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Abstract: Late-life depression (LLD), compared to depression at a young age, is more likely to
have poor prognosis and high risk of progression to dementia. A recent systemic review and meta-
analysis of the present antidepressants for LLD showed that the treatment response rate was 48%
and the remission rate was only 33.7%, thus implying the need to improve the treatment with
other approaches in the future. Recently, agents modulating the glutamatergic system have been
tested for mental disorders such as schizophrenia, dementia, and depressive disorder. Ketamine, a
noncompetitive NMDA receptor (NMDAR) antagonist, requires more evidence from randomized
clinical trials (RCTs) to prove its efficacy and safety in treating LLD. The metabotropic receptors
(mGluRs) of the glutamatergic system are family G-protein-coupled receptors, and inhibition of
the Group II mGluRs subtypes (mGlu2 and mGlu3) was found to be as effective as ketamine in
exerting rapid antidepressant activity in some animal studies. Inflammation has been thought to
contribute to depression for a long time. The cytokine levels not only increase with age but also
decrease serotonin. Regarding LLD, interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) released
in vivo are likely to contribute to the reduced serotonin level. Brain-derived neurotrophic factor
(BDNF), a growth factor and a modulator in the tropomyosin receptor kinase (Trk) family of tyrosine
kinase receptors, probably declines quantitatively with age. Recent studies suggest that BDNF/TrkB
decrement may contribute to learning deficits and memory impairment. In the process of aging,
physiological changes in combination with geriatric diseases such as vascular diseases result in
poorer prognosis of LLD in comparison with that of young-age depression. Treatments with present
antidepressants have been generally unsatisfactory. Novel treatments such as anti-inflammatory
agents or NMDAR agonists/antagonists require more studies in LLD. Last but not least, LLD and
dementia, which share common pathways and interrelate reciprocally, are a great concern. If it is
possible to enhance the treatment of LDD, dementia can be prevented or delated.
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1. Introduction

Aging is a global trend. The UN statistics shows that the population over age 65 by 2050
will reach 16% of total population. (https://www.un.org/en/global-issues/ageing?fbclid=
IwAR2ut7ufS5ULfFGf4HbXtijNmx2q0VFzzIyBy0Fonznzt87LeIMjJGK21nU (accessed on
9 July 2021). Depression has recently been identified as a pandemic, causing huge social cost
and high financial load. The average prevalence of geriatric depression in the community is
about 12%, and, in long-term care institutions, 35% of patients have significant depressive
symptoms [1].

Unlike depression at a young age, late-life depression (LLD), with high pathogenic
complexity caused by physiological and psychosocial issues and chronic disease, can

Int. J. Mol. Sci. 2021, 22, 7421. https://doi.org/10.3390/ijms22147421 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2162-8174
https://doi.org/10.3390/ijms22147421
https://doi.org/10.3390/ijms22147421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.un.org/en/global-issues/ageing?fbclid=IwAR2ut7ufS5ULfFGf4HbXtijNmx2q0VFzzIyBy0Fonznzt87LeIMjJGK21nU
https://www.un.org/en/global-issues/ageing?fbclid=IwAR2ut7ufS5ULfFGf4HbXtijNmx2q0VFzzIyBy0Fonznzt87LeIMjJGK21nU
https://doi.org/10.3390/ijms22147421
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22147421?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 7421 2 of 14

rarely be treated with one antidepressant. A recent systemic review and meta-analysis
of the present antidepressants for LLD showed that the treatment response rate and the
depression remission rate are 48% and 33.7% [2], respectively. It is thought that biological
factors are pathogenically associated with LLD [3]. In the process of aging, structural
changes in the brain may be associated with depression. The causes of LLD may include
not only neuroendocrine dysregulation and changes in neural circuitry, but also genetic
vulnerability and stress due to life events that interact reciprocally [4,5].

2. Depression and Late-Life Depression

According to the 2016 CANMAT guideline, the first-line drug recommendations for
adult depression include SSRIs, SNRIs, agomelatine, bupropion, and mirtazapine [6]. For el-
derly depression, the first-line drug recommendations include duloxetine, mirtazapine, and
nortriptyline (level of evidence: level 1), as well as bupropion, citalopram/escitalopram,
desvenlafaxine, duloxetine, sertraline, venlafaxine, and vortioxetine (level of evidence:
level 2) [7].

