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Abstract

Auditory steady-state responses (ASSRs) are evoked brain responses to modulated or

repetitive acoustic stimuli. Investigating the underlying neural generators of ASSRs

is important to gain in-depth insight into the mechanisms of auditory temporal

processing. The aim of this study is to reconstruct an extensive range of neural gen-

erators, that is, cortical and subcortical, as well as primary and non-primary ones. This

extensive overview of neural generators provides an appropriate basis for studying

functional connectivity. To this end, a minimum-norm imaging (MNI) technique is

employed. We also present a novel extension to MNI which facilitates source analy-

sis by quantifying the ASSR for each dipole. Results demonstrate that the proposed

MNI approach is successful in reconstructing sources located both within (primary)

and outside (non-primary) of the auditory cortex (AC). Primary sources are detected

in different stimulation conditions (four modulation frequencies and two sides of

stimulation), thereby demonstrating the robustness of the approach. This study is

one of the first investigations to identify non-primary sources. Moreover, we show

that the MNI approach is also capable of reconstructing the subcortical activities of

ASSRs. Finally, the results obtained using the MNI approach outperform the group-

independent component analysis method on the same data, in terms of detection

of sources in the AC, reconstructing the subcortical activities and reducing

computational load.
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1 | INTRODUCTION

The temporal envelope of the speech signal fluctuates between

2 and 50 Hz and transmits both phonetic and prosodic information

(Rosen, 1992). In particular, continuous speech yields pronounced

low-frequency modulations (between 2 and 20 Hz) in its temporal

envelope: very low-frequency amplitude modulations in sounds

signal the occurrence of syllables (±4 Hz, ±250 ms), and phonemes

(15–20 Hz, ±50 ms), and drive speech perception (Poeppel, 2003).

These low-frequency modulations are both necessary and almost

sufficient for accurate speech perception (e.g., Drullman, Festen, &

Plomp, 1994; Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995).

Temporal processing of acoustic modulations can be investigated

by analyzing auditory steady-state responses (ASSRs) in the EEG.

In response to amplitude modulated (AM) stimuli, afferent neurons

in the central auditory system synchronize their firing patterns to a
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particular phase of these stimuli and generate the phase-locked

responses known as ASSRs (Picton, John, Dimitrijevic, & Purcell,

2003). These evoked potentials reflect the capability of the auditory

system to follow the timing patterns of auditory stimuli. The excellent

temporal resolution of EEG is highly suitable to capture these phase-

locked responses. EEG provides rich information about the dynamics

of these responses and their underlying brain networks. Generally,

EEG is highly relevant to study auditory temporal processing (He,

Sohrabpour, Brown, & Liu, 2018; Picton, 2013). In the present

study, amplitude modulations at 4 and 20 Hz are presented as a

model of the rate of occurrence of syllables and phonemes. Relatively

high modulation frequencies at 40 and 80 Hz are also investigated,

because it is believed that these rates can activate more subcortical

neural generators than cortical ones (Herdman et al., 2002).

ASSRs are also used clinically to determine hearing thresholds

(Picton, Dimitrijevic, Perez-Abalo, & van Roon, 2005), to assess sup-

rathreshold hearing across age (Goossens, Vercammen, Wouters, &

van Wieringen, 2016), to monitor the state of arousal during anesthe-

sia (Plourde & Picton, 1990), and to open doors to neuroscience

research.

In order to gain more insight into the mechanisms underlying

auditory temporal processing it is necessary to reconstruct the cortical

and subcortical sources related to ASSRs. The reconstruction (localiza-

tion) techniques are not straightforward and yield different numbers

and locations of sources, dependent on the applied procedure and its

prior assumptions. Most electrophysiological studies have used dipole

source analysis to localize ASSR generators and reported that cortical

sources of ASSRs were located bilaterally in the primary auditory cor-

tex (AC, in the supratemporal plane) (Herdman et al., 2002; Kuriki,

Kobayashi, Kobayashi, Tanaka, & Uchikawa, 2013; Poulsen, Picton, &

Paus, 2007; Schoonhoven, Boden, Verbunt, & de Munck, 2003;

Spencer, 2012; Teale et al., 2008). While the above-mentioned stud-

ies involved prior assumptions regarding the number and location of

sources, other studies, using minimal prior assumptions, have reported

that the ASSR may reflect activity in even more widely distributed

regions of the brain, beyond the AC (Farahani, Goossens, Wouters, &

van Wieringen, 2017; Farahani, Wouters, & van Wieringen, 2019;

Reyes et al., 2005). Sources located within the AC are considered pri-

mary sources, those located outside the AC are considered non-

primary ones (Farahani et al., 2019). The number and location of the

non-primary sources are still a matter of debate and need to be inves-

tigated using source modeling techniques with minimal restrictions

about the location of the sources.

Farahani et al. (2019) reconstructed ASSR sources using group-

independent component analysis (ICA), a data-driven approach

with minimal prior assumptions about the number and location of

the sources. Although the group-ICA approach was successful in

reconstructing primary and non-primary sources, for some stimulation

conditions (e.g., 20 Hz AM stimuli presented to the right ear) the

expected primary sources in the AC were not detected. Moreover,

Farahani et al. (2019) detected a subcortical source near the thalamus

only for 80 Hz ASSR, while fMRI studies show that the subcortical

activations are also expected in the brainstem, midbrain, and also

at other modulation frequencies (Overath, Zhang, Sanes, & Poeppel,

2012; Steinmann & Gutschalk, 2011). Reconstruction of the subcorti-

cal sources from the electrophysiological measurements with high

temporal resolution like EEG can provide extremely important informa-

tion about early bottom-up processing and neural synchronization

along the auditory pathway, such as the strength of response, the

delay of response (phase delay), and the phase-locking ability (temporal

precision) to different modulation frequencies.

