contains details about materials, glycan
synthesis, protein expression and labeling, and molecular modeling.

Synthesis of BSA Conjugates. To a solution of the amine-
functionalized glycan (S mg, 1 equiv) in ethanol (1 mL) and H,O (1
mL) was added diethyl squarate (1.5 equiv). A 1 M aqueous solution
of sodium carbonate was added slowly (1 yL every 1 min) to adjust
the pH to 8.0—8.5 as determined by pH paper. The solvent was
evaporated under reduced pressure, and the residue was purified by
C,g chromatography using 20% methanol in water as the eluent. The
resulting glycan squarate derivative (20 equiv) was dissolved in 0.5 M
borate buffer (pH 9), followed by addition of BSA (1 equiv). The
reaction mixture was stirred for 48—72 h at room temperature. The
mixture was transferred to dialysis tubing (6000—8000 molecular
weight cutoff) and dialyzed against water five times (4 L of water,
every 4 h). The BSA conjugate was lyophilized, and glycan loading was
assessed by matrix-assisted laser desorption ionization mass spectrom-
etry using sinapinic acid as the matrix.

Generation of the Glycan Array. Microarray slides were printed
at Engineering Arts LLC (Phoenix, AZ). BSA conjugates were non-
contact printed on Schott type E slides (Schott North America, Inc.,
Elmsford, NY) using an Engineering Arts au301 Rainmaker microarray
printer and dispensed at 100 pg mL™' in buffer [1:10 phosphate-
buffered saline with 0.005% (v/v) Triton X-100]. Antigens were
dispensed at 360 pL per spot to produce 140—160 ym diameter spots
in triplicate. The relative humidity was maintained at 65%; slides were
subjected to white light for 100% inline drop inspection. Printing was
performed in a HEPA-filtered environment at room temperature.
Printed slides were stored at —20 °C until they were used.

Screening of the Glycan Array. Slides were prewetted in buffer
A [25 mM Tris-HCl (pH 7.8), 0.15 mM NaCl, 2 mM CaCl,, and
0.05% Tween 20] for 5 min, rinsed with buffer B [25 mM Tris-HCI
(pH 7.8), 0.15 mM NaCl, and 2 mM CaCl,] three times, and blocked
overnight with buffer C [1% BSA in 25 mM Tris-HCI (pH 7.8), 0.15
mM NaCl, and 2 mM CaCl,] at 4 °C. Aliquots (500 uL) of serial
dilutions of protein samples (Table S1) in buffer C were transferred to
wells of the slide module immediately after aspiration of the blocking
buffer. Wells were sealed with an adhesive seal and incubated for 60
min at 37 °C. Protein was removed by aspiration, and slides were
washed 10 times with buffer A and three times with buffer B.
Fluorescence was measured directly or after addition of a secondary
antibody in buffer C (1:1000 dilution). Slides were incubated with a
secondary antibody at room temperature for 40 min before being
washed repeatedly with buffer A and deionized water. Before being
scanned, slides were dried by centrifugation.

Array Imaging and Data Analysis. Microarrays were scanned at
S pm resolution with a GenePix 4000B scanner (Molecular Devices,
Sunnyvale, CA). The fluorescent signal was detected at 532 nm for
Cy3 or Alexa Fluor 555 and 488 nM for Alexa Fluor 488. The laser
power was 100%, and the photomultiplier tube gain was 400. The
fluorescent signals were analyzed by quantifying the pixel density
(intensity) of each spot using GenePix ProMicroarray Image Analysis
Software version 6.1. Fluorescence intensity values for each spot and
its background were calculated. The local background signal was
automatically subtracted from the signal of each separate spot, and the
mean signal intensity of each spot was used for data analysis. Averages
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of triplicate experiments and standard deviations were calculated using
Microsoft Excel.
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