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Abstract

Background: The participation of long noncoding RNAs (lncRNAs) in myocardial
infarction has recently been noted. However, their underlying roles in the border
zone of myocardial infarction remain unclear. This study uses microarrays to
determine the profiles of lncRNAs and mRNAs in the border zone.

Methods: Bioinformatics methods were employed to uncover their underlying roles.
Highly dysregulated lncRNAs was further validated via PCR.

Results: Four hundred seven lncRNAs and 752 mRNAs were upregulated, while 132
lncRNAs and 547 mRNAs were downregulated in the border zone of myocardial
infarction. A circos graph was constructed to visualize the chromosomal distribution
and classification of the dysregulated lncRNAs and mRNAs. The upregulated mRNAs
in the border zone were most highly enriched in cytokine activity, binding, cytokine
receptor binding and related processes, as ascertained through Go analysis. Pathway
analysis of the upregulated mRNAs showed the most significant changes were in the
TNF signaling pathway, cytokine–cytokine receptor interaction and chemokine
signaling pathway and similar pathways and interactions. An lncRNA–mRNA co-
expression network was established to probe into the underlying functions of the 10
most highly dysregulated lncRNAs based on their co-expressed mRNAs. In the co-
expression network, we found 16 genes directly involved in myocardial infarction,
including Alox5ap, Itgb2 and B4galt1. The lncRNAs AY212271, EF424788 and
MRAK088538, among others, might be associated with myocardial infarction.
BC166504 is probably a key lncRNA in the border zone of myocardial infarction.

Conclusions: The results may have revealed some aberrantly expressed lncRNAs and
mRNAs that contribute to the underlying pathophysiological mechanisms of
myocardial infarction.

Keywords: Long noncoding RNAs, mRNAs, Myocardial infarction, Border zone, Area
at risk, Co-expression network, Bioinformation

Background
Myocardial infarction causes millions of deaths worldwide every year. The border zone

of the myocardial infarction is of considerable interest. During myocardial infarction,

certain changes in the border zone, including apoptosis, fibrosis and inflammation, play

important roles in determining the chances of patient survival [1].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Cellular & Molecular
Biology Letters

Meng et al. Cellular & Molecular Biology Letters           (2019) 24:63 
https://doi.org/10.1186/s11658-019-0185-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s11658-019-0185-6&domain=pdf
mailto:565910412@qq.com
mailto:565910412@qq.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


The impairment and recovery of cardiacmyocytes have both been linked to changes

in gene expression [2]. LncRNAs are defined as noncoding RNA transcripts over 200 nt

in length without protein-coding ability [3]. They are known to be involved in gene im-

printing [4], cardiac development and differentiation [5, 6], cardiac hypertrophy [7, 8],

myocardial infarction [9–13] and heart failure [14–18], among other processes of inter-

est in cardiology. Their regulatory functions mainly depend on epigenetic regulation,

transcriptional regulation, post-transcriptional gene regulation, competing endogenous

RNAs, post-translational gene regulation on protein turnover and nuclear

compartmentalization [19].

Genome-wide profiling of the cardiac transcriptome after myocardial infarction has

been performed, revealing heart-specific long non-coding RNAs [9, 10]. Expression

profiling and ontology analysis of lncRNAs in the post-ischemic heart have also been

performed [12]. Wang et al. constructed a differential lncRNA–mRNA co-expression

network in myocardial infarction [13]. Ishii et al. found a novel non-coding RNA,

MIAT, the overexpression of which confers risk of myocardial infarction [11].

Although a few cardiology-focused lncRNA studies have been performed, the poten-

tial roles of lncRNAs in the border zone of myocardial infarction have received little at-

tention. This study uses microarrays to determine the profiles of lncRNAs and mRNAs

in the border zone.

Methods
Animals

The Wistar rats used in this experiment were obtained from Chang Sheng Biotechnol-

ogy. This investigation was performed according to the protocols approved by the Med-

ical Research and New Technology Ethical Committee of the Second Affiliated

Hospital (Shengjing Hospital) of China Medical University (approval no. 2015PS295K).

Myocardial infarction surgery

Adult male Wistar rats weighing 390.45 ± 51.45 g were anesthetized with an intraperito-

neal injection of 10% chloralhydrate (3 mg/g). We created a myocardial infarction

model by ligation of the left anterior descending artery (LAD) with a 6–0 silk suture.

Sham-operated rats underwent an identical procedure without tying. Ligation was veri-

fied through observation of changes in the ECG and visualized as marked blanching of

the left ventricle.