In sum, a broad view of neural sources of ASSRs including a wide

range of cortical (primary and non-primary) and subcortical sources is

lacking. An extended overview of neural generators (i.e., all possible

sources simultaneously) increases our understanding of the mecha-

nisms underlying auditory temporal processing and is essential for

developing functional connectivity networks, because unobserved

neural sources pose spurious connections in the networks (Bastos &

Schoffelen, 2016).

Beside the data-driven methods of source reconstruction such as

ICA, other methods involve the volume conduction model of the head

to reconstruct the sources. The use of head-model information can be

helpful to consistently and simultaneously reconstruct an extensive

range of neural sources. The two major groups of source reconstruction

methods based on head-model information and also with minimal

restrictions about the number and location of the sources are those

involving beamforming and minimum-norm imaging (MNI) (Grech

et al., 2008; Michel et al., 2004). Some recent studies have tested

beamforming techniques for ASSR source analysis (Luke, de Vos, &

Wouters, 2017; Popescu, Popescu, Chan, Blunt, & Lewine, 2008; Popov,

Oostenveld, & Schoffelen, 2018; Wong & Gordon, 2009). They used

beamforming techniques with a supplementary preprocessing to sup-

press the correlated source from the other hemisphere, because

these techniques assume that spatially distinct sources are temporally

uncorrelated. However, these studies could only reconstruct the primary

sources in the AC, not any of the non-primary ones. We therefore use

MNI in the current study to obtain a broad view of neural sources

including the cortical (primary and non-primary) and subcortical sources.

MNI is a distributed source modeling approach, which considers a large

number of equivalent current dipoles in the brain and estimates the

amplitude of all dipoles (for each time point) to reconstruct a current dis-

tribution (a source distribution map) with minimum overall energy

(Grech et al., 2008; Hämäläinen & Ilmoniemi, 1994; Lin et al., 2006;

Stenroos & Hauk, 2013).

The main objective of the current study is to reconstruct a wide-

range of the neural sources of ASSRs, including primary and non-

primary sources at the cortical level, as well as at the subcortical ones.

To accomplish this, we use a source reconstruction approach based

on MNI. Classically, MNI provides a source distribution map for each

time point. This map (or a series of these maps) does not directly show

the strength of the ASSRs for each dipole which makes interpretation

difficult. The novelty of the current study regarding the approach is to

propose an extension to MNI which facilitates source analysis of

ASSRs by quantifying the ASSR for each dipole. We hypothesize that

the MNI-based approach is capable of reconstructing cortical and

subcortical sources of ASSRs for different stimulation conditions. We
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compare the location of reconstructed sources and their activity with

previous findings from imaging techniques to verify the validity of

the results and the viability of the approach. The robustness of the

approach is examined for acoustic modulations at 4, 20, 40, and

80 Hz presented monaurally to the left and right ears. Additionally,

subcortical activity is compared with cortical activity for low and high

modulation frequencies to investigate whether the subcortical activity

is physiologically plausible. For low modulation frequencies higher

cortical activity than subcortical activity is expected, while for

high modulation frequencies more subcortical activity is expected

(Giraud et al., 2000; Herdman et al., 2002; Liégeois-Chauvel, Lorenzi,

Trébuchon, Régis, & Chauvel, 2004). The second objective is to com-

pare the MNI approach with group-ICA on the same data (Farahani

et al., 2019) to determine which approach is more effective for

the reconstruction of ASSR sources. The main structural difference

between MNI and group-ICA is related to the use of a head-model.

The MNI approach is applied on the same recordings as described in

Farahani et al. (2019) and then compared with group-ICA with regard

to detection of sources in the AC, reconstruction of subcortical

sources, and reduced computational load. In sum, this study is

novel and unique, as it does not only focus on simultaneous recon-

struction of a wide range of cortical and subcortical sources but also

facilitates source analysis of ASSRs using developing a frequency-

specific brain map.

2 | METHODS AND MATERIALS

2.1 | Participants

The EEG recordings were adopted from Goossens et al., 2016

who included 19 young adults (20–30 years of age, nine men) with

clinically normal audiometric thresholds in both ears (≤25 dB HL,

125 Hz−4 kHz). All participants were Dutch native speakers and

right-handed as assessed by the Edinburgh Handedness Inventory

(Oldfield, 1971). They showed no indication of mild cognitive impair-

ment as assessed by the Montreal Cognitive Assessment Task

(Nasreddine et al., 2005).

2.2 | Stimuli and procedures

The stimuli were 100% AM white noise (bandwidth of one octave,

centered at 1 kHz) at 3.91, 19.53, 40.04, and 80.08 Hz. These values

were chosen to have integer number of cycles in an epoch of 1.024 s

(John & Picton, 2000). The stimuli were presented monaurally to

the left and right ears at 70 dB SPL through ER-3A insert phones.

Each stimulus type was presented continuously for 300 s. The order

of stimulus presentation was randomized among participants.

The testing procedure was designed to ensure passive listening to

the AM stimuli during a wakeful state. In this procedure, participants

were lying on a bed and watched a muted movie with subtitles. They

were encouraged to lie quietly and relaxed during the experiment to

avoid muscle and movement artifacts. The experiment was performed

in a double-walled soundproof booth with Faraday cage.

2.3 | EEG recording parameters

The EEG signals were picked up by 64 active Ag/AgCl electrodes

mounted in head caps based on the 10–10 electrode system. These

signals were amplified and recorded using the BioSemi ActiveTwo

system at a sampling rate of 8,192 Hz with a gain of 32.25 nV/bit.

