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Vaccines have been traditionally developed with the presumption that they exert identical
immunogenicity regardless of target population and that they provide protection solely
against their target pathogen. However, it is increasingly appreciated that vaccines
can have off-target effects and that vaccine immunogenicity can vary substantially
with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the
live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents
a key example of these concepts. BCG vaccines are manufactured under different
conditions across the globe generating divergent formulations. Epidemiologic studies
have linked early life immunization with certain BCG formulations to an unanticipated
reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly
exceeding that attributable to TB prevention. This mortality benefit has been related
to prevention of sepsis and respiratory infections suggesting that BCG induces
“heterologous” protection against unrelated pathogens. Proposed mechanisms for
heterologous protection include vaccine-induced immunometabolic shifts, epigenetic
reprogramming of innate cell populations, and modulation of hematopoietic stem cell
progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed
“trained immunity.” In addition to genetic differences, licensed BCG formulations differ
markedly in content of viable mycobacteria key for innate immune activation, potentially
contributing to differences in the ability of these diverse formulations to induce TB-
specific and heterologous protection. BCG immunomodulatory properties have also
sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory
diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve
as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists
can mimic some of BCG’s innate immune activation, suggesting that aspects of BCG’s
effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm
for precision vaccinology, lessons from which will help inform next generation vaccines.
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THE BCG VACCINE

BCG, the live attenuated vaccine against tuberculosis (TB), is one
of the world’s most widely used vaccines (Andersen and Doherty,
2005; Aaby et al., 2010) and continues to be the only vaccine
used to prevent TB. It contains an attenuated strain of the bovine
tubercle bacillus Mycobacterium bovis and was first introduced
in humans in 1921. BCG is used to induce immunity against
TB and is part of the World Health Organization’s (WHO’s)
Expanded Program on Immunization (EPI) with more than 100
million children vaccinated with BCG every year (World Health
and Organization, 2004). Universal vaccination at birth with a
single dose of BCG is recommended in developing countries
where TB is highly endemic or where there is high risk of
exposure to TB. Because of the declining incidence of TB in
Europe and the United States, BCG immunization is mostly
recommended for high-risk groups in these regions. A database
of global BCG vaccination policies and practices can be found
online1 (Zwerling et al., 2011).

BCG has an excellent and long-standing record of safety
(Saroha et al., 2015) and tolerability with the most common
adverse effect being regional suppurative lymphadenitis, which
is a rare occurrence. The most serious complication of BCG
vaccination is disseminated BCG infection (rate of 0.06–1.56
cases per million doses of vaccine administered), occurring
primarily in immunocompromised individuals, including
neonates with undiagnosed primary immunodeficiency
(Marciano et al., 2014). Possible factors affecting the rate of
adverse reactions include the BCG dose, vaccine strain, and
method of vaccine administration (Lotte et al., 1984).

TB-Specific Protection Conferred by
BCG Vaccine
Multiple aspects of BCG remain incompletely characterized,
including its overall efficacy, duration of protective immunity,
and how age at vaccination affects protection. The variability
of BCG protective efficacy has been systematically studied
(Mangtani et al., 2014). In children, BCG confers 58% protection
against progression of TB infection to disease (Roy et al.,
2014) and ∼80% protection against severe or disseminated
forms of TB, such as meningitis and miliary disease (Rodrigues
et al., 1993; Trunz et al., 2006). Decreasing BCG coverage in
European countries was followed by an increased incidence of TB
(Romanus et al., 1992; Kelly et al., 1997) and other mycobacterial
diseases (Romanus et al., 1995; Dowling et al., 2017). In adults,
BCG reduces the risk of pulmonary TB by ∼50% but has
variable efficacy in different populations (Colditz et al., 1994;

Abbreviations: Ab, antibody; ALRI, acute lower respiratory infection; BCG,
Bacille Calmette-Guérin; DTP, diphtheria-tetanus-pertussis; EPI, Expanded
Program on Immunization; lncRNAs, long non-coding RNAs; MRI, Magnetic
Resonance Imaging; MRR, mortality rate ratio; MS, multiple sclerosis; Mtb,
Mycobacterium tuberculosis; OADC, Oleic Albumin Dextrose Catalase; PBMCs,
peripheral blood mononuclear cells; PPD, purified protein derivative; PRR, pattern
recognition receptor; RD1, region of difference 1; TAD, topologically associated
domain; TB, tuberculosis; TLR, Toll-like receptor; Treg, regulatory T cell; WHO,
World Health Organization.
1http://www.bcgatlas.org

Brewer, 2000). In summary, across many studies BCG efficacy
is variable, with some studies showing minimal benefit, while in
others it appears to provide limited protection against infection
and progression to TB disease. BCG vaccination has no sizeable
impact on TB transmission dynamics as its effectiveness has been
mainly demonstrated in childhood, when TB is rarely contagious
(Loeffler, 2003).

BCG is considered a ‘self-adjuvanted’ vaccine, as components
of the formulation capable of engaging multiple Pattern
Recognition Receptors (PRRs), including Toll-like receptor
(TLR)2 and TLR4 (Heldwein et al., 2003), TLR8 (Dowling
et al., 2017), as well as the C-type lectin receptors Dectin-1
and Mincle (Yadav and Schorey, 2006; Matsunaga and Moody,
2009; Schoenen et al., 2010) are thought to enhance vaccine-
induced immunity. Unlike hepatitis B vaccine which requires
multiple doses to achieve lymphoproliferation, BCG induces
single shot lymphoproliferation (Sanchez-Schmitz et al., 2018).
Most recently, in an Indian adult human cohort, a hypermorphic
gain of function single nucleotide polymorphism in TLR8, a
PRR that is activated by microbial single stranded RNA, was
associated with improved BCG vaccine-mediated protection
against pulmonary TB (Ugolini et al., 2018).

BCG-induced protection against TB is, at least in part,
attributed to a T-helper (Th)1 response. BCG elicits a Th1
cell response in adults, and overcomes the Th2 immune bias
present in infants, by inducing adult-like IFNγ responses
(Marchant et al., 1999). IFNγ production to many stimuli is
muted in newborn T cells, however IFNγ can be produced
in vitro by neonatal NK cells in response to live microbial
stimuli such as BCG after priming with recombinant IFNγ,
at least for certain geographic populations (van den Biggelaar
et al., 2009). In BCG-vaccinated infants, unconventional gamma-
delta (γδ) T cells are also increasingly recognized as a source
of IFNγ production (Zufferey et al., 2013), in addition to
their bridging role between innate and adaptive immunity
against TB infection (Meraviglia et al., 2011). Although
protective immunity against TB requires IFNγ responses, a
direct association between the concentrations of vaccine-induced
IFNγ responses and degree of immune protection has not
been seen (Hoft et al., 2002). Further, recent evidence suggests
that IFNγ-independent immune responses, including generation
of highly avid antibodies and CD40L+/CD154+ T cells, are
associated with absence of TB disease in highly exposed contacts
of persons with highly infectious TB, though the role of these
responses in protection is not clear (Lu et al., 2019). After
boost vaccination with a candidate TB vaccine, MVA85A, BCG-
induced protection against TB was not enhanced in infants
despite more durable T cell responses (Tameris et al., 2013).
However, weak immunogenicity was also noted in this trial.
Furthermore, dysregulated or excessive CD4+ T cell activation
can enhance host susceptibility to Mycobacterium tuberculosis
(Mtb) infection; as such, effector T cell responses must be tightly
regulated for host survival to TB (Tzelepis et al., 2018). Although
anti-BCG T cell-mediated immunity alone is not adequate to
confer protection from TB infection and disease, it can serve as
an immune correlate of TB infection and disease risk (Kagina
et al., 2010; Fletcher et al., 2016). Parameters such as presence and

Frontiers in Microbiology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 332

http://www.bcgatlas.org
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00332 March 9, 2020 Time: 17:56 # 3

Angelidou et al. From BCG to Precision Vaccinology

size of BCG scar and delayed-type hypersensitivity do not predict
protective efficacy in humans (Ota et al., 2006; Kagina et al., 2010;
Fletcher et al., 2016).