Determination of the border zone of the infarct region

The rats were killed 6 h after the procedure. Evans Blue dye (EB) and triphenyltetrazo-

lium chloride (TTC) dual-dye staining was performed to precisely determine the border

zone around the infarct region [20]. Five slices were cut equally from base to apex of

the heart. The border zone and the infarct region were assessed by a blinded observer

using computer-assisted planimetry. The border zone of the infarct region was identi-

fied as Evans blue unstained and TTC stained (red). Through comparison with the ad-

jacent TTC section (slices 3 and 5), we localized the border zone of slice 4. Radial

segments of slice 4 (the border zone) were used for microarray analysis and quantitative

RT-PCR (Fig. 1).
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RNA extraction and quality control

LncRNA microarray analysis was performed by Kangchen Bio-tech using 3 samples

from the infarction group and 3 samples from the sham operation group. RNA quantity

and quality were measured with a NanoDrop ND-1000. The integrity of the RNA was

assessed using standard denaturing agarose gel electrophoresis.

Microarray analysis of lncRNA and mRNA expression

The Arraystar Rat LncRNA microarray (4 × 44 k) contains about 9000 lncRNAs from

the databases of NCBI RefSeq and UCSC.

Sample labeling and array hybridization were performed according to the manufac-

turer’s protocol (Agilent Technology) with minor modifications. The hybridized arrays

were washed, fixed and scanned. Agilent Feature Extraction software (version 11.0.1.1)

was used to analyze the acquired array images. Quantile normalization and subsequent

data processing were performed using the GeneSpring GX v12.1 software package (Agi-

lent Technologies). After quantile normalization of the raw data, lncRNAs and mRNAs

for which at least 3 out of 6 samples had flags in the categories Present or Marginal

(All Targets Value) were chosen for further analysis.

All the microarray data have been submitted to GEO with the accession number

GSE90745. They can also be accessed through the GEO platform with accession num-

ber GPL15690.

Gene ontology and pathway analysis

Gene ontology (GO) and pathway analysis were applied to determine GO terms and/or

the functions of these aberrantly expressed mRNAs in several biological pathways. GO

analysis is used to determine processes or functional categories that are differentially

expressed and mainly focuses on three aspects: biological processes (BP), molecular

functions (MF) and cellular components (CC). To investigate the biological functions

of differentially expressed mRNAs, we also searched the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway.

Fig. 1 Slice 3 (S3) and slice 5 (S5) were double-stained with EB and TTC. The perfused area is deep blue, EB
stained and TTC stained. The infarcted area is achromatous, EB unstained and TTC unstained. The border
zone is red, EB unstained and TTC stained
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Construction of the lncRNA-mRNA co-expression network

To identify the interaction network for lncRNAs and mRNAs, a co-expression network

was constructed. The expression intensities of the lncRNAs and mRNAs were normal-

ized. The relevance of each lncRNA–mRNA pair was calculated using Pearson’s correl-

ation coefficient (PCC).

For a clear look at the most highly regulated lncRNAs and mRNAs, only the top 5

up- and downregulated lncRNAs and the top 10 up- and downregulated co-expressed

mRNAs are presented in the visual network. Cytoscape 3.4.0 was used for visual repre-

sentation of the network. In this network, nodes were lncRNAs or mRNAs, and when

two nodes connected by an edge indicate they were co-expressed.

Quantitative RT-PCR validation assay

Quantitative RT-PCR was performed to confirm the differentially expressed lncRNAs

in the microarray analysis. Total RNA was extracted using Trizol agent (Invitrogen),

then reverse-transcribed into cDNA by PrimeScript RT Reagent Kit with gDNA Eraser

(TaKaRa) according to the manufacturers’ protocols. Real-time PCR was performed on

an Applied Biosystems 7500 FAST Real-time PCR System using SYBR Premix Ex Taq

II (TaKaRa). The specific primers were designed by Sangon Biotech. All experiments

were performed in triplicate and normalized to β-actin. The median of each triplicate

was used to calculate the relative levels of lncRNAs.

Statistical methods

Data are expressed as the means ± standard deviation. Student’s t-test was performed

for comparisons between two groups. Differences with p < 0.05 were considered statisti-

cally significant. The false discovery rate (FDR) was calculated to correct the p-value.

Fold change > 2 and p < 0.05 were set as the threshold values to designate up- and

downregulated lncRNAs and mRNAs.