2.4 | EEG source analysis

In response to AM stimuli, the central auditory system generates

ASSRs. Figure 1 illustrates the pipeline for reconstructing brain

sources of ASSRs based on MNI. In this pipeline, MNI was applied to

the preprocessed EEG data and a source distribution map showing

the activities of different cerebral regions was obtained for each

time point. Subsequently, the source distribution map was trans-

formed into the frequency domain and the ASSRs were calculated for

each dipole in order to develop the ASSR map. Finally, the regions of

interest (ROIs) were defined and their activities were extracted for

further analyses. In the following paragraphs, the different steps of

the pipeline are explained in more detail.

2.4.1 | Preprocessing

EEG data of each stimulation condition (four modulation frequencies

and two sides of stimulation; left ear and right ear) were preprocessed

separately in MATLAB R2016b (MathWorks). To avoid low-frequency

distortions caused by skin potentials and/or drift of the amplifier, raw

EEG data were filtered by a zero phase high-pass Butterworth filter

F IGURE 1 Sketch of minimum-norm imaging (MNI) pipeline for
auditory steady-state response (ASSR) source reconstruction
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with a cut-off frequency of 2 Hz (12 dB/octave). The continuous fil-

tered data were segmented into the epochs of 1.024 s and submitted

to an early noise reduction procedure consisting of the following

three steps:

1. Channel rejection: The mean of the maximum absolute amplitude of

all epochs was calculated for each of the 64 channels separately

and considered as an index of maximum amplitude. A channel was

rejected if its maximum amplitude index exceeded 100 μV.

2. Recording rejection: Blocks of EEG recording with more than five

rejected channels were excluded from further analyses. On aver-

age, 1.3 (SD of 0.5) recordings were excluded across all four modu-

lation frequencies and two sides of stimulation.

3. Epoch rejection: For each epoch, the highest peak-to-peak (PtoP)

amplitude of the signals in the remaining channels was extracted

as an index of PtoP of that epoch. Then, 10% of epochs with the

highest PtoP amplitude was rejected.

After early noise reduction, the EEG data were re-referenced to a

common average over all remaining EEG channels. To eliminate arti-

facts such as eye blinks, eye movements and heartbeats, ICA was

applied to the re-referenced data using Infomax in the Fieldtrip tool-

box (Oostenveld, Fries, Maris, & Schoffelen, 2011). Noisy independent

components were recognized by visual inspection and removed. The

remaining components were used to reconstruct the clean EEG data.

Subsequently, missing channels, which had been rejected by the early

noise reduction procedure, were interpolated using the spherical

spline method (Perrin, Pernier, & Bertrand, 1989) implemented in the

Fieldtrip toolbox (Oostenveld et al., 2011). The regularization parame-

ter and the order of interpolation were set to 10−8 and 3, respectively,

because these values lead to fewer distortions in temporal features of

interpolated channels (Kang, Lano, & Sponheim, 2015).

Finally, to avoid residual artifacts not accounted for by ICA, the

epochs with maximum absolute amplitude higher than 70 μV in any

channel were removed. To have the same number of epochs across

participants, the first 192 artifact free epochs (6 sweeps of 32 epochs)

were selected for subsequent analyses. If less than 192 epochs could

be retained, the amplitude threshold was gradually increased (in steps

of 5 μV and up to maximally 110 μV) to find at least 192 artifact-free

epochs.

2.4.2 | Mixed head-model

It is very common to use a cortical surface head-model for brain map-

ping. Restricting the source space to the cortex is mainly based on the

assumption that most of the electrical activity recorded by EEG comes

from the cerebral cortex. However, this assumption is not always

valid. Recent studies showed that, although the expected signal-to-

noise ratios of subcortical activities are poor, the activity of deep brain

structures (deep sources) can be reconstructed from EEG (Attal

et al., 2009; Attal & Schwartz, 2013; Seeber et al., 2019). The use of

steady-state paradigms or the high number of trials is beneficial to

accumulate data samples and then to reconstruct subcortical activities

(Attal et al., 2009).

fMRI studies showed that ASSRs also have some generators at the

subcortical level (Coffey, Herholz, Chepesiuk, Baillet, & Zatorre, 2016;

Langers, Van Dijk, & Backes, 2005; Overath et al., 2012; Steinmann &

Gutschalk, 2011). In the current study, to be able to investigate the sub-

cortical sources as well as cortical ones, a mixed head-model was gener-

ated consisting of cortical (cortex) and subcortical regions (thalamus and

brainstem). This head-model was generated based on the template anat-

omy ICBM152 (nonlinear average of 152 individual magnetic resonance

scans, Fonov et al., 2011) and the default channel location file in the

Brainstorm application (Tadel et al., 2019; Tadel, Baillet, Mosher,

Pantazis, & Leahy, 2011). The head-model was developed using the

boundary element method as implemented in OpenMEEG (Gramfort,

Papadopoulo, Olivi, & Clerc, 2010), and consisted of three compart-

ments, that is, brain (cortical and subcortical), skull, and scalp with con-

ductivity values of 0.33, 0.0041, and 0.33 S/m, respectively. Using the

Brainstorm application (Tadel et al., 2011, 2019), the surface model

of the cortex (triangulation of the cortical surface) was combined with

the volume model (three-dimensional dipole grid) of the thalamus and

brainstem. For the surface model, a dipole orthogonal to the surface

was used at each grid point, while for the volume model, three dipoles

with orthogonal orientations were considered at each grid point. It was

shown that the majority of the neural activity recorded by the EEG

comes from the pyramidal neurons, which are oriented orthogonally to

the cortical surface (He & Ding, 2013). Therefore, it is reasonable to

reduce the number of parameters which should be estimated by using

only one dipole orthogonal to the cortical surface at each grid point.