In two large-scale studies, IMPACT [8,9] and PROSPECT [10,11] trials for elderly
depressed patients, there was a difference in response rate between receiving antidepressant
treatment and receiving general care only. The results of the IMPACT and PROSPECT trials
showed that the antidepressant group had a better response rate (IMPACT, antidepressant
vs. normal care: 45% vs. 19%; PROSPECT, antidepressant vs. usual care: 43% vs. 28%).
Compared with young depression, late-life depression displays more somatic symptoms
and cognitive deficits. The somatic symptoms include hypochondriasis, general and
gastrointestinal somatic symptoms, and agitation [12–14]. Moreover, old age may be
accompanied by other chronic diseases. When somatic complaints occur, depression may
not be the first diagnosis, thus leading to underdiagnosis [15]. In the past, meta-analyses
found different response rates of antidepressants between different groups: 53.8% in early-
onset depression vs. 44.4% in late-onset depression [16,17]. Coupled with the analysis of
subgroups, it was found that depressed people younger than 55 years had a significantly
higher response rate to antidepressants than those older than 65 years. In addition, there
was no significant difference between the group older than 65 and the placebo group. In
the STAR*D trial [18], the overall remission rate in the acute treatment step was 67%. With
more treatment steps, the remission rate continued to decrease, from 36.8% in the first
step to 13% in the fourth step. Approximately 50% of patients will develop treatment
resistance to antidepressants over time. Some studies found that treatment resistance for
first-line antidepressants in elderly patients was as high as 55–81% [19]. Some studies
suggest that lithium may be effective for treatment-resistant late-life depression [20,21];
however, more replicative studies are warranted. Esketamine is a recent FDA-approved
treatment for treatment-resistant depression, but its efficacy and safety in the elderly have
not yet been confirmed. A recent phase 3 clinical trial [22] enrolled treatment-resistant
depression patients over 65 years old and randomly assigned them to the nasal spray
esketamine/antidepressant or nasal spray placebo/antidepressant group for 4 weeks.
According to the change in scores of MADRS as the primary endpoint, there were no
significant differences between both groups.

3. Late-Life Depression and Suicide

The average prevalence of geriatric depression in the community is about 12%, and,
in long-term care institutions, 35% of patients have significant depressive symptoms [1].
According to previous studies [23,24], the incidence of depression in women was relatively
high. Regarding suicide, the methods used by the elderly are usually more lethal than those
used by the young [25]. Studies have also found that depression and suicide are strongly
correlated. Of course, depression symptoms themselves are not the single cause of suicide.
However, the overall suicide rate of people taking antidepressants seems to be relatively
low [26]. A recent American study [27] enrolled 225 elderly people with an average age
of 71.4 years who were eligible for the diagnosis of depression. It was found that low
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education, being male, and recent stressful events were strongly associated with suicidal
ideation, especially recent stressful events (p < 0.001). A study in the United Kingdom [28],
which analyzed the characteristics of early-onset depression and late-onset depression
suicides, found that psychiatric hospitalizations were rare among people with late-onset
depression and other psychiatric comorbid diagnoses. Of note, there were more life stress
events before suicide.

4. Depression and Dementia

Late-life depression is usually considered a chronic course, accompanied by cognitive
impairment. Depression is considered to be one of the risk factors of dementia or a
prodrome of dementia. Research [29] suggests that late-life depression may increase
dementia risk by twofold. A recent meta-analysis [30] showed that depression in later
years is associated with dementia in all forms. Further analysis discovered that the risk
(2.52, 95% CI 1.77–3.59, p < 0.001) of vascular dementia is higher than Alzheimer‘s disease
(1.65, 95% CI 1.42–1.92, p < 0.001).