Mycobacterium bovis BCG infection induces macrophage
production of GM-CSF that may contribute to the host
response against mycobacterial infection by favoring macrophage
M1 polarization (Benmerzoug et al., 2018). GM-CSF and
IFNγ may have an additive effect in promoting macrophage
control of intracellular bacterial replication (Rothchild et al.,
2017). GM-CSF is produced by a variety of cells, including
macrophages and parenchyma cells. It stimulates differentiation
of myeloid progenitors into macrophages and neutrophils,
regulates hematopoietic cell proliferation and differentiation,
and modulates the function of mature hematopoietic cells
(Martinez and Gordon, 2014). Clinical observations linking the
presence of anti-GM-CSF autoantibodies with susceptibility to
cryptococcal meningitis and pulmonary TB support an important
role for GM-CSF for host defense against infection (Rosen
et al., 2013), and Mtb infection in particular. In addition to
activating macrophages to limit the intracellular growth of Mtb
in vitro (Denis and Ghadirian, 1990), proposed antimicrobial
mechanisms of GM-CSF include preserving the integrity of
alveolar epithelial cells, regulating cellular lipid metabolism in

BOX 1 | Vaccine-induced antibody-mediated immunity
against mycobacteria. The ‘central dogma’ of anti-mycobacterial immunity
outlines that T cell production of IFNγ activates macrophages to kill
intracellular Mtb. Accordingly, measurement of IFNγ produced by T cells is the
most widely used method for detecting immune responses following infection
or vaccination with BCG (Nunes-Alves et al., 2014). Current strategies to
develop next generation BCG vaccines are generally focused on the
enhancement of IFNγ production by CD4+ T cells (i.e., Th1 cell-mediated
immunity) (Achkar and Casadevall, 2013). Recent attention has been focused
toward understanding the role, if any, of vaccine-induced antibodies (Abs) to
prevent infection (Izzo, 2017). Various reported mechanisms of Ab-mediated
protection against Mtb include direct antimycobacterial activity, opsonization,
activation of complement, clearance of immunomodulatory mycobacterial
antigens, increase of macrophage Ca2+ signaling, release of oxidants
enhancing intracellular killing and other mechanisms of enhancing
cell-mediated immunity (Achkar et al., 2014). How and whether BCG
vaccination specific Abs may contribute to protective mechanisms remains
unclear (Lu et al., 2016). Indeed, maternal infection with Mtb, and
subsequently maternal Abs, do not seem to play a role in protecting neonates
and young infants against mycobacterial infection, although maternal Abs
inhibited purified protein derivative (PPD)-specific T cell responses in BCG
vaccinated infants (Mawa et al., 2015). However, recent studies in mice (Ai
et al., 2013; Alvarez et al., 2013) and humans (Zimmermann et al., 2016) have
indicated a potential role for IgA Abs. Currently, the most compelling evidence
for human IgG Ab-mediated immunity against mycobacteria may come from
studies investigating IFN-independent markers of mycobacterial exposure.
When compared to subjects with classic latent Mtb infection, Mtb ’resisters’
display enhanced Ab avidity and distinct Mtb-specific IgM and IgG Fc profiles
(Lu et al., 2019). BCG may also enhance Ab responses and, in some cases, T
cell responses to other early life vaccines, such as hepatitis B, pertussis, and
pneumococcal vaccines (Ota et al., 2002; Ritz et al., 2013; Scheid et al.,
2018). Overall, understanding formulation-specific BCG-induced responses
may necessitate complimentary investigation of functional Ab responses to
vaccination, which may prove to be as important as inducing T cell production
of IFNγ and/or heterologous responses. Such studies will shed fresh light on
the mechanisms of BCG-induced protection and may inform development of
next generation TB vaccines.

alveolar macrophages (Rothchild et al., 2017) and facilitating
containment of virulent mycobacteria in pulmonary granulomas
(Szeliga et al., 2008). Interestingly, GM-CSF along with IL-3
priming of CD14+ human monocytes enhanced TNF production
and monocyte renewal (as evaluated by the degree of cell
confluency and increased cell number by fluorescence and time-
lapse microscopy) upon subsequent LPS stimulation, indicating a
potential mechanism of trained immunity (Borriello et al., 2016).
As detailed in the following sections, trained immunity refers
to the ability of innate immune cells to mount an enhanced
subsequent response to diverse microbes, a phenomenon whose
underlying mechanisms are under intense investigation.

IL-17 is associated with a protective role against infection
with clinically virulent Mtb isolates (Gopal et al., 2014) and
enhanced protection in mouse models (Aguilo et al., 2016).
However, BCG delivered systemically is not a strong inducer
of Th17, one potential explanation being that BCG strains lack
the region of difference 1 (RD1) region (Dockrell and Smith,
2017), resulting in loss of the protein secretion system ESAT-
6 that governs phagosomal rupture and host cell lysis. In fact,
when complemented with the ESAT-6 containing RD1 region,
BCG shows improved protective efficacy and enhanced Th17
responses in mice (Chatterjee et al., 2011). More recently, local
pulmonary BCG administration via endobroncheal instillation
in a rhesus macaque Mtb challenge model induced mucosal
protective immunity mediated by Th17 polyfunctional cells and
IgA production (Dijkman et al., 2019).

In contrast to cell-mediated immunity, the human humoral
response against Mtb has been conventionally thought to exert
little immune control over the course of Mtb infection or
in response to BCG vaccination (Jacobs et al., 2016), due
to the paradigm that humoral immunity plays little role in
the protection against intracellular pathogens. However, the
contribution of BCG vaccination specific Abs to specific and
non-specific protection is a revived area of interest (see Box 1).

Route of BCG Administration
The route of BCG administration can affect immune responses.
Intradermal injection is the most common method of BCG
vaccination and the route currently recommended by the WHO.
Percutaneous administration is the only route licensed for use
of BCG (Tice strain) as a TB vaccine in the United States. Given
the more unpredictable nature of percutaneous administration,
percutaneously administered formulations are manufactured
to contain more colony forming units (CFU) compared
to those meant for intradermal administration. A human
adult randomized trial comparing the two methods showed
that percutaneous BCG Tice vaccination was associated
with lower reactogenicity, immunogenicity (as measured by
lymphoproliferative responses) and delayed hypersensitivity
responses (assessed using the mean size of PPD response)
compared to intradermal vaccination (Kemp et al., 1996). Of
note, the CFU dose for intradermal use of BCG Tice was adjusted
in this study by diluting BCG, to match the WHO’s standard
recommended dose. A later study comparing intradermal vs.
percutaneous BCG Japan administration found significantly
greater Thl cytokine and lymphoproliferative responses with
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percutaneous BCG (Davids et al., 2006). This study involved
an infant cohort and CFUs were not adjusted for route of
administration. Divergent results across studies may be related
to the strain used (Tice vs. Japan) and also raise concerns about
the administration routes of the vaccine, both of which have
their challenges: percutaneous administration results in variable
delivery of CFU subject to skin penetration, while intradermal
delivery requires training and skill for optimal execution.
Interestingly, a randomized trial in South African infants
vaccinated at birth with intradermal vs. percutaneous BCG Japan
found an equivalent incidence of TB over 2 years, questioning
the relevance of administration route to clinical efficacy, though
heterologous effects were not specifically assessed in this
study (Hawkridge et al., 2008). A recent study in non-human
primates demonstrated that intravenous administration of
BCG provided 90% protection against TB as compared to the
conventional intradermal route. Further studies of route of BCG
administration are needed to inform optimal administration to
humans (Darrah et al., 2020).

OVERVIEW OF DIFFERENT BCG
VACCINE STRAINS

The Evolution of BCG Strains
BCG is not a single vaccine, but rather a family of historically
evolving and divergent vaccine formulations, further
complicating the crucial task of defining mechanisms of
action for these vaccines and their correlates of protection. The
basis of BCG attenuation was the deletion of the genomic region
RD1, which is absent from all M. bovis BCG strains, resulting
in loss of the protein secretion system ESAT-6 that governs
phagosomal rupture and host cell lysis (Mahairas et al., 1996;
Brosch et al., 2007). Since its introduction in 1921 (Calmette,
1931), BCG seed lots were distributed globally for vaccine
production at multiple sites. Based on historical records and
phylogeny derived through molecular typing, a genealogy of
BCG strains has been established, demonstrating the temporal
relationship of their production and their dichotomy into “early”
strains (e.g., Japan, Russia, Moreau, Sweden) and “late” strains
(e.g., Pasteur, Tice, Denmark, Glaxo) (Behr and Small, 1999;
Brosch et al., 2007; Abdallah et al., 2015). Before freeze-dried
seed lots were derived from a single spreading colony in the
1960s, BCG strains were sub-cultured in different laboratories,
yielding minority subpopulations that can impact virulence
(Kroger et al., 1994), immunogenicity (Davids et al., 2006;
Aguirre-Blanco et al., 2007), viability (Gheorghiu and Lagrange,
1983), colony size/counts and heterologous effects (Shann, 2015).
BCG has continued to change with in vitro passage, resulting in
further genetic diversity among strains (Figure 1). Comparative
genome and transcriptome analysis of representative early
and late BCG daughter strains, such as BCG Japan and BCG
Pasteur respectively, has shown amplification of polymorphisms
such as the tandem duplication DU2 in the later strains with
implications for the expression level of known surface proteins
and immunodominant prominent antigens (Brosch et al., 2007).
The potential influence of these differences on the protective

FIGURE 1 | Licensed BCG formulations are derived from a parent strain
developed in Paris, France. Multiple sub-strains have been generated using
diverse culture methods, classified by genomic sequencing, resulting in a
genealogy/timeline of BCG vaccine strains. Such BCG sub-strains differ in
colony morphology, growth characteristics, biochemistry, immunogenicity, and
virulence. The French (Pasteur) strain 1173 P2, Denmark (Statens Serum
Institute) strain 1331, Glaxo strain 1077, Japan/Tokyo strain 172-1, Russian
strain BCG-I, and Moreau RDJ, account for >90% of the BCG vaccines in
use worldwide. The scheme depicts the distribution of vaccine formulations
into four main groups (circles) based on their tandem duplication 2 (DU2)
variant, which distinguishes the early (DU group I) from the late (DU group II-IV)
vaccines. The lines indicate the chronology of derivation for each group.
Modified from Brosch et al. (2007).

efficacy, immunogenicity, safety and heterologous effects of
BCG immunization has generated considerable challenges for
international TB immunization initiatives and highlights the
importance of future studies comparing the different licensed
BCG formulations (Wu et al., 2007; Ritz et al., 2008, 2012;
Hayashi et al., 2009; Biering-Sorensen et al., 2015; Shann, 2015).

Challenges in BCG Propagation in vitro
BCG strains supplied for clinical use vary depending on
the original seed strain. Different culture or manufacturing
conditions likely result in different genotypes within the same
strain (Behr and Small, 1999) as well as epigenetic changes, even
within a single genotype (Biering-Sorensen et al., 2015). Further
variation may have occurred over time after a lab acquired
the source and before freeze-drying, resulting in batch effects
(Biering-Sorensen et al., 2015). Issues of batch or vaccine strain
variability have proven very challenging to study at scale, as the
EPI program has historically employed different vaccine strains
as well as different batches of the same vaccine strain within the
same region. Due to strain divergence and subsequent evolution,
it has been difficult to assess the various bacterial strains using a
single, consistent approach.
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Over 14 different licensed BCG vaccine formulations
comprised of distinct daughter strains of attenuated M. bovis are
used globally with UNICEF being the largest supplier (UNICEF,
2015). Most countries import BCG from one of the international
WHO prequalified manufacturers, while a few produce their
own. However, there is no standardized culture methodology or
one single culture medium recommended for the culture of BCG.
This was demonstrated during the international collaborative
study to evaluate and establish WHO reference reagents for
BCG vaccine, where each of the 11 participating labs used their
preferred culture medium to evaluate BCG candidate vaccines by
culturable viable counts (e.g., Löwenstein-Jensen, Middlebrook
7H11 or 7H10, Ogawa, and Dubos) (Markey et al., 2009). Results
between labs were highly variable, though reportedly within
expected ranges, and may be partially attributable to challenges
in standardizing colony counting due to variable colony sizes
and the clump-forming nature of M. bovis.

Minor differences in production techniques can have
profound effects on BCG growth (Shann, 2015). For example,
inconsistent production methods may result in both type-by-type
(e.g., BCG Denmark vs. BCG Russia) and lot-to-lot variability
that can affect clinical efficacy. Growth and phenotypes of
M. bovis BCG can be significantly influenced by the choice of
media and the duration of culture incubation. For example,
shorter time to detection of colonies was observed for M. bovis
isolated from bovine tissues grown on 7H11 versus egg-
based media (Corner et al., 2012). A study compared the
immunogenicity of BCG vaccine grown in 7H9 medium, the
most commonly used medium in laboratory studies, against that
grown in Sauton medium, which is used for growing BCG by
some manufacturers. This study showed clear differences in the
efficacy of BCG grown in these different culture media, including
variation in persistence within macrophages in vitro, apoptosis of
infected cells, as well as cellular and humoral immune responses
in mice in vivo (Venkataswamy et al., 2012). However, this
study was largely limited to the BCG Pasteur strain, which
might have behaved differently than other formulations, and
did not examine specific BCG growth characteristics across
culture media. Variable components between commercially
available Oleic Albumin Dextrose Catalase (OADC) enrichment
supplements can stimulate or inhibit the growth of mycobacteria
and influence performance of Middlebrook 7H11 medium
(Butler et al., 1990). Discrepancies in culture growth may
alternatively indicate differences in viability after lyophilization
or reconstitution. Slower growth has been associated with
inocula that contain fewer viable bacilli (Corner et al., 2012). The
number of live bacilli in the vaccine product decreases with time
(Messina et al., 2018), as does survival after freeze-drying. Lastly,
divergence in growth between BCG formulations may indicate
unique nutrient needs, as BCG strains vary in their ability to
catabolize amino acids, which act as the nitrogen source for BCG
growth (Chen et al., 2003).

The presence and selection of minority populations within
strains has been demonstrated by serial subculture under
experimental conditions (Osborn, 1983) and is partially
attributed to maintenance procedures of BCG lines. Specifically,
BCG Tokyo 172 (the mother strain of BCG Japan, derived

from the Pasteur strain in 1925), and Denmark 1331 (derived
from the Pasteur strain in 1931), have a minority population of
non-spreading colonies, as did BCG Pasteur before the seed lot
system was introduced in 1961 (Osborn, 1983). Non-spreading
colonies are characterized by opacity and lack of orientation. In
contrast, in spreading colonies organisms have the tendency to
adhere to one another in the direction of their long axis, and
appear as a dense and opaque center surrounded by a halo, which
consists of serpentine strands folded close together. BCG Japan
substrains differ in cell wall lipid composition and antigenicity
(Naka et al., 2011), with phenolic glycolipid and phthiocerol
dimycocerosate found only in the substrains forming smooth
colonies but not in those forming rough colonies. BCG Russia,
the first documented daughter strain distributed by Institut
Pasteur to Russia in 1924, is a natural recA mutant, preventing
its genomic evolution (Keller et al., 2008) with unclear effects on
BCG culture growth and the vaccine’s protective efficacy. BCG
Russia is associated with lower effectiveness against tuberculosis,
and lower frequency of BCG scars than BCG Denmark and
BCG Japan. Of note, the genome of the BCG Russia strain
features variably sized deletions of the polyketide synthase 12
(pks12) gene, necessary for β-phosphomycoketide production
and the CD1c-mediated T cell response (Abdallah et al., 2015),
potentially directly affecting immunogenicity of the daughter
strains (Matsunaga et al., 2004).

Different BCG Formulations Can Induce
Distinct but Broad Ranges of
Immunologic Responses in Humans
It is not currently known which BCG strain/formulation offers
the best protection from TB disease, as immune correlates of
protection are lacking. This limits inferences from in vitro studies.
However, in vitro immunological and microbiological studies
could provide critical insight in divergence of essential properties
of the different strains, such as viability and host immune
activating potential (Angelidou et al., 2020). Even in the absence
of a defined correlate of protection these outcomes are probably
critical to protection against TB.

Human data on cytokine induction after BCG administration
are inconclusive as existing studies have low numbers of
study participants, heterogeneous study designs, and variable
formulations are tested with incomplete information on which
formulation was used. As outlined in Table 1, comparative studies
were largely incomplete in terms of comparing all available strains
or formulations. Even though some patterns emerge such as BCG
Denmark and BCG Japan perhaps being more immunogenic,
generalizability of conclusions is difficult due to heterogeneous
study designs, variable formulations, study populations, assays
performed and endpoints studied. In a Mexican neonatal cohort
vaccinated with BCG Denmark, Brazil (derived from BCG
Moreau) or Japan, Mtb-specific recall immune responses after
1 year were examined (Wu et al., 2007). Upon activation of
peripheral blood mononuclear cells (PBMCs) with Mtb proteins,
BCG Denmark- or Brazil-immunized newborns demonstrated
mRNA expression of cytokines important to adaptive immunity
(IL-12, IL-27, IFNγ), while BCG Japan preferentially induced
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TABLE 1 | Summary of human infant studies of BCG-induced innate, heterologous and mycobacteria-specific immunity.

Endpoints studied BCG formulation comparisons Geographic location Assay References

Recall responses, adaptive immune
cytokines

Denmark > Japan Mexico PBMCs Wu et al., 2007

Ab and cytokine responses to other
vaccines

Pasteur > control Gambia PBMCs Ota et al., 2002

Recall responses, IFNγ Denmark > control Gambia PBMCs Vekemans et al.,
2004

Innate and recall cytokine responses Pasteur Papua New Guinea vs.
Western Australia

PBMCs van den Biggelaar
et al., 2009

NO, IL-1β, IL-6, IL-8, IL-12, TNF in
presence of IFNγ

Early strains (Russia, Moreau,
Japan, Sweden,
Birkhaug) > Late strains
(Denmark, Glaxo, Mexico, Tice,
Connaught, Montreal, Phipps,
Australia, Pasteur)

Not applicable Human epithelial
cell-line A549, THP-1
cells

Hayashi et al., 2009

T cell frequency and cytokine profile Japan at birth > control,
Denmark for in vitro stim

South Africa Whole blood Kagina et al., 2010

Mycobacteria-specific and
non-specific immune responses,
scarification

Pasteur Indonesia Whole blood Djuardi et al., 2010

TB-specific T cells, Th1 cytokines Denmark = Japan > Russia Australia (RCT) Whole blood Ritz et al., 2012

Mycobacteria-specific and
non-specific immune responses,
scarification

Denmark > Bulgaria > Russia Uganda Whole blood Anderson et al.,
2012

Maturation of innate responses to
mycobacteria over first 9 months of
life

Formulation not specified South Africa Whole blood and
PBMCs

Shey et al., 2014

PPD responses, scarification Denmark batches: slow
growth > normal growth

Guinea Bissau (RCT) Biering-Sorensen
et al., 2015

T-cell immunity Early Denmark (birth) = late
Denmark (2 months)

Australia (RCT) Whole blood Ritz et al., 2016

Neonatal mortality Russia = control India (RCT) – Jayaraman et al.,
2018

Mycobacteria-specific and
non-specific immune responses

Denmark > Bulgaria = Russia Nigeria, Cape Town Whole blood Kiravu et al., 2019

All cause hospital admissions,
mortality, PPD responses,
scarification

Denmark > Russia
Japan > Russia

Guinea Bissau (RCT) – Schaltz-Buchholzer
et al., 2019

cytokines associated with acute inflammatory responses (IL-
1α/β, IL-6, IL-24) (Wu et al., 2007). A randomized controlled
trial in Australia showed that BCG Denmark and BCG Japan
given at birth induced higher proportions of mycobacterial-
specific polyfunctional [IFNγ(+)TNF(+)IL-2(+)] CD4 T cells
than BCG Russia (Ritz et al., 2012). The impact of different BCG
strains on the ontogeny of vaccine-specific and heterologous
vaccine immunogenicity in the first 9 months of life was also
examined in two African birth cohorts (Kiravu et al., 2019),
where BCG Denmark vaccinated infants mounted significantly
higher frequencies of polyfunctional CD4+ T cells, compared
with infants vaccinated with BCG Bulgaria and BCG Russia.
BCG-naïve adult volunteers immunized with BCG Denmark
showed divergent whole blood pro-inflammatory and regulatory
T cell responses, with significant induction of polyfunctional
[IFNγ(+)TNF(+)IL-2(+)] CD4 T cells and IFNγ production
confined to individuals with strong local skin inflammation,
compared to regulatory-like CD8 T cell induction in individuals
with mild skin inflammation (Boer et al., 2015). Polyfunctional

CD4 cells have been associated with enhanced Th1 cytokine
production and implicated as memory cells responsible for
antigen-specific long-term protection (Darrah et al., 2007).
However, whether their presence correlates with protective
immunity remains highly controversial. In the limited studies
done, there is no direct evidence that genetic variation of the
vaccine strains accounts for the variability in efficacy and/or
protection against TB based on the year a particular vaccine strain
was given (Mangtani et al., 2014). Overall, these observations
indicate that further clinical studies directly comparing different
licensed BCG formulations/strains currently in use are needed to
address these questions.

BCG-INDUCED HETEROLOGOUS
EFFECTS

Human newborns are highly susceptible to infection due to
functionally distinct innate (Kollmann et al., 2012) and adaptive
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immune responses (Kollmann et al., 2017) compared to other
age groups. Epidemiologic studies have linked early life BCG
immunization to an unanticipated reduction (∼50%) in all-
cause mortality, which greatly exceeds a reduction in mortality
attributable to TB (Higgins et al., 2014; Jensen et al., 2015).
These observations suggest BCG induces heterologous protection
against antigenically diverse, unrelated pathogens. One of
the suggested mechanisms for heterologous protection against
infection in the context of BCG vaccination is innate immune
memory, also known as “trained immunity” (Netea et al., 2011).

The Concept of Trained Immunity
Trained immunity is the ability of innate immune cells to
mount an altered response against infection following a previous
unrelated infection or vaccination (Figure 2). Innate immune
memory is well described in plant immunology and invertebrates
which lack adaptive immune response mechanisms (Kurtz, 2005).
In contrast to adaptive memory mediated by B- and T-cells,
innate memory primarily involves mononuclear phagocytes.
Mammalian studies suggest that the innate host defense of
vertebrates possesses similar properties. Vaccination of mice
with BCG protects against secondary infections with Candida
albicans or Schistosoma mansoni through activation of tissue
macrophages (van ’t Wout et al., 1992). Injection of attenuated
strains of Candida in athymic mice induced protection toward
virulent Candida strains but also toward Staphylococcus aureus,
through macrophage activation and proinflammatory cytokine
production (Bistoni et al., 1986). Human innate immunity also
exhibits immunological memory mediated by epigenetic and
metabolic reprogramming of innate immune cells and their bone
marrow precursors (Netea et al., 2019).

Examples of Trained Immunity in Human
Cohorts and Mechanistic Insights
Several observations in human epidemiologic studies support
the notion that trained immunity occurs in the human neonate.
One observation that supports a role for trained immunity
in early life is the association of bloodstream infections in

FIGURE 2 | Influence of “trained” immunity on the magnitude of immune
responses later in life. Certain forms and combinations of early life
immune-stimulation, including BCG, can induce epigenetic changes in innate
immune cells that can enhance or inhibit innate immune responses following
future exposure to diverse antigenically unrelated pathogens (Netea and van
der Meer, 2017).

critically ill preterm newborns with enhanced pathogen-specific
mononuclear cell PRR expression in the setting of subsequent
Gram-positive or Gram-negative bacteremia (Zhang et al.,
2010). This finding suggests that the neonatal innate immune
system can remember previous activation such that responses to
subsequent microbial challenges are altered. Similarly, histologic
chorioamnionitis affecting preterm infants is associated with a
significantly reduced risk of late onset sepsis, both with coagulase-
negative Staphylococcus (most common) and other bacteria
(Strunk et al., 2012), implying that perinatal inflammation may
enhance functional maturation of the preterm immune system.

Immunization of human newborns may also trigger trained
immunity. In observational studies in Guinea-Bissau, BCG
vaccine had beneficial effects on overall mortality compared to
no/delayed BCG vaccination (Kristensen et al., 2000), especially
during the first 2 months of life (unadjusted MRR 0.74, adjusted
MRR 0.55). Near halving of neonatal mortality in low-birth
weight children vaccinated with BCG at birth was replicated
in two subsequent randomized-controlled trials (Aaby et al.,
2011; Biering-Sorensen et al., 2012). The reduction in neonatal
mortality was associated with fewer cases of neonatal sepsis,
respiratory infections and fever (Aaby et al., 2011). In another
randomized-controlled trial between 2008 and 2013 including
2,320 low birth weight children, BCG given early (at birth) vs.
late (>2.5 kg or when infant was 2 months old per the established
practice) conferred a rapid survival benefit as early as 1 month
of age (MRR 0.55), which was sustained up to 1 year of age
(MRR 0.83) (Jensen et al., 2015). In the same trial, early BCG
immunization led to increased production of Th1 polarizing and
monocyte-derived pro-inflammatory cytokines, particularly IL-
1β, IL-6, TNF and IFNγ, upon heterologous challenge of the
infants’ whole blood in vitro with TLR-2, -4 or -7/8 agonists,
or PPD, demonstrating a potentiating effect on innate cytokine
responses (Jensen et al., 2015).

In addition to reduced mortality, heterologous beneficial
BCG effects include decreases in infectious morbidities. Case
control studies in Guinea-Bissau suggest that BCG vaccination
and the presence of a scar among BCG-immunized infants
was associated with a reduced risk of acute lower respiratory
infection (ALRI) compared to unimmunized controls, with
the association being stronger for females (Stensballe et al.,
2005). In fact, children with ALRI were ∼3-fold more likely to
have not received BCG vaccine compared to children without
ALRI. Similar results were found in an exploratory analysis of
national health survey data from 33 low- and middle-income
countries between 2000 and 2010, where 0–5 year-old BCG
vaccinated children had 17–37% lower risk of suspected ALRI
compared to unvaccinated controls (Hollm-Delgado et al., 2014).
A retrospective epidemiologic study in Spain used data from
the Official Spanish Registry of Hospitalizations to identify
differences in hospitalization rates in BCG-vaccinated children
(Basque Country, where universal neonatal BCG vaccination
is practiced) as compared to non-BCG-vaccinated children
(rest of Spain, where BCG is not routinely used) (de Castro
et al., 2015). Analysis of 464,611 hospitalization episodes over
a 15-year period showed that neonatal BCG immunization
was associated with fewer hospitalizations for respiratory
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infections (the preventive fraction, defined as the attributable
proportion of disease cases prevented by BCG exposure, was
40% and statistically significant among all age groups) and sepsis
(preventive fraction 36%, statistically significant among the infant
group) (de Castro et al., 2015). Differences diluted with age
suggesting a time-limited protective effect of BCG vaccination
vs. lower rates of hospitalization for respiratory infection in older
children. No significant differences in the already low mortality
rates were observed.

BCG scarring has been correlated with heterologous
protective effects. A recent prospective study in rural Guinea-
Bissau showed that children vaccinated with the BCG Moscow
strain (also known as BCG Russia) who developed a scar
had 26% lower mortality compared to children who did not
develop a scar, mainly attributable to prevention of deaths from
respiratory infections (mortality rate ratio [MRR] 0.2) (Storgaard
et al., 2015). This correlation of BCG scarring and improved
survival has been replicated over different time periods and with
different BCG strains; however, scarification rates differ by BCG
formulation. For example, BCG Russia is less likely to produce a
scar compared to BCG Japan and Denmark (Frankel et al., 2016;
Funch et al., 2018). BCG-induced scarring in Ugandan newborns
was associated with higher IFNγ responses to heterologous
stimuli (tetanus toxoid, phytohaemagglutinin) at 1 year, and
differed across strains (93% with BCG Denmark vs. 64% with
BCG Bulgaria vs. 52% with BCG Russia) (Anderson et al., 2012).
An RCT in Guinea-Bissau showed increased scarring induced
by BCG Denmark and Japan compared to BCG Russia, but no
significant differences in morbidity and mortality, at least by
6 weeks of age (Schaltz-Buchholzer et al., 2019), possibly because
BCG Russia also induced relatively high scarification rates in
this cohort compared to others. Even though development of
scarring also depends on additional factors such as vaccination
technique, preservation of the cold chain, nutritional status of
the recipient, age at time of vaccination and prior exposure to
non-tuberculous mycobacteria, variable scarification rates may
still predict variable heterologous protection in populations
vaccinated with different BCG formulations.

In adults, BCG immunization induces specific epigenetic
markers associated with the acquisition of a trained or
tolerant phenotype after BCG vaccination (Saeed et al., 2014).
In healthy volunteers BCG induces trained immunity and
heterologous protection from infections through epigenetic
reprogramming of monocytes (Kleinnijenhuis et al., 2012),
specifically trimethylation of histone H3 at lysine 4 (H3K4me3) at
the level of cytokine and TLR4 promoters. To further characterize
BCG-induced innate immune regulation, adult PBMCs were
cultured with BCG in vitro. Following heterologous stimulation
with TLR ligands and bacteria, there was increased production
of TNF, an effect mediated through the Nucleotide-Binding
Oligomerization Domain Containing 2 pathway (Kleinnijenhuis
et al., 2012). In a randomized placebo-controlled adult study,
yellow fever virus vaccine recipients who had been BCG
vaccinated with the Denmark strain 1 month prior, had
significantly lower yellow fever viremia compared to subjects
who had received placebo vaccination (Arts et al., 2018).
BCG vaccination conferred protection against yellow fever

experimental infection by inducing genome-wide epigenetic
reprogramming of monocytes involving genes related to signal
transduction molecules, epidermal growth factor receptor,
fibroblast growth factor, and vascular endothelial growth factor
signaling pathways, as well as genes such as AKT1, MAPKs,
and PI3K-related that have been shown to be important in
β-glucan-induced trained immunity, the prototypical trained
immunity-inducing agonist in vitro. This effect correlated
with induction of cytokine responses indicative of trained
immunity: higher pro-inflammatory cytokine production (TNF,
IL-1β, IL-6) from BCG-vaccinated volunteers, compared to
placebo-treated individuals, with a crucial role for IL-1β

production and release. These observations suggest potential
mechanisms for heterologous protection that could also apply
to infants, as epidemiological studies have shown that BCG
vaccination results in lower all-cause mortality in infants
(Roth et al., 2006).

More recently, immune-gene priming long non-coding RNAs
(lncRNAs), positioned at the nexus of RNA, DNA, and protein
interactions, have emerged as key regulators of gene transcription
in trained immunity by positioning themselves at the nexus
of RNA, DNA, and protein interactions. Taking advantage
of the three-dimensional nuclear architecture and the close
proximity of functionally related immune genes in topologically
associated domains (TADs), lncRNAs contribute to accumulation
of H3K4me3 at the promoters of trained immune genes in human
monocytes (Fanucchi et al., 2019).

Growing evidence that innate immune engagement by BCG
enhances responses to other pathogens raises the possibility
that some, or conceivably even most, of its clinical benefit is
due to heterologous effects. However, the extent, mechanism
and ontogeny of trained immunity in early life remain
incompletely defined. Understanding how BCG-induced innate
immune engagement, including BCG-induced enhancement of
Th-polarizing cytokine production by antigen-presenting cells,
varies by BCG strain and age is of basic and translational
importance (Arts et al., 2015; Storgaard et al., 2015).

The Role of Immunometabolism in
BCG-Induced Trained Immunity
Intracellular metabolism plays key roles in regulating innate
immune memory. In particular, different training programs
induce metabolites that function as cofactors for epigenetic
enzymes, which in turn induce chromatin and DNA
modifications and modulate gene transcription upon re-
challenge with a second stimulus (Netea et al., 2016). The
Warburg Effect, first described in neoplastic cells, is a metabolic
pathway important to trained immunity (Vander Heiden
et al., 2009). Under normoxia, in resting cells, there is a low
level of glycolysis and preferential pyruvate oxidation in the
mitochondrion (oxidative phosphorylation), which confers slow
but very efficient ATP production. In activated and proliferating
cells, there is a metabolic switch from a state of oxidative
phosphorylation to a state of glycolysis, crucial for the induction
of the histone modifications and functional changes underlying
BCG-induced trained immunity (Arts et al., 2016).
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BOX 2 | Applying systems biology to systems vaccinology. Systems
vaccinology, the application of global molecular techniques such as
metabolomics, proteomics, or transcriptomics, can provide unique insights
into vaccine-induced immune responses by identifying molecular signatures
that may predict and give insight into vaccine-induced immunogenicity and
protection (Pulendran, 2014). The systems biology can provide valuable
insights into host–pathogen interaction with Mtb as well as generate tools for
early and proper diagnosis of TB, identification of BCG protective efficacy, and
accelerated development of better TB vaccines. The metabolome, the
inventory of all metabolites present in a given sample, reflecting both genetic
and epigenetic influences, shifts upon immune activation and can in turn
shape immune responses (O’Neill et al., 2016). Metabolic phenotype
influences vaccine immunogenicity and together with orthogonal datasets can
identify correlates of vaccine immunity (Li et al., 2017). Lipid metabolism is
pivotal in the regulation of inflammatory signaling hence making lipidomics, an
in-depth profiling of lipid metabolites, a valuable modality as well. Lipid
metabolism regulates immune cells via cell membrane synthesis (Lochner
et al., 2015) and is important to epigenetic reprogramming of immune cells
(Kleinnijenhuis et al., 2014, 2015). Mass-spectrometry-based metabolomics,
together with computational tools, can identify and correlate metabolic
pathways between samples, providing a powerful approach for clinical
diagnostics (Johnson et al., 2016). More studies are warranted to build the
area of biomarker identification while addressing the challenges of identifying
correlates of protection against TB.

Epigenetic and metabolic reprogramming of hematopoietic
progenitors may account for the long-term maintenance of
trained immunity (Mitroulis et al., 2018). Trained immunity
affects myeloid cells as well as precursor cells of the innate
immune system in the bone marrow (Mitroulis et al., 2018).
Administration of β-glucan in mice induced selective expansion
of myeloid stem and progenitor cells accompanied by a global
increase in energy metabolism in bone marrow progenitors,
particularly enhancement of cholesterol biosynthesis and
glycolysis. Cytokine analysis in the bone marrow extracellular
fluid revealed elevated IL-1β levels, important in shaping
immunometabolism within the bone marrow. In a randomized
placebo-controlled human BCG immunization study with
subsequent yellow fever vaccine challenge, reduction of viremia
was highly correlated with the upregulation of IL-1β, a cytokine
associated with the induction of trained immunity, but not
with the specific IFNγ response (Arts et al., 2018), supporting a
key role for IL-1β as a mediator of trained immunity responses
(Moorlag et al., 2018). In mice, access of BCG to the bone marrow
reshaped the transcriptional landscape of hematopoietic stem
cells resulting in preferential myelopoiesis vs. lymphopoiesis and
generation of macrophages that provided improved protection
against TB (Kaufmann et al., 2018).

Changes in glucose, glutamine and cholesterol metabolism
enable maintenance and longevity of trained immunity
via accumulation of immunologically active intermediate
metabolites (Fok et al., 2018). Examples include: (a) cholesterol,
which participates in cell membrane remodeling and increased
sensitivity to subsequent stimuli, (b) succinate and fumarate,
which antagonize histone demethylation and suppress anti-
inflammatory genes, (c) acetyl-CoA, an essential substrate for
acetylating processes, and (d) NAD+ which is important for
epigenetic changes resulting in a switch from glucose to fatty
acid oxidation during LPS-induced tolerance and sepsis-induced

immune paralysis (Conti et al., 2019). Immunometabolic changes
may be different between newborns and adults, reflecting the
differential nutritional and metabolic needs of the two groups,
as well as their distinct immune response to pathogens (Kan
et al., 2018; Dreschers et al., 2019). Indeed the ontogeny of
immunometabolism is an emerging and promising area of
research (Conti et al., 2019) (see Box 2).

BCG-MEDIATED IMMUNE MODULATION
OF AUTOIMMUNE AND INFLAMMATORY
DISEASES

BCG has been recognized as a potent immunomodulator for
decades with extensive use for cancer and particularly bladder
cancer treatment (Rosenthal, 1988; Ravaud et al., 1990). In the
past decade, there has been revived interest in BCG vaccine for
potential new therapeutic uses in type 1 diabetes mellitus and
treatment of other forms of autoimmunity. When administered
to young NOD (autoimmune-prone) mice, BCG could not only
stop new-onset diabetes but also reverse end-stage diabetes,
owing to induction of suppressive regulatory T cell (Treg)
expansion (Ryu et al., 2001; Kodama et al., 2003), thereby
preventing the immune system from attacking the body’s own
tissue. In a clinical trial involving humans with longstanding
type 1 diabetes mellitus, repeat BCG administration (2 doses) led
to transient restoration of pancreatic cell islet function in vivo
(for 4–6 weeks after vaccination) (Faustman et al., 2012). The
suspected mechanism was BCG-induced proliferation of Tregs
and selective elimination/suppression of auto-reactive cytotoxic
T cells, possibly via TNF induction/TNF receptor 2 agonism
(Faustman, 2018). Long-lasting improvements in glycemic
control as evidenced by sustained decreases in hemoglobin
A1c were achieved via accelerated glucose utilization induced
by a systemic shift from oxidative phosphorylation to aerobic
glycolysis (Kuhtreiber et al., 2018).

In a double-blind, placebo-controlled trial conducted in Italy
involving subjects with early symptoms consistent with multiple
sclerosis (MS), participants were randomly assigned to receive
BCG or placebo and monitored monthly with brain Magnetic
Resonance Imaging (MRI) (6 scans) (Ristori et al., 2014). By the
end of the study, 58% of those vaccinated had not developed
MS, compared with 30% of those who received placebo (Ristori
et al., 2014). Overall clinical benefits after BCG administration
in new onset MS were durable and even enhanced at 5 years. In
another trial, BCG vaccination was found to decrease MS disease
activity and prevent progression of brain lesions in patients with
relapsing-remitting MS (Paolillo et al., 2003). A phase III clinical
trial of BCG to reverse progression of MS is now underway.

BCG vaccination has also been associated with a reduced risk
of atopic disorders as noted in a Japanese cohort (Shirakawa et al.,
1997), as well as in African children, where the reduction in atopy
associated with BCG was greater the earlier the age at vaccination,
with the largest reduction seen in children vaccinated in the first
week of life (Aaby et al., 2000). This observation is consistent with
BCG being a powerful inducer of a Th1 phenotype in infants
(Marchant et al., 1999) and shifting their immune response
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away from the Th2-type that is typically favored in early life.
Importantly, these immune polarizing effects of BCG may be
yet another result of trained immunity, which may contribute to
host survival in early life and affect the risks of infection, allergic
and chronic inflammation later in life (Levy and Netea, 2014).
A randomized controlled trial to determine if BCG immunization
at birth reduces allergy and infection in infants is currently
underway in Australia (Melbourne Infant Study, NCT01906853).

THE ROLE OF IMMUNE ONTOGENY IN
SHAPING BCG-INDUCED TB-SPECIFIC
AND HETEROLOGOUS IMMUNITY

Few studies have investigated the influence of age at and
timing of immunization on BCG-induced immunogenicity and
protection against TB. BCG-specific effector CD4 T cell responses
demonstrate increased antigen-specific CD4 T cell proliferative
capacity in infants compared to older children (Whittaker
et al., 2018b). Vaccination at birth induces a broad Th1/Th2/IL-
17/Treg anti-mycobacterial response but the Th1/Th17 response
is reduced when delaying the vaccine from birth to 4 1/2 months
of age (Burl et al., 2010). In a randomized trial of low
birth weight newborns, BCG significantly increased in vitro
whole blood cytokine responses to heterologous TLR agonists
and to PPD in infants 4 weeks post-vaccination, particularly
cytokines IL1β, IL-6, TNF, and IFNγ (Jensen et al., 2015),
potentially contributing to broad protection against infections.
These studies illustrate that timing of BCG administration can
be crucial for its immunogenicity with distinct effects depending
on which outcomes are studied (mycobacterial-specific vs.
heterologous). Mechanistic studies are needed to provide a
basis for understanding the impact of immune ontogeny on
BCG immunogenicity.

Comparable CD4 and CD8 T cell anti-mycobacterial
responses and whole blood cytokine production were noted in
Australian infants who received BCG Denmark at birth (early
BCG) compared to 2 months after birth (late BCG) (Ritz et al.,
2016). However, in TB-endemic regions such as Cape Town
and South Africa, delaying immunization with BCG Denmark
10 weeks post-birth led to increased frequencies of memory
CD4 T cells at 1 year of age (Kagina et al., 2009). These two
seemingly contradictory studies emphasize the importance
of immune ontogeny, as well as genetic and epigenetic host
factors, including prior and ongoing host exposure to non-
tuberculous mycobacteria, to the immunogenicity of live
vaccines (Plotkin, 2013).

BCG vaccination in children (Jensen et al., 2015) results
in different cytokine induction patterns compared to adults
(Kleinnijenhuis et al., 2012). Vaccine efficacy rates were indeed
higher in studies conducted in populations vaccinated during
childhood compared with populations vaccinated at older ages
(Colditz et al., 1995). The longevity of BCG clinical effects
remains largely unknown and may in part depend on age
of immunization. In the largest community-based controlled
trial of BCG vaccination conducted in southern India in the
1960s, vaccine recipients were reevaluated 15 years after BCG
vaccination (Tuberculosis Research Centre, 2013): protective

efficacy in persons who had been vaccinated as children was
found to be 17%, while no protective effect was seen in people
who had been vaccinated as adolescents or adults (Tuberculosis
Research Centre, 2013).

WHO currently recommends BCG at birth for countries
where TB is endemic since birth is the first point of contact for
the newborn with the healthcare system. In practice, however,
many healthcare systems continue to institute policies such
that BCG is not administered unless a certain number of
infants are present to receive immunization from the multi-
dose BCG vial resulting in missed opportunities to administer
it at the earliest possible age per WHO recommendations
(Schaltz-Buchholzer et al., 2017). However, based on the above,
a “one size fits all” policy on optimal BCG timing may not
be realistic and immunization should be tailored to different
global populations with different risk factors in different
settings. Further investigations involving the ontogenetic aspects
of BCG-induced immunogenicity and protection against TB
are needed. Highly standardized comparison studies should
account for the environmental (local and regional) exposure,
genetic and epigenetic factors, biological age, and immunological
status of vaccinated participants. Such studies would further
inform the variation of heterologous effects seen as a result of
BCG vaccination.

BCG AS A MODEL TO BUILD NEXT
GENERATION VACCINES

The ability of live vaccines such as BCG to induce heterologous
immunity raises the possibility of leveraging such broadly
protective effects in the development of novel vaccine
formulations (Whittaker et al., 2018a), in the form of “trained
immunity-based” vaccines (Sanchez-Ramon et al., 2018). Firstly,
increased awareness of innate memory may be employed to
define new classes of vaccine adjuvants (Topfer et al., 2015),
crucial tools to optimize current vaccines and develop new
ones (Dowling and Levy, 2015). Adjuvants enhance responses
to vaccine antigens by a variety of mechanisms (Coffman
et al., 2010), but like BCG, many are capable of acting via
PRR signaling (e.g., TLRA), which possibly could hold the
potential of inducing innate memory and could thereby mediate
long-term changes in host defense. Also, recent advances in
adjuvant discovery and delivery have opened up a new toolbox
on how vaccinologists can employ adjuvants, including synthetic
small molecule PRR agonists (Dowling and Levy, 2015).
Thus, to confer protective immunity a strategy might be the
combination of adjuvants, with potential of inducing beneficial
non-specific trained immunity responses, formulated along
with the specific selected antigen epitopes. An important aspect
to take into account is that it is not yet known whether or
not all PRR stimuli produce trained immunity-like responses.
As different adjuvants may trigger different cell activation
pathways and have age-specific activity, it is likely that more
than one trained immunity pathway could be targeted for
perturbation. In addition, putative target cell populations for
innate training may vary, including progenitor cells, tissue
resident or circulating monocytes, which may be optimally
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targeted via specific routes of administration or by rationally
selected adjuvant formulations (Dowling and Levy, 2015;
Nanishi et al., 2020).

Secondly, characterizing mechanisms by which BCG enhances
neonatal immunity may inform rational design of scalable,
synthetic subunit vaccine formulations for newborns. Initially,
TLR7/8a imidazoquinolines were shown to induce trained
immunity in newborn mice (Wynn et al., 2008), raising the
possibility that such an approach could generate a vaccine that
may also induce “BCG-like” trained immunity. However, since
free un-formulated molecules may have off target effects, another
approach is to build “BCG-like” synthetic “non-live” particulate
vaccines that may mimic BCG’s immune-enhancing effects.
Inclusion of an imidazoquinoline small molecule TLR8 agonist in
a polymersome nanoparticle (∼150 nm diameter) induced robust
Th1 polarizing responses from human newborn monocyte-
derived dendritic cells in vitro that at least matched and for some
biomarkers such as IL-12p70 exceeded those induced by BCG
Denmark (Dowling et al., 2017). Of note, when co-loaded with
the M. tuberculosis antigen 85B peptide 25, the TLR8-agonist
containing polymersome nanoparticles were comparable to BCG
in inducing antigen-specific T cell responses in human TLR8-
expressing neonatal mice in vivo (Dowling et al., 2017). This
is promising, since BCG reduces the risk of disseminated early
life TB safely, elicits Th1-type neonatal immune responses and
requires only a single dose at or shortly after the time of birth. The
key role of TLR8 agonists for protection against Mtb challenge
was recently verified by others with humanized TLR8 mice
(Tang et al., 2017) and in human studies, wherein humans with
hypermorphic alleles of TLR8 demonstrated enhanced BCG-
induced protection against TB (Ugolini et al., 2018).

Thirdly, the robust safety and immunogenicity profile of BCG
has rendered it an attractive vector for vaccine development
against other infectious diseases (Hernandez-Pando et al., 2007;
Bastos et al., 2009; Nieuwenhuizen and Kaufmann, 2018).
Recombinant BCG technology has been studied in the context
of vaccination against HIV (Aldovini and Young, 1991), Lyme
disease (Stover et al., 1993), malaria (Matsumoto et al., 1998),
measles (Zhu et al., 1997), and HCV (Uno-Furuta et al., 2003).
When administered in early life, BCG can act as an adjuvant
enhancing antibody responses to recombinant hepatitis B surface
antigen (rHBsAg) both in mice and in human infants (Ota
et al., 2002; Zimmermann et al., 2019). In another approach,
a recombinant strain of M. bovis BCG that secretes high
levels of functional murine monocyte chemotactic protein 3
(BCGMCP−3) attenuated vaccine virulence in immunodeficient
mice, while maintaining protective efficacy against Mtb in
mice by enhancing antigen-specific IFNγ T cell responses, as
compared to a control BCG (Pasteur strain 1173P2) (Ryan et al.,
2007). A recombinant BCG strain expressing listeriolysin O to
enhance cytosolic entry of BCG antigens for MHC I presentation,
named VPM1002, induced both CD4 and CD8 responses and
demonstrated safety and immunogenicity in a phase 2 clinical
study in South African newborns (Loxton et al., 2017). Overall,
insights into BCG vaccine-induced heterologous and specific
immunity may provide insights into the development of a broad
spectrum of anti-infective vaccine formulations.

CONCLUSION

Despite nearly a century of use, policies and practices around
BCG immunization vary widely across the world. Much remains
to be learned regarding the relative protective efficacy of different
licensed BCG formulations and it is important to ensure that
BCG vaccines selected for use in large-scale immunization
schemes maintain the stability of their characteristics. Our
growing understanding of the distinct neonatal immune response
and of innate immune memory in early life will increasingly
inform optimal immunization in this age group. Epidemiologic
studies suggest that the benefit of BCG vaccination may
vary by BCG formulation and age of administration with
optimal timing in early life to maximize both specific and
heterologous beneficial effects. Future studies should directly
compare licensed BCG formulations, including their optimal
timing of administration, and measure both heterologous and
specific protection in high mortality populations. Characterizing
activation of age-specific immune responses by BCG strains
and defining potential correlates of BCG-induced protection via
correlation with known relative heterologous clinical benefit, can
inform optimization of BCG’s use. This may involve potential
BCG (re)introduction in national immunization schedules, BCG
utilization in prime-boost schedules, use of BCG as a vector
for other vaccinal antigens, as well as design of new vaccines
that mimic BCG to harness innate immune memory for clinical
benefit (Dowling et al., 2017).
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