However, this assumption is not applicable to the subcortical regions,

and therefore three dipoles were employed for those analyses.

2.4.3 | Noise covariance

The noise covariance required for source reconstruction was esti-

mated on the basis of the silence EEG data, that is, EEG recorded in

the absence of auditory stimulation, while the participants were

watching a muted movie with subtitles. For each participant, the

silence data were recorded in two blocks of 150 s, before and after

the main ASSR recordings.

For each modulation frequency, the noise covariance was calcu-

lated separately. First, the preprocessed silence data were filtered

using a zero phase band-pass Butterworth filter with a bandwidth of

4 Hz and modulation frequency as center frequency. Then, the filtered

silence data of all subjects were concatenated and used to calculate

the covariance matrix.

2.4.4 | Reconstruction of the source
distribution map

The brain source activities were reconstructed using dynamic statisti-

cal parametric mapping (dSPM, Dale et al., 2000) implemented in

FARAHANI ET AL. 783



Brainstorm. dSPM provides a noise-normalized minimum-norm solu-

tion through normalization with the estimated noise at each source

(Lin et al., 2006). This normalization reduces the bias toward superfi-

cial sources, which occurs with the standard minimum norm solution

(Hauk, Wakeman, & Henson, 2011; Lin et al., 2006). The matrix of

reconstructed sources Ŝ was calculated as:

Ŝ=KdSPM
18k�64½ �X 64�time½ � ð1Þ

where KdSPM is the imaging kernel of dSPM obtained from Brainstorm

and X is the 64-channel EEG data.

The regularization parameter (λ2) required for dSPM is related

to the level of the noise present in the recorded data (Ghumare,

Schrooten, Vandenberghe, & Dupont, 2018) and can be calculated

as λ2 = 1/SNR2, where SNR is the signal to noise ratio (S/N, based

on the amplitude) of the whitened EEG data (Bradley, Yao, Dewald, &

Richter, 2016; Ghumare et al., 2018; Hincapié et al., 2016). The aim of

whitening is to remove the underlying correlation in a multivariable

data to set the variances of each variable to 1. The required whitening

operator was calculated based on the noise covariance matrix in

Brainstorm. In order to calculate the SNR, the whitened EEG data

were transformed to the frequency domain using a fast Fourier trans-

form (FFT). The spectral amplitudes at the respective modulation fre-

quencies were extracted for all channels and considered as response

amplitudes. Since the response amplitude varies across channels due

to the relative position of the channel to the brain sources of ASSRs,

the maximum response amplitude was considered the signal of inter-

est (S). The noise level at each EEG channel was estimated based on

the average of 30 neighboring frequency bins on each side of the

response frequency bin. The median of the noise level of the EEG

channels was considered the noise level of measurements (N).

When we use a template MRI and a template channel location for

source localization, the use of a group-wise framework for source

analysis can lead to a higher localization accuracy than individual-level

analyses (Farahani et al., 2019). To obtain a group-wise framework for

the current study, the epochs of each participant were divided into

the sweeps of 32 concatenated epochs and averaged across partici-

pants for a grand-averaged sweep before applying the imaging kernel

of dSPM. Since calculating source activities based on imaging kernel

(Equation (1)) is a linear transformation, multiplication of the imaging

kernel to the grand-averaged sweep is equal to first applying imaging

kernel to the sweep of each subject and then averaging the outcome

maps across all participants.

2.4.5 | Developing the ASSR map

The aim of this analysis is to generate a frequency-specific brain

map that shows the activity of dipoles for a certain modulation fre-

quency, that is, the ASSRs of each dipole. To accomplish this aim, the

reconstructed time-series of each dipole (Equation (1)) was trans-

formed into the frequency domain by means of an FFT. The SNR of

the ASSR for each dipole was calculated based on Equation (2).

SNR dBð Þ= 10× log10
PS+N
PN

� �
ð2Þ

where PS+N is the power of the frequency spectrum at the modulation

frequency bin (i.e., 4, 20, 40, and 80 Hz) and includes the power of

the response plus neural background noise (and relatively small mea-

surement noise). PN refers to the power of the neural background

noise, which was estimated using the average power of 30 neighboring

frequency bins (corresponding to 0.92 Hz) on each side of the

response frequency bin.

To recognize the dipoles with significant responses at the respec-

tive modulation frequencies, the one sample F test was performed

with the SNR (i.e., PS+N/PN) as F ratio statistic. A dipole was recognized

as an ASSR source when the F test showed a significant difference

(α = .05) between the power of the response plus noise and the power

of the noise (Dobie & Wilson, 1996; John & Picton, 2000; Picton

et al., 2005). The correction for multiple comparison was performed

using the false discovery rate method (Benjamini & Hochberg, 1995).

Subsequently, the ASSR map was generated based on the ASSR

amplitudes of the dipoles with significant responses and zero for the

dipoles without significant response. The ASSR amplitude was calcu-

lated according to Equation (3).

Biased response amplitude =
ffiffiffiffiffiffiffiffiffiffiffi
PS+N

p

Neural background noise =
ffiffiffiffiffiffi
PN

p
ð3Þ

ASSRamp=
ffiffiffiffiffiffiffiffiffiffiffi
PS+N

p
−

ffiffiffiffiffiffi
PN

p

For subcortical regions with three orthogonal dipoles at each

grid point, the ASSR amplitude was calculated using the norm of

the vectorial sum of the three orientations at each grid point

(Equation (4)).

Subcortical ASSRamp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ASSRamp2x +ASSRamp2y +ASSRamp2z

q
ð4Þ

Similarly, the SNR map was generated based on the SNR (in dB,

Equation (3)) of each dipole. The SNR can be considered as an index

that shows the quality of the response for each dipole.