The two seem to overlap in some neurobiological findings. The theory of the HPA axis
is currently the most consistent in depression research. Elevated cortisol level can also cause
hippocampus neuronal loss and volume reduction [31,32]. Hypercortisolemia can also be
seen in the CSF of patients with Alzheimer’s disease (AD) [33]. Vascular depression refers
to the appearance or aggravation of depression after the occurrence of cerebrovascular
events. In addition to WMHs seen on neuroimaging, there are lesions on small blood
vessels (maybe subcortical infarcts, microbleeding, etc.). In addition, in cases of depression,
decreased blood flow in the brain may also lead to hyperactivity of the hippocampus and
amygdala [34]. Inflammation can be seen in people with AD and depression, due to an
increase in activated microglia in the CNS [35,36]. Microglial cells that are continuously
activated have a reduced ability to remove neurotoxic agents, leading to a reduction in
neuronal loss and neurogenesis [34]. An increase in peripheral proinflammatory markers
is also associated with the severity of depressive symptoms and cognitive impairment [37].
Neurotrophic factors include BDNF, the main function of which is to regulate synaptic
plasticity, which plays an important role in learning and memory. It has been found in
patients with depression that the use of antidepressants can increase the concentration
of BDNF in the blood [30,38]. In patients with AD, the severity of cognitive impairment
is related to BDNF and amyloid beta (Aβ1–42) plasma levels in serum [39,40]. Although
the current research has found some common neurobiological changes in depression and
AD, there are overlaps in symptoms. However, according to the current research, there is
insufficient evidence that antidepressants can improve the cognition of depression in the
elderly and the depression symptoms of AD [41–44].

5. Mechanisms Underlying Depression/Late-Life Depression
5.1. Glutamatergic System

Glutamatergic synapses are excitatory synapses that are associated with cerebral
regions related to depression and stress, such as the prefrontal cortex (PFC), hippocampus,
and amygdale. Glutamate receptors belong to two groups: ionotropic receptors and G-
protein coupled metabotropic receptors (mGluRs); the former contains three subgroups:
N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA), and kainite receptors. The NMDA receptor formed by two GluN1 subunits and
two GluN2 subunits is a tetrameric glutamate with ligand-gated and voltage-gated ion
channels. Ligand-gated channels are only activated when the co-agonist (e.g., glycine
or D-serine) and the agonist (e.g., glutamate) bind to it concurrently [45]. Ca2+ in cell
conduction mainly serves as a second messenger; it is associated with gene regulation,
excitement of the cell membrane, and synaptic plasticity. In the past, aging was thought
to be related to changes in Ca2+ regulation [46]. NMDA receptors possess a Ca2+ channel
that triggers subsequent message conduction through the influx flow of Ca2+. The GluN1
subunit of the NMDA receptor is mainly distributed in the hippocampus, and, during the
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aging process, the GluN1 protein levels in the hippocampus decrease significantly [47,48].
The GluN2B subunit’s calcium ion channel flow rate is slower and it is slower to close,
which has a large impact on the overall Ca2+ fluidity; thus, it is considered to have a greater
impact on synaptic activity. The upregulation of GluN2B may enhance the role of LTP,
thereby improving learning and memory [49].

Ketamine, a noncompetitive NMDA receptor antagonist, is the most clinically and
empirically proven glutamate agent for treatment-resistant depression, as a rapid-acting
antidepressant. While the mechanism of ketamine in the brain is not fully understood,
some studies have shown that it increases the AMPA/NMDA receptor activity ratio by
blocking the NMDA receptor first and activating the AMPA receptor later, subsequently
activating mammalian target of rapamycin (mTOR) signaling by releasing BDNF [50,51].
In addition to (S)-ketamine, which was approved by US FDA and marketed in 2019,
the enantiomers (R)-ketamine and (S)-norketamine also have therapeutic potential. In
animal studies, (R)-ketamine leads to fewer behavioral abnormalities and a more extended
antidepressant effect. The (S)-enantiomer may induce psychosis by decreasing the binding
availability of dopamine receptors and increasing presynaptic dopamine release [52]. In
fact, the pathways for LLD are much more complex. For example, other NMDA-related
biomarkers and even D-aspartate are also involved. A change in the peripheral mRNA
expression levels of NMDAR genes was found in individuals with MDD [53]. Not only
antagonists, but also agonists of NMDAR show antidepressant efficacy. D-Serine is a
co-agonist of NMDAR, and, in a single-dose administration of 2.1 g orally, it led to a
reduction in subjective feelings of sadness and anxiety in the healthy group [54]. It seems
that D-serine and ketamine share the common pathway mentioned above [55]. D-Serine
also showed the potential to improve cognitive function in some animal studies, through
exogenous D-serine supplementation [54,56]. Sodium benzoate is a D-amino-acid oxidase
inhibitor, which can block the metabolism of D-serine and increase its levels. Research has
shown that sodium benzoate can improve cognitive impairment in early-phase AD and in
schizophrenia [57,58]. Even in late-phase AD, there was a significant difference in cognitive
improvement between benzoate treatment group and placebo. Additionally, the results
showed female preference [59]. A recent study also demonstrated that sodium benzoate
can lead to an improvement in brain activity and cognitive function in MCI [60]. Declining
cortical GABA concentrations [61–63] and abnormal NMDA receptor levels [63,64] in the
aging brain and in patients with depression at the age of 60 and over imply the role of
ketamine in treating LLD. Ketamine’s safety and validity as an antidepressant for LLD
were proven by a few small double-blind [65], randomized, and active placebo-controlled
trials; however, a huge RCT is required as a robust piece of evidence in the future.

Memantine, as another noncompetitive NMDA receptor antagonist, was proven to
enhance the BDNF level [66] and inhibit depressive behaviors in animal trials. The pilot
study [67] assessed the effects of a combined treatment of antidepressants and memantine
for LLD and impaired cognition with participants aged 50–90 recruited from the outpatient
department of the Late Life Depression Clinic and the Memory Disorders Clinic at the
New York State Psychiatric Institute and the Behavioral Neurologists’ practice group
at Columbia University Medical Center, who received neuropsychological testing and
remitted depression assessment at baseline and at weeks 12, 24, and 48. The escitalopram
intake was 10 mg/day during week 1 and 20 mg/day for the remainder of the study.
The maximal intake was either 20 mg/day or the tolerable daily intake. The memantine
intake was 5 mg/day during week 2, with the intake hiked on a weekly basis, such that
the maximal intake was either 20 mg/day in week 6 or the tolerable daily intake. The
subjects consisted of 35 elderly cases with depression and cognitive impairment with the
escitalopram mean daily dose of 18.62 mg (SD 5.15) and the memantine mean daily dose of
13.62 mg (SD 6.67). The results showed an improvement in Hamilton Depression Rating
Scale scores and in cognitive functions (p = 0.0147). A recent RCT study [68] (a 6 month
double-blind placebo-controlled trial) compared the effects of escitalopram + memantine
(ESC + MEM) and escitalopram + placebo (ESC + PBO) for LLD and incident subjective
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memory complaints, where the samples with subjective memory complaints were prone
to mild cognitive impairment and Alzheimer’s disease. Prior to the trial, the subjects
suspended personal psychotropic medications for more than 2 weeks and fluoxetine for
more than 4 weeks. As a randomized clinical trial, the subjects consisted of 95 cases
randomly distributed to the ESC + MEM/ESC + PBO groups with an escitalopram daily
intake of 10–20 mg/day in both groups and a memantine daily intake of 5 mg/day initially
and 10 mg twice/day later on in the ESC + MEM group. The remission rate of LLD was
the primary outcome. The definition was an HAM-D score of no more than 6. The samples
in both groups received an assessment in month 3 and month 6. The remission rates of the
ESC + MEM and ESC + PBO groups in months 3 and 6 were 45.8% and 47.9% and 38.3%
and 31.9%, respectively (p = 0.15). Both groups failed to present a significant difference
in the tolerance and in the dropout rate; however, the ESC + MEM group presented a
higher improvement.

Metabotropic receptors (mGluRs) represent nonionotropic, G-protein-coupled recep-
tors in the glutamatergic system which can be categorized into three subgroups according
to their sequence similarities, pharmacological properties, and intracellular signal trans-
duction mechanisms: group I including mGluR1 and mGluR5, group II including mGluR2
and mGluR3, and group III including mGluR4, mGluR6, mGluR7, and mGluR8 [69,70].
Synaptic plasticity refers to the ability of synapses to strengthen or weaken over time
in response to increases or decreases in their activity, which is thought to be associated
with learning and memory. Long-term potentiation (LTP) is induced by high-frequency
electrical stimulation to glutamatergic synapses. Previous studies focused on NMDARs
as the essential mediators in long-term memory formation, with overactive NMDARs
considered neurotoxic. Long-term depression (LTD) is modulated by synaptic NMDARs
(NMDAR-LTD) or by mGluRs (mGluR-LTD). It is thought that solitary stimulation of
group I mGluRs (mGluR1 and mGluR5) is able to induce LTD, while synaptic AMPA re-
ceptors generate endocytosis (Figure 1) [71,72]. Dysregulation of mGluR–LTD contributes
to both learning deficits and neuropathological conditions such as fragile X syndrome,
mental retardation, and Alzheimer’s disease [73]. The metabotropic glutamate receptors
(mGluRs) are thought to contribute to neurological and psychiatric disorders, including
major depressive disorder [74]. Activating the group II metabotropic glutamate receptor
subtypes (mGlu2 and mGlu3) inhibits spontaneous excitatory neurotransmission [75–77]
and induces postsynaptic LTD [78,79]. In a preclinical study [80], the mGlu2 and mGlu3 an-
tagonist (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)-sulfanylmethyl]-4-hydroxy-
bicyclo[3.1.0]hexane-2,6-dicarboxylic-acid (LY3020 371) was used to inhibit the mGlu2/3 re-
ceptors in the cortex and hippocampus of rats/mice. It was proven to be a valid antide-
pressant as good as ketamine. Among the agents modulating the glutamatergic system,
ketamine is widely used and publicly known for treatment-resistant depression. In the
future, mGlu2/3 receptor agents as a single or combined drug with ketamine or other
antidepressants can likely be used to exert significant effects for depression, including for
the elderly. Additionally, NMDARs and metabotropic glutamate receptors (mGluRs) are
associated with the modulation of long-term potentiation (LTP) and long-term depression
(LTD) (Figure 1). Depression is a risk factor of dementia. It is possible to reduce the family
care load and huge social cost linked to remitted depression, which can lower dementia
risk, by treating cognitive impairment via modulation of the LTP and LTD strengths.
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Figure 1. Signal pathway involved in mGluR–LTD. Metabotropic receptors (mGluRs) are G pro-
tein-coupled receptors. G proteins are activated when GTP is converted to GDP, and the three 
subunits (α, β, and γ) are dissociated. The release of G β and γ subunits activates Rap 1 and 
MAPK kinase 3/6. Subsequently, P38 MAPK, after it is activated, promotes AMPA receptor inter-
nalization and endocytosis. Additionally, the Rap 1–MAPK/ERK pathway activates nuclear pro-
tein RSK1. MAPK: mitogen-activated protein kinases; ERK: extracellular signal-regulated kinases; 
RSK1: ribosomal S6 kinase-1. 

5.2. Hypothalamic–Pituitary–Adrenal (HPA) Axis and Immunological Biomarkers 
Depression is considered to be associated with acute and chronic stresses. Stress in-

creases glutamate levels and modulates the hypothalamic–pituitary–adrenal (HPA) axis 
and epigenetic regulation. Increasing glutamate levels produces neurotoxicity, resulting 
in neuronal damage and loss. The HPA axis, under the stimulation of stress, causes the 
glucocorticoids levels to rise. As found in animal experiments, an increased level of glu-
cocorticoids can lead to neuronal atrophy [81,82] in the prefrontal cortex and hippocam-
pus. Stress can also cause decreased expression and function of the BDNF protein in the 
prefrontal cortex and the hippocampus, along with a decrease in the peripheral concen-
tration [83–85]. The prefrontal cortex and hippocampus are two areas considered to be 
associated with depression. Decreases in neuronal atrophy in these two areas may cause 
depression and the impairment of learning and memory. 

Recent evidence has shown the correlation of inflammation, the HPA axis, and de-
pression. Inflammation and the HPA axis impact one another, while long-term cytokine 
exposure affects the activity of the glucocorticoid receptor. Glucocorticoid resistance 
causes HPA axis hyperactivity and increases inflammation [86,87]. The HPA axis function 
is regulated by glucocorticoid receptors, and epigenetic mechanisms such as DNA meth-
ylation can alter glucocorticoid receptors (GRs). In a recent study in South Korea [88], an 
attempt was made to analyze the correlation between GR DNA methylation and the inci-
dence of depression in old age. A total of 732 local residents over 65 years were tracked, 
521 of whom did not suffer depression at baseline. Blood was sampled from surrounding 
areas to analyze the GR gene, NR3C1, and the degree of DNA methylation in three differ-
ent CpG sites; the results showed that the higher DNA methylation of CpG 2 was more 
related to the incidence of depression 2 years later. Microglia represent a brain-resident 
macrophage that can trigger innate immunity, and secreted BDNF plays a role in motor 

Figure 1. Signal pathway involved in mGluR–LTD. Metabotropic receptors (mGluRs) are G protein-
coupled receptors. G proteins are activated when GTP is converted to GDP, and the three subunits
(α, β, and γ) are dissociated. The release of G β and γ subunits activates Rap 1 and MAPK kinase
3/6. Subsequently, P38 MAPK, after it is activated, promotes AMPA receptor internalization and
endocytosis. Additionally, the Rap 1–MAPK/ERK pathway activates nuclear protein RSK1. MAPK:
mitogen-activated protein kinases; ERK: extracellular signal-regulated kinases; RSK1: ribosomal
S6 kinase-1.

5.2. Hypothalamic–Pituitary–Adrenal (HPA) Axis and Immunological Biomarkers

Depression is considered to be associated with acute and chronic stresses. Stress
increases glutamate levels and modulates the hypothalamic–pituitary–adrenal (HPA) axis
and epigenetic regulation. Increasing glutamate levels produces neurotoxicity, resulting
in neuronal damage and loss. The HPA axis, under the stimulation of stress, causes
the glucocorticoids levels to rise. As found in animal experiments, an increased level
of glucocorticoids can lead to neuronal atrophy [81,82] in the prefrontal cortex and hip-
pocampus. Stress can also cause decreased expression and function of the BDNF protein
in the prefrontal cortex and the hippocampus, along with a decrease in the peripheral
concentration [83–85]. The prefrontal cortex and hippocampus are two areas considered
to be associated with depression. Decreases in neuronal atrophy in these two areas may
cause depression and the impairment of learning and memory.

Recent evidence has shown the correlation of inflammation, the HPA axis, and de-
pression. Inflammation and the HPA axis impact one another, while long-term cytokine
exposure affects the activity of the glucocorticoid receptor. Glucocorticoid resistance causes
HPA axis hyperactivity and increases inflammation [86,87]. The HPA axis function is regu-
lated by glucocorticoid receptors, and epigenetic mechanisms such as DNA methylation
can alter glucocorticoid receptors (GRs). In a recent study in South Korea [88], an attempt
was made to analyze the correlation between GR DNA methylation and the incidence of
depression in old age. A total of 732 local residents over 65 years were tracked, 521 of
whom did not suffer depression at baseline. Blood was sampled from surrounding areas to
analyze the GR gene, NR3C1, and the degree of DNA methylation in three different CpG
sites; the results showed that the higher DNA methylation of CpG 2 was more related to
the incidence of depression 2 years later. Microglia represent a brain-resident macrophage
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that can trigger innate immunity, and secreted BDNF plays a role in motor learning and
memory, as well as the regulation of pain [89–91]. If microglia are active for a prolonged
time period, the level of reactive oxygen species is increased in the brain, resulting in nerve
cell death [92]. The production of an inflammatory brain reaction induces indoleamine
2,3-deoxygenate (IDO) upregulation, driving tryptophan toward the kynurenine pathway,
leading to a decrease in serotonin production. Tryptophan is the precursor of serotonin.
Tryptophan goes through two main metabolic pathways, with about 5% of tryptophan
producing serotonin through the methoxyindole pathway, and about 95% going through
the kynurenine pathway [93]. Tryptophan’s metabolized products via the kynurenine path-
way are 3-hydroxykynurenine, hydroxyanthranilic acid, adenosine triphosphate (ATP),
quinolinic acid, nicotinamide adenine dinucleotide, nicotinic acid, picolinic acid, KYN
(kynurenic acid), indolepyruvic acid, indolelactic acid, and indoleacetic acid. The kynure-
nine pathway is mainly divided into two parts, extrahepatic and intrahepatic, with the
majority of the pathway being carried out in the liver. The enzymes involved are different.
In the liver, tryptophan 2,3-dioxygenase (TDO) is active, whereas the brain mainly involves
indoleamine 2,3-dioxygenase (IDO), stored in astrocytes, microglia, and microvascular
endothelial cells. When the body is exposed to stress or inflammation, TDO is activated
and the IDO level is upregulated. Subsequently, tryptophan enters the kynurenine path-
way, and the overall level of KYN increases, with exogeneous KYN entering the brain
through the BBB [35,94]. Among this group of metabolites, KYN (kynurenic acid) can
inhibit ionotropic glutamate receptors and attenuate glycerin co-agonist site activity on
NMDA receptors. Quinolinic acid, an agonist of NMDA receptors, can inhibit the reuptake
of glutamate by astrocytes, causing neurotoxicity-related [95] mental diseases such as de-
pression. In addition, in suicide attempts, it was found that the concentration of quinolinic
acid in CSF and plasma was increased [96].

A considerable number of studies have identified that interleukin-6 (IL-6) contributes
substantially to major depressive disorder [97–99]. Not only does IL-6 reduce serotonin
concentrations, but synaptic neuroplasticity is also impaired by interleukin-1β (IL-1β),
which is released in vivo, contributing to cognitive impairment [100]. A high level of IL-6
was found to be related to increased risk for major depressive disorder (odds ratio = 2.49)
in the elderly group in a longitudinal study [101] (Longitudinal Aging Study Amsterdam,
LASA), independent of age, chronic disease, cognitive impairment, or use of antidepres-
sants or anti-inflammation drugs. A 2 year South Korean [102] longitudinal study presented
various correlations between five proinflammatory cytokine levels (TNF-α, IL-1α, IL-1β,
IL-6, and IL-8) and late-life depression (LLD) from cross-sectional and prospective per-
spectives. The study collected 732 samples; 631 (82.6%) had no depression prior to the
trial; 521 (521/631 = 0.826 = 82.6%) underwent a 2 year trace; 63 (63/521 = 0.12 = 12%)
exhibited depression within a 2 year trace. Sex, cognitive function, disability, physical
activity, and vascular risk score corrections and Bonferroni corrections were applied to the
data collected. According to the findings, the IL-1β, IL6, and IL-8 levels of the 63 cases with
incident depression increased; however, the comparative analytics among the IL-1β, IL-6,
and IL-8 levels of the cases with incident depression at baseline and those with no incident
depression at baseline failed to present a significant difference (χ2 = 0.544; p-value = 0.461).
These outcomes imply that the cytokine levels are not an independent risk factor of incident
depression. A recent study [103] presented how cytokines contribute to LLD and to cog-
nitive impairment, i.e., learning deficits and memory impairment. The subjects consisted
of 58 cases aged 60 and older, 24 with and 34 without depression. In accordance with the
findings, the IL-1β, TNF-α, and IL-6 levels in the group with depression exceeded those
without depression, and the high level of IL-6 contributed to memory impairment in the
depressive group. These findings seem to conform to the findings of previous studies
showing that IL-6 does play a role in LLD, but causality cannot be proven empirically. With
respect to cognitive impairment, IL-6 was not verified to contribute in the non-depressive
group, but an association was identified in the depressive group. LLD is a risk factor of
dementia; thus, the outcomes merely prove that IL-6 is not a single or direct risk factor of
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cognitive impairment. Such cognitive impairment is induced by the reaction of IL-6 with
other factors or via subsequent pathological issues such as depression.

5.3. Brain-Derived Neurotrophic Factor

Neurotrophins are a family of growth factors that modulate synaptic plasticity and
neurotransmission, and there are four members of the neurotrophin family: nerve growth
factor, BDNF, neurotrophin-3, and neurotrophin-4/5; among them, BDNF, with the widest
distribution, is found mainly in the brain cortex and hippocampus [104,105]. BDNF has
the function of protecting nerve death in the peripheral nerve system [106]; it is the main
regulator of synaptic plasticity in the CNS, and it produces immediate and instructive
regulation. BDNF gene is regulated by cell-type-specific and neuronal activity. In recent
studies, we attempted to use technologies such as monoclonal BDNF antibody, an epitope-
tagged BDNF knock-in mouse line (BDNF-Myc), and a conditional BDNF KO mouse line
(cBDNF-ko) to detect where BDNF is manufactured and stored. Currently, there is evidence
showing that BDNF exists in astrocytes, microglia, and postsynaptic dendrites, in addition
to presynaptic axons and terminals [90,107]. The epitope-tagged BDNF knock-in mouse
line (BDNF-HA) was found under immune-EM, and BDNF [108] was found in both presy-
naptic and postsynaptic vesicles of the hippocampus. The BDNF stored in postsynaptic
vesicle was released under activity-dependent regulation [109]. In addition to nerve cells,
BDNF [110] is found in both human platelets and megakaryocytes. The BDNF protein
acts via the tropomycin receptor kinase (Trk) family of tyrosine kinase receptors. It is
thought that BDNF/TrkB contribute to not only cognitive impairment (including learning
deficits and memory impairment) but also mental disorders (including schizophrenia,
mood disorders, intellectual disability, and autism) [111]. Malfunctioning BDNF/TrkB
damages neural maintenance and regeneration, thus causing structural irregularities of
brain. The BDNF gene features nine promoters that discretionarily generate BDNF tran-
scripts, and its expression is regulated by calcium via Ca2+ influx, through Ca2+ permeable
glutamate receptors (mainly N-methyl-D-aspartate (NMDA) receptors) and voltage-gated
Ca2+ channels [65,112]. The BDNF protein can be edited epigenetically to yield various
versions. For instance, a substitution single-nucleotide polymorphism (SNP) at codon
66 leads to the amino-acid valine being substituted by methionine (SNP rs6265), and this
variant likely contributes to bipolar disorder [113,114]. Epigenetic phenomena refer to
changes that affect gene activity and expression without changing the DNA sequence via
DNA methylation and histone modifications. It has been found that the DNA methylation
level of BDNF in the depression group exceeded that in the bipolar disorder and healthy
groups [115,116]. Some animal trials showed that antidepressant treatment can reverse
BDNF via its downregulation [117,118]. Ketamine, as a rapid-acting antidepressant, is
probably associated with BDNF since it acts as follows: (1) increased phosphorylation and
activation of TrkB [119]; (2) considerable release of BDNF at the hippocampus [120]; (3) ac-
tivation of mammalian target of rapamycin (mTOR) signaling [51]. A 2 year longitudinal
study by Diniz et al. (2014) [121] presented a comparative study of the BDNF levels in three
groups: (1) remitted depression with incident mild cognitive impairment (LLD + MCI);
(2) remitted depression without cognitive decline (LLD + NCD); (3) control group (no
depression and no cognitive impairment). Additionally, a double-blind, placebo-controlled
study by Diniz et al. (2014) [121] assessed the effects of donepezil treatment on the BDNF
level. The study collected 158 samples from patients treated with the antidepressant;
130 with remitted depression treated with antidepressants later agreed to take part in the
double-blind, placebo-controlled donepezil treatment trial. Among these 130 samples,
there were 57 cases with incident mild cognitive impairment randomized to the donepezil
or placebo group. At baseline and at months 12 and 24, the BDNF levels of all samples were
tested. The findings showed that the BDNF level in the LLD + MCI and LLD + NCD groups
presented no significant difference at baseline. However, in the 2 year trace, the BDNF
level in all groups declined, whereas the donepezil treatment failed to alter the BDNF level.
These outcomes seemingly demonstrate that the decline in BDNF levels was due to aging.
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By considering the unavoidability of the BDNF level dropping during aging, we can study
its characteristics one factor at a time to determine any disparities in modulation and the
influence of other factors.

6. Conclusions

Late-life depression (LLD), unlike early-onset depression (EOD), is a geriatric disease
caused by a variety of factors. Serotonin is unlikely to effectively treat LLD, as it is thought
to be associated with other biological factors. The glutamatergic system, inflammatory
markers, and brain-derived neurotrophic factors may contribute to LLD and dementia.
Ketamine, as a noncompetitive NMDAR antagonist, is the only officially approved clinical
antidepressant; however, insufficient elderly were included in the pre-FDA-approved
clinical trials. Therefore, a further clinical trial is needed to empirically prove the validity,
safety, and reliability of ketamine as an antidepressant for LLD. The causality among
cytokines, BDNF factors, and LLD remains uncertain, and it can likely be ascertained by
applying anti-inflammatory agents or BDNF compounds in a clinical trial of the elderly.
Clearly, disease arises from a physiological and mental interaction; thus, it is necessary to
pay attention to cases of depression in the elderly, since improvements in physiological
and psychiatric conditions may occur simultaneously.
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