Results
Expression profiles of lncRNAs and mRNAs in in the border zone of myocardial infarction

We performed a microarray analysis to obtain a global expression profile of lncRNAs

and mRNAs in the border zone of myocardial infarction in Wistar rats. In total, 24,529

lncRNAs and mRNAs were detected in the array (Fig. 2). Of these, 407 lncRNAs were

upregulated with a fold change > 2 and p < 0.05 compared with those in the sham oper-

ation group. MRuc008qhz, XR_006843, EF424788, BC166504 and AY212271 were the

top five upregulated lncRNAs. In addition, 132 lncRNAs were downregulated with a

fold change > 2 and p < 0.05. MRAK042828, BC089979, MRAK078284, AY539885 and

MRAK088538 were the top five downregulated lncRNAs.

We found 752 upregulated mRNAs with a fold change > 2 and p < 0.05. The top five

were NM_012589, NM_001109536, NM_053647, NM_001107589 and NM_019233. In

addition, 547 mRNAs were downregulated with a fold change > 2 and p < 0.05. The top

five were NM_012506, NM_031349, NM_022209, NM_001004131 and NM_

001108163.

We constructed a circos graph to visualize the chromosomal distribution and classifi-

cation of the dysregulated lncRNAs and mRNAs (Fig. 3).
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GO and pathway analyses

To further investigate the functions of differentially expressed mRNAs identified from

the border zone of myocardial infarction, we performed GO and pathway analyses. GO

analysis provides a controlled vocabulary to describe differentially expressed transcript

attributes in all organisms. Fisher’s exact test is used to find if there is more overlap be-

tween the differentially expressed list and the GO annotation list than would be ex-

pected by chance, and p denotes the significance of GO term enrichment in the

differentially expressed genes. The lower the value of p, the more significant the GO

term (p < 0.05 is recommended).

In the border zone of myocardial infarction, the upregulated mRNAs were involved in

1638 biological processes (BP), 63 cellular components (CC) and 103 molecular functions

(MF). The downregulated mRNAs were involved in 487 BP, 83 CC and 118 MF. In the

BP category, the highest enrichment scores of the GO term for upregulated mRNAs were

response to stress, while the highest for downregulated mRNAs were nervous system de-

velopment. In the CC category, the most significant terms for upregulated mRNAs ap-

peared in extracellular space, and for downregulated mRNAs appeared in extracellular

matrix part. In the MF category, the most represented term for upregulated mRNAs was

cytokine activity, and for downregulated mRNAs was protein binding (Fig. 4).

Pathway analysis was performed as a functional analysis mapping aberrantly

expressed genes to KEGG pathways. The Fisher p value denotes the significance of the

pathway correlated to the conditions. The lower the value, the. More significant the

pathway (the recommended cutoff is 0.05).

In the border zone of myocardial infarction, the upregulated mRNAs were involved

in 51 pathways and the downregulated genes were involved in 29 pathways. The highest

Fig. 2 Heat map and hierarchical clustering of lncRNA (a) and mRNA (b) differential expression profiles
between the border zone of myocardial infarction and the control zone of sham operation groups. “Red”
indicates high relative expression, and “Green” indicates low relative expression
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enrichment score of pathways in upregulated mRNAs included the TNF signaling path-

way, cytokine–cytokine receptor interaction pathway. For the downregulated mRNAs,

the cell cycle pathway was included. This pathway is involved with myocardial infarc-

tion injury. The pathway enrichment for the genes in KEGG was analyzed using

ClueGO (Fig. 5).

LncRNA–mRNA co-expression network construction

To investigate the relationship and the potential modulating mechanism between the

aberrantly expressed mRNAs and the differentially expressed lncRNAs, we constructed

a co-expression network. The 5 most significantly differentially expressed upregulated

and downregulated lncRNAs were used to build the network. Based on the Pearson

correlation coefficient (R > 0.99 or R < − 0.99, p < 0.01) between mRNAs and lncRNAs,

we chose the top 10 upregulated and 10 downregulated co-expressed mRNAs for each

Fig. 3 The outermost circle is the autosomal distribution map. The second and third circles are the
distribution of differentially expressed genes on chromosomes. The red lines are upregulated and the green
lines are downregulated. The higher the column, the more differentially expressed genes are in the region.
The fourth and fifth circles are the distribution of differentially expressed lncRNAs on chromosomes. The
expression form is related to the expression of RNA. The internal connection indicates that Top500 co-
expresses the corresponding relationship between lncRNAs and mRNAs. Red indicates a positive correlation
and blue indicates a negative correlation
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lncRNA. The network containing the top 10 aberrantly expressed lncRNAs and the 198

most highly relevant dysregulated mRNAs is shown in Fig. 6.

Confirmation of 10 highly dysregulated lncRNAs using quantitative RT-PCR

To confirm the microarray results for the aberrantly expressed lncRNAs, quantitative

RT-PCR was performed. We selected 10 lncRNAs for quantitative RT-PCR validation

of their differential expression in the border zone of infarction. These lncRNAs were

the most significantly dysregulated and all appeared in the gene co-expression network.

The results of quantitative RT-PCR for the selected lncRNAs were generally consistent

with the microarray data, except those for BC089979 (Fig. 7). The disagreement result

could be acceptable because microarrays can sometimes generate false positive results.

Discussion
Here, we present a global expression profiling of lncRNAs and mRNAs in the border

zone of myocardial infarction. We also analyzed their potential biological functions.

The border zone decides the outcome of acute myocardial infarction, especially those

reperfusion fails, with potential mechanisms of apoptosis, inflammation, LV remodeling

and electric remodeling, and related processes [21–23]. Interestingly, the occlusion site

of the coronary artery usually decides the size of the infarction area but not the size of

the border zone (or the area at risk). For example, the areas were quite similar in pa-

tients with proximal and mid-left anterior descending coronary occlusions [1].

Fig. 4 Pie charts indicate the top 10 gene quantity of GO terms. Bar charts indicate the top 10 enrichment
scores of GO terms. a–c indicate biological process (BP), cellular component (CC) and molecular function
(MF) of the upregulated mRNAs, d–f indicate the BP, CC and MF of the downregulated mRNAs. p < 0.05
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Therefore, the question is what decides the size of the border zone of myocardial in-

farction. To elucidate this, it is important to investigate whether and what role lncRNA

plays in the border zone of myocardial infarction. We obtained border zone tissue very

precisely through EB and TTC dual-dye staining. We found hundreds of lncRNAs and

mRNAs that express differentially in border zone of myocardial infarction.

Unlike studies performed with mice models by microarray or RNA sequencing

[10, 12], our results show that the total number of differentially expressed anno-

tated lncRNAs in the border zone higher than the number in the myocardial in-

farction zone. This probably indicated that bioprocesses in the border zone were

more active and more complicated. The number of upregulated lncRNAs in the

border zone was greater than the downregulated number (407 vs 132), and this is

different from the relative levels reported for the myocardial infarction zone. We

considered this to indicate that in the border zone, more positive reactions were

responding to the myocardial infarction than in the myocardial infarction zone

itself.

In our study, some of the maximally dysregulated mRNAs, including Il6 and

Ptx3 were directly related with myocardial infarction. Il6 is one of the inflamma-

tory cytokines that participate in the inflammation response of myocardial infarc-

tion. Elevated Il6 levels are important risk markers and prognostic factors for

myocardial infarction [24–26]; Il6 also contributes to the remodeling of the left

ventricle after myocardial infarction [27]. Ptx3 shows a similar situation to Il6

[28–31]. Our results indicate that these changes to Il6 and Ptx3 reflect the in-

flammation response in the border zone, which is similar to the changes previ-

ously reported by other authors.

Fig. 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of aberrantly expressed genes
performed using ClueGO. a KEGG pathway classification of upregulated genes. b KEGG pathway
classification of downregulated genes
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It should be noted that some aspects of our study restricted the results.. For ex-

ample, we were short of biological repeats, and the microarray itself yielded some

false positive results. Therefore, further studies were needed to confirm this

information.

In the GO analysis, we found that the GO terms of the upregulated mRNAs in the

border zone were most highly enriched in cytokine activity, binding, cytokine receptor

binding and some related processes. Some of them, such as chemokine activity and

chemokine receptor binding, were similar with the GO term changes in the myocardial

infarction zone, but others were not [12].

In the pathway analysis, the upregulated mRNAs were mainly associated with in-

flammation, the immune and stress responses, cell proliferation, apoptosis and ne-

crosis, and some related processes. The downregulated mRNAs were mainly

Fig. 6 CNC-network. Red genes are upregulated lncRNAs. Deep blue genes are downregulated lncRNAs.
Upregulated mRNAs are yellow and downregulated mRNAs are light blue

Fig. 7 a: Upregulated lncRNAs in border zone detected by qRT-PCR vs microarry; b: Downregulated
lncRNAs in border zone detected by qRT-PCR vs microarry. The height of the columns indicate the log-
transformed fold changes in the expression between the border zone and the control zone, and the bars
represent standard errors. The shaded columns present the microarry expression of lncRNAs, while the
blank columns present the qRT-PCR results. *Indicates that there is a disagreement between the microarray
data and quantitative RT-PCR result
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associated with pathways involved in energy metabolism, cardiomyocyte hyper-

trophy, ion channels, apoptosis and growth, and some related processes. These re-

sults indicate that complicated compensation and decompensation occur in the

border zone after myocardial infarction, and this showed the importance of pro-

tecting the border zone.

Recent research has found that lncRNAs may be important in regulating gene expres-

sion [32]. By constructing a co-expression network with aberrantly expressed protein-

coding genes, we predicted the potential functions of lncRNAs. In the co-expression

network, we found 16 genes are directly involved in myocardial infarction. For example,

Alox5ap is reported to be involved in myocardial infarction with a degree of 49.27

(MalaCards score). This gene encodes a protein that is required for leukotriene synthe-

sis together with 5-lipoxygenase and is implicate in various types of inflammatory re-

sponse. Genetic variations in Alox5ap may be associated with susceptibility to

myocardial infarction and stroke through an increase in leukotriene production and in-

flammation in the arterial wall [33–37]. The lncRNA AY212271 is co-expressed with

Alox5ap. Therefore, we infer that AY212271 may participate in the inflammatory re-

sponse in the border zone of myocardial infarction indirectly through Alox5ap.

Itgb2 co-expresses with both EF424788 and MRAK088538. Itgb2 is reported to be a

risk factor of myocardial infarction and atherothrombotic cerebral infarction through

inflammatory processes as a cell adhesion molecule [38–40]. Itgb2 is also involved in

the reducing the risk of myocardial infarction due to adverse reactions to statins [41].

Therefore, we presume that one mRNA may be regulated by several lncRNAs at the

same time, and that a single lncRNA can also affect several mRNAs simultaneously.

For example, BC166504 co-expresses with 4 mRNAs involved in myocardial infarction:

B4galt1, Eln, Il1b and Nfkbiz.

B4galt1 (beta-1,4-GalT-I) mRNA was mostly expressed in neutrophils, macrophages

and endothelial cells. B4galt1 expression in the heart could be strongly induced by ad-

ministration of LPS [42]. B4galt1 is also involved in the proliferation and apoptosis of

Schwann cells induced by TNF-α via the activation of MAP kinase signal pathways

[43]. The extracellular matrix (ECM) remodeling of the vessel wall is an important step

in atherosclerosis and might potentially predict possible cardiovascular events. The

elastin to collagen III ratio was significantly higher in aortic punch tissues from myo-

cardial infarction patients [44]. Overexpression of Eln in the infarcted myocardium

could attenuate scar expansion and improve heart function [45].

Il1b (interleukin-1 beta) is a key pro-inflammatory cytokine that has been associated

with the development of atherosclerosis and myocardial infarction. Il1b gene polymor-

phisms influence the risk of myocardial infarction and ischemic stroke at a young age

through NF-κB, iNOS, MMP-2 and Bax [46–48]. Controversially, there is lack of asso-

ciation between IL-1 gene polymorphisms and myocardial infarction in the Turkish

population [49]. Il1b also activates a dexamethasone-sensitive myocardial L-arginine–

NO pathway, which raises myocardial cyclic GMP and induces marked twitch aberra-

tion which leads to cardiac depression [50, 51].

Nfkbiz (nuclear factor-kappa B inhibitor zeta) is a nuclear inhibitor of NF-κB (IκB) protein.

In myxoid liposarcoma, Nfkbiz plays a key role in inducing NF-κB-controlled genes deregu-

lated by FUS-DDIT3 [52]. Nfkbiz controls the proliferation and differentiation of epidermal

keratinocytes through NFκB-independent mechanisms [53]. Therefore, it is reasonable to
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presume that Nfkbiz may contribute to lowering myocardial infarction susceptibility through

the potential reduction of activated NFкB, which is a key factor in inflammation [54].

All of the above indicates that BC166504 is probably a key lncRNA in the border

zone of myocardial infarction, regulating inflammation, anti-inflammation, twitch aber-

ration and scar attenuation via different pathways. More studies are needed to further

confirm the functions of lncRNAs in the border zone of myocardial infarction.

Conclusions
The study uncovered the underlying roles of lncRNAs in the border zone of myocardial

infarction in rats. The results may evidence the underlying mechanisms of aberrantly

expressed lncRNAs and mRNAs in the pathophysiology of myocardial infarction.
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