2.4.6 | Defining ROIs

For further comparisons and interpretation of the ASSR maps, the

ROIs were defined based on the averaged SNR map across all stimula-

tion conditions (four modulation frequencies and two sides of stimula-

tion). Since the dynamic range of the SNR varies across modulation

frequency, we first applied normalization as follows:

SNR Index sð Þ= SNR sð Þ−SNRmin
SNRmax−SNRmin

ð5Þ
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where s is the dipole number and the SNR index has a range of [0,1].

Afterward, the maps of the SNR index were generated and were aver-

aged across modulation frequencies (4, 20, 40, and 80 Hz) and across

sides of stimulation (left and right), yielding a grand-averaged map of

SNR index that was independent of the acoustic stimulation type.

Subsequently, the regions with a SNR index more than 50% of the

maximum value of SNR index were selected as ROIs.

Additionally, eight ROIs along the primary auditory pathway were

defined guided by the anatomical locations of the cochlear nucleus

(CN), the inferior colliculus (IC), the medial geniculate body (MGB),

and the AC, bilaterally. These regions are known to play a key role in

generating ASSRs (Coffey et al., 2016; Langers et al., 2005; Overath

et al., 2012; Steinmann & Gutschalk, 2011). The ROI for the AC (left

AC: 5.49 cm2; right AC: 5.58 cm2) was defined in the Heschl's gyrus

with reference to the transverse temporal gyrus in the Desikan–

Killiany atlas implemented in Brainstorm (Desikan et al., 2006; Tadel

et al., 2011). At the subcortical level, a semispherical ROI was defined

in the CN (identified with reference to the medullary pontine junction;

left CN: 0.49 cm3; right CN: 0.47 cm3) and in the IC (estimated with

reference to the thalamus; left IC: 0.50 cm3; right IC: 0.55 cm3)

(Coffey et al., 2016). The ROIs for the MGB were defined in the left

and right posterior thalamus (roughly the posterior third of the thala-

mus, left MGB: 1.24 cm3; right MGB: 1.45 cm3) (Coffey et al., 2016).

The subcortical ROIs were defined with a bigger size than their related

anatomical regions to maximize the chance of capturing signals. The

coordinates of the estimated central point of subcortical ROIs were,

±14, −28, 3 for the thalamus; ±7, −31, −12 for IC; ±8, −41, −43 for

CN, all in the Montreal Neurological Institute coordination system.

2.4.7 | Time-series of ROIs

Each ROI depends on its size and includes several dipoles. In order to

extract a time-series per ROI, we need to find a representative dipole

inside each ROI. This is because when the ROIs are broad and show het-

erogeneous patterns of activities, the extraction of a time-series on the

basis of averaging between all dipoles can impose extra smoothing to

the final time-series and lead to an underestimated response (Ghumare

et al., 2018). On the other hand, the extraction of a time-series based on

the highest activity can lead to an overestimated response.

To find a representative dipole inside each ROI, we first consid-

ered the dipoles with maximum ASSR amplitude and its neighboring

dipoles as the response patches. Then, the patch with the highest

mean ASSR amplitude was chosen as response patch. Finally, a dipole

showing the highest similarity to the mean time-series of the response

patch was chosen as the representative dipole. The detailed algorithm

of choosing a representative dipole is as follows:

a. Find a response patch inside each ROI:

1. sort the dipoles based on ASSR amplitude and choose the first

3 dipoles with highest amplitude;

2. extract a patch around each selected dipole based on the first

layer of neighboring dipoles in the cortical surface (see Figure 2);

3. calculate the mean ASSR amplitude of each patch;

4. sort three patches and choose the patch with highest mean

ASSR amplitude.

b. Find the representative dipole from the response patch:

5. calculate the mean ASSR of the selected patch in complex form,

daverage

6. Note: complex representation of ASSR of each dipole was

obtained from FFT output at a modulation frequency;

7. find the dipole with most similar ASSR (in complex form)

to the mean response (in complex form) using vectorial subtrac-

tion as:

argmindjd−daveragej ð6Þ

It should be noted that, in the subcortical ROIs, the ASSR ampli-

tude of each dipole was very close to its neighboring dipoles in sub-

cortical volume. Therefore, to diminish the computational load, the

time-series directly was extracted from the dipole with the highest

ASSR amplitude.

2.5 | Variance estimation

The variation of the ASSR amplitude was estimated by applying

the Jackknife re-sampling method to the EEG data of participants

(Efron & Stein, 1981). For each resampling, the dSPM imaging kernel

of the main MNI (Equation (1)) was applied to the averaged EEG data

of resampling.

F IGURE 2 Schematic diagram of the patch around a selected
dipole with maximum activity
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3 | RESULTS

3.1 | The ASSR maps

Brain sources of ASSR for different modulation frequencies and two

sides of stimulation were reconstructed using the MNI approach

(Figure 1). For each stimulation condition, the MNI approach yields

an ASSR map, which shows the magnitude of the ASSR for different

brain regions. As an example, the ASSR map for 4 Hz AM stimuli

presented to the left ear is illustrated in Figure 3d. This figure shows

different steps from a source distribution map in the time domain

(Figure 3a) to the ASSR map (Figure 3d). The time-series of three

sample dipoles located in the precentral gyrus, the middle frontal

and the AC are shown in Figure 3b. The time-series of the dipole in

the AC suggests a high neural synchronization to the envelope of

4 Hz AM stimuli, while the dipole in the middle frontal gyrus does

not show synchronization. The degree of synchronization or ASSR

of each dipole was calculated based on the frequency response of

that dipole at the modulation frequency (Figure 3c). The ASSR ampli-

tudes were used to generate the ASSR map (Figure 3d). This ASSR

map illustrates a high ASSR amplitude in the AC, smaller amplitudes

in the precentral gyrus and no significant ASSRs in the middle

frontal gyrus. Similar to the ASSR map, the SNR map was also gener-

ated based on the value of SNR (in dB) for each dipole (see

Section 2.4.5).

3.2 | ROIs and their time-series

After developing the ASSR maps, the ROIs were defined for further

analysis and interpretation of the results. Eight ROIs were defined

along the primary auditory pathway as primary ROIs. These ROIs were

located bilaterally in the AC at the cortical level as well as in the MGB,

IC, and CN at the subcortical level (Figure 4).

The ROIs beyond the auditory pathway, also termed non-

primary ROIs, were defined based on the grand-averaged SNR map

(cf. Section 2). Figure 5 illustrates 11 non-primary ROIs, which were

obtained for all stimulation conditions (four modulation frequencies

and two sides of stimulation). The respective anatomical labels of the

primary and the non-primary ROIs are listed in Table 1.

The time-series of each ROI (primary or non-primary) was extracted

from the representative dipole of that ROI (cf. Section 2). Then, the

F IGURE 3 The auditory steady-state response (ASSR) map in response to 4 Hz amplitude modulated (AM) stimuli presented to the left ear.
(a) Reconstructed brain map at 528 ms using dynamic statistical parametric mapping (dSPM) and enlarged view of three sample dipoles located in
the precentral gyrus, the middle frontal and the auditory cortex (from top to bottom). The map shows the absolute values of activity. The color
bar indicates the magnitude of activity (no unit because of normalization within dSPM algorithm). (b) Time series of activity (original values with
length of one epoch) for the three sample dipoles. The vertical dashed line shows the time point of 528 ms. (c) The frequency spectrum for the
three sample dipoles. (d) The generated ASSR map using ASSR amplitude for the dipoles with significant response (F-test, α = .05, corrected for
multiple comparison using false discovery rate (FDR), Benjamini & Hochberg, 1995). The color bar indicates the ASSR amplitude with arbitrary
unit because of normalization within the dSPM algorithm. The dipoles with not significant ASSRs were set to zero. (e) The generated SNR map.
The color bar indicates the SNR of 4 Hz ASSR in dB
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biased response and the neural background noise (Equation (3)) were

calculated based on the extracted time-series (Figures 4 and 5, sur-

rounding panels).

3.3 | The primary and the non-primary sources
of ASSRs

For all ROIs (primary and non-primary), the time-series showed a sig-

nificant ASSR activity (F-test with SNR cf. developing ASSR map

section Equation (2)), and therefore the ROIs were considered as

ASSR sources for the remaining part of the paper.

3.3.1 | The primary sources

The grand-average SNR map (Figure 5, central panel) shows active

regions in the left and the right auditory cortices which are anatomi-

cally highly comparable with the Heschl's gyrus, the location of

cortical sources of ASSRs (Kuriki et al., 2013; Popescu et al., 2008;

Schoonhoven et al., 2003; Steinmann & Gutschalk, 2011). Moreover,

the high SNR observed in these regions was in line with the prior

knowledge about the AC as the main cortical generator of ASSRs

(Giraud et al., 2000; Herdman et al., 2002; Picton et al., 2003).

The primary subcortical sources of ASSRs are located in the CN,

the IC, and the MGB (Coffey et al., 2016; Langers et al., 2005; Overath

F IGURE 4 Regions of interest (ROIs) along the primary auditory pathway and their neural responses. The central panel depicts cortical ROIs
(center-top) in the left and right auditory cortex (LAC, RAC) and subcortical ROIs (center-bottom) located bilaterally in the medial geniculate body
(LMGB, RMGB), inferior colliculus (LIC, RIC), and cochlear nucleus (LCN, RCN). Surrounding panels illustrate biased responses (calculated based
on Equation (3), dashed lines) and neural background noise (calculated based on Equation (3), dotted lines) of each ROI, in response to 4, 20,
40, and 80 Hz amplitude modulated (AM) stimuli presented to the left (blue) and right ears (red). The error bars show the SD estimated by means
of the jackknife method (Efron & Stein, 1981)
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et al., 2012; Steinmann & Gutschalk, 2011). The activities of subcorti-

cal regions were reconstructed and significant ASSR activities were

detected in the MGB, IC, and CN (Figure 4). Detection of these

sources at four different modulation frequencies and two sides of

stimulation demonstrate the robust ability of the MNI approach to

detect activity of subcortical sources. As an example, the ASSR map of

subcortical regions in response to 80 Hz AM stimuli presented to the

right ear is illustrated in Figure 6. The highest amplitude is visible in

the posterior region of the right thalamus (i.e., location of the MGB).

This activity gradually decreases toward the anterior part of the thala-

mus. A similar pattern is seen for the right IC (the superior–posterior

region of the brainstem). The gradual changes of activations across

subcortical regions are due to the low resolution of MNI and also due

to the method of calculating the total amplitude based on the norm of

activities of the three orthogonal dipoles at each grid point.

3.3.2 | The non-primary source

Only a limited number of studies report non-primary sources of ASSR.

Using the group-ICA approach on the same data as here, Farahani

et al. (2019) detected four sources beyond the auditory pathway as

non-primary sources of ASSRs. These were located in the left and

right motor areas, the superior parietal lobe and the right occipital

lobe. In the present study, the sources labeled as LprC, RprC, LSP,

RSP, Rocc, and RPO, all with significant ASSRs, are in a similar location

to the non-primary sources which were detected using the group-ICA

approach (Farahani et al., 2019).

The sources located in the left and the right orbitofrontal are

in a similar location to the identified ASSR sources in the frontal

lobe by Farahani et al. (2017). These sources are also in line with

the “what” path of auditory processing which is responsible for

F IGURE 5 Non-primary regions of interest (ROIs) and their neural responses. Central panels depict the grand-averaged SNR maps of
different stimulation conditions (4, 20, 40, and 80 Hz amplitude modulated (AM) stimuli presented to the left and the right ears) and the obtained
ROIs. The anatomical labels of ROIs are listed in Table 1. Surrounding panels illustrate biased responses (calculated based on Equation (3), dashed
lines) and neural background noise (calculated based on Equation (3), dotted lines) of each ROI, in response to AM stimuli with different
modulation frequencies presented to the left (blue) and right ears (red). The error bars show the SD estimated by means of the jackknife method
(Efron & Stein, 1981)
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sound recognition (Kraus & Nicol, 2005; Maeder et al., 2001;

Martin, 2012).

Significant ASSR activity in the non-primary ROIs was detected

for every stimulation condition. This is in line with the findings of

Farahani et al. (2019) regarding the robustness of the non-primary

activities across different modulation frequencies.

3.3.3 | ASSR activity of the sources

The ASSR amplitudes (Equation (3)) of the extracted time-series were

considered ASSR activity of each source. The ASSR activities and SDs

(estimated using the Jackknife methods) of the four different modulation

frequencies and two sides of stimulation for the primary and the

TABLE 1 Anatomical labels of
primary and non-primary ROIs

Primary ROIs Non-primary ROIs

Cortical Left precentral gyrus (LPrC)

Left auditory cortex (LAC) Right precentral gyrus (RPrC)

Right auditory cortex (RAC) Right orbitofrontal (ROF)

Right parahippocampal (RPHC)

Subcortical Left orbitofrontal (LOF)

Left medial geniculate body (LMGB) Right occipital (ROcc)

Right medial geniculate body (RMGB) Right superior parietal (RSP)

Left inferior colliculus (LIC) Left superior parietal (LSP)

Right Inferior colliculus (RIC) Right posterior cingulate gyrus (RPCG)

Left cochlear nucleus (LCN) Right anterior cingulate gyrus (RACG)

Right cochlear nucleus (RCN) Right parieto-occipital (RPO)

F IGURE 6 The auditory steady-
state response (ASSR) map of
subcortical regions, the thalamus
(superior, light gray region) and the
brainstem (inferior, light blue region),
in response to 80 Hz amplitude
modulated (AM) stimuli presented to
the right ear are shown in different
projections (sagittal, axial, coronal,
and posterior-lateral view). Each dot
indicates a grid point and its color
shows the Euclidean norm of
activities of the three orthogonal
dipoles at that point (calculated
based on Equation (4)). The color bar
indicates the ASSR amplitude with
arbitrary unit, because of
normalization within the dynamic
statistical parametric mapping
(dSPM) algorithm
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non-primary sources were summarized in Tables 2 and 3, respectively.

These data provide the basis for further comparisons between sources,

such as for different modulation frequency or sides of stimulation. In the

following section, the activity of a cortical source is compared with the

activity of a subcortical source for low and high modulation frequencies.

3.4 | Comparison between primary sources:
Cortical versus subcortical

It is expected that the relative activity of cortical and subcortical

sources will change depending on the modulation frequency. The corti-

cal sources show more activity than the subcortical ones at low modula-

tion frequencies, while subcortical sources show higher activity at higher

modulation frequencies (Giraud et al., 2000; Gransier, van Wieringen, &

Wouters, 2017; Liégeois-Chauvel et al., 2004; Wong & Gordon, 2009).

In order to investigate this behavior with the MNI approach, we per-

formed statistical comparisons between the activity of AC and MGB

(as cortical and subcortical sources, respectively) in response to 4 and

80 Hz AM stimuli as a low and a high modulation frequency, respec-

tively. The MGB was selected as representative of subcortical sources,

because it showed stronger responses than the IC and CN.

Figure 7 shows the ASSR amplitude of the AC and the MGB in

response to 4 and 80 Hz AM stimuli presented to the left and the right

ears. The mean ASSR amplitude and the estimated SD of the sources in

the AC and thalamus (Figure 7) were submitted to a factorial mixed anal-

ysis of variance (FM-ANOVA) with amplitude as the dependent variable

and sources (two categories: AC and MGB), hemisphere (two categories:

left and right), and side of stimulation (two categories: left and right) as

within-subject variables. Afterward, a two-sample t test with Bonferroni

correction was used for post hoc testing.

For the brain sources of 4 Hz ASSRs, the FM-ANOVA test showed

a main effect of source, with significantly higher ASSR amplitudes for

the AC than for the MGB (F(1,33) = 58.8, p < .001). A significant interac-

tion effect was observed for source and hemisphere (F(1,33) = 13.7,

p < .001) and also for source and side of stimulation (F(1,33) = 5.4,

p < .05). Post hoc testing showed that, for left side of stimulation, the

right AC yielded significantly higher ASSR amplitudes than the right

MGB (p < .001, Cohen's d 1.8), but the left AC yielded smaller

amplitudes than the left MGB (p < .01, Cohen's d 1.1). For right side of

stimulation, both the left and the right ACs yielded significantly higher

ASSR amplitudes than the left MGB (p < .001, Cohen's d 2.6) and the

right MGB (p < .001, Cohen's d 1.2), respectively.

A significant main effect of source was identified for the 80 Hz

ASSR with significantly higher ASSR amplitudes for the MGB than for

the AC (F(1,32) = 118.8, p < .001). An interaction effect between

source and hemisphere was observed (F(1,32) = 7.5, p < .01), but there

was no significant interaction effect between source and side of stim-

ulation. Post hoc testing indicated that, irrespective of side of stimula-

tion, the ASSR amplitudes of the both left and right MGB were

significantly higher than those of the left AC (p < .001, Cohen's d 1.3)

and the right AC (p < .001, Cohen's d 2.2), respectively.

4 | DISCUSSION

4.1 | ASSR source reconstruction

In the current study, we proposed an approach based on MNI for the

reconstruction of ASSR sources. This approach facilitates ASSR source

analysis by quantifying the ASSR amplitude for each dipole and devel-

oping the ASSR map. The results demonstrated that the MNI

approach can successfully reconstruct a wide-range of the neural

sources of ASSRs, including primary sources at cortical and subcortical

levels and the non-primary sources. In all stimulation conditions

(4, 20, 40, and 80 modulation frequencies presented to the left and

the right ears), a significant ASSR activity was observed in the Heschl's

gyrus in both hemispheres, which is located in the primary AC

(Figure 4). This result indicates that the MNI approach is a robust

method to reconstruct the primary sources from the ASSRs.

4.1.1 | Contribution of the non-primary sources
to generate ASSRs

For all the non-primary sources introduced in the current study the

activity at the modulation frequency was significantly different com-

pared to neighboring frequencies. This activity was observed sharply

TABLE 2 ASSR activity (ASSR amplitude × 1,000) and SD (between brackets) of the primary sources in response to 4, 20, 40, and 80 Hz AM
stimuli and two sides of stimulation

LAC RAC LMGB R MGB LIC RIC LCN RCN

4 Hz-left 48.0 (10.6) 113.4 (27.4) 59.9 (11.1) 74.1 (13.3) 54.7 (10.5) 64.9 (11.7) 36.9 (9.4) 42.8 (9.5)

4 Hz-right 103.7 (13.4) 86.0 (17.7) 71.5 (10.3) 67.0 (10.7) 60.0 (8.5) 60.0 (9.8) 33.4 (8.6) 28.8 (9.0)

20 Hz-left 54.2 (17.4) 39.3 (16.5) 48.6 (14.9) 47.9 (14.1) 32.1 (13.6) 32.5 (13.5) 18.0 (8.1) 12.7 (7.6)

20 Hz-right 54.6 (11.7) 73.3 (20.4) 37.6 (17.3) 71.2 (16.0) 27.3 (11.2) 50.8 (13.4) 25.8 (12.7) 32.1 (11.6)

40 Hz-left 99.9 (16.9) 82.6 (9.4) 119.8 (12.4) 131.6 (11.5) 86.3 (9.7) 90.5 (9.2) 50.1 (7.7) 47.6 (6.2)

40 Hz-right 115.8 (18.8) 81.2 (16.1) 114.7 (13.9) 129.5 (14.5) 82.1 (10.9) 88.3 (10.5) 43.9 (7.4) 42.8 (7.7)

80 Hz-left 26.8 (9.6) 28.6 (9.7) 39.5 (7.5) 44.3 (6.4) 32.6 (7.2) 35.8 (6.4) 24.8 (6.1) 25.5 (5.6)

80 Hz-right 21.4 (7.1) 21.4 (6.1) 29.9 (5.8) 41.2 (7.7) 24.4 (5.0) 31.2 (6.7) 18.5 (4.6) 21.9 (6.0)

Note: Abbreviations are listed in Table 1.
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at 3.91, 19.53, 40.04, and 80.08 Hz modulation frequencies. While

the modulation frequency is different, the paradigm of the experiment

(i.e., passive listening and watching a subtitled movie) is the same

across all blocks of experiments. Thus, we consider it unlikely that the

activity of non-primary sources are paradigm-specific and related to

watching subtitled movies or controlling eye movements.

The association between the non-primary activation and AM

stimuli can be investigated by comparing EEG activity with and with-

out stimulation. In the same experimental conditions, before and after

the main ASSR recordings, EEG data with no auditory stimulation

(silence data) were recorded in two blocks of 150 s (Farahani et al.,

2017). The analysis of silence data using group-ICA did not show

any ASSR sources, neither primary nor non-primary ones (Farahani

et al., 2019), which suggests that the non-primary sources are acti-

vated by AM stimuli. However, to show that the non-primary sources

are only observed in case of acoustic stimulation, further experiments

with limited visual input are needed.

It may be postulated that the activity of non-primary sources

is related to multisensory integration. Typically, in multisensory integra-

tion different sensory cues are integrated when the sensory inputs

arise from the same source. Temporal and spatial proximity of

the stimulus components are also important factors in multisensory

integration (Stein & Stanford, 2008; Van Atteveldt, Murray, Thut, &

Schroeder, 2014). In the current study, the acoustic stimuli were not

associated nor synchronized with the visual inputs (i.e., a muted sub-

titled movie). Moreover, the paradigm of the experiment was designed

for “passive listening” and the participants were asked not to pay atten-

tion to the AM stimuli. These two issues seem to be against the hypoth-

esis of multisensory integration for explaining non-primary activities.

Arnal, Kleinschmidt, Spinelli, Giraud, and Mégevand (2019)

recently used intracranial recordings in epileptic patients to investi-

gate neural synchronization to the click trains of varying frequencies.

They observed phased locked responses at the rate of stimulation,

maximally in the range of 40–80 Hz, in a large network of cortical

and subcortical regions extending well beyond the AC. They specifi-

cally observed phased locked responses in the superior temporal

gyrus, superior parietal, right inferior parietal, orbitofrontal, para-

hippocampal, and the sensory motor area and thereby provided a

direct evidence and support to the non-primary sources identified in

the current study. The contribution of the motor system to auditory

processing was also reported in several studies (Arnal, Doelling, &

Poeppel, 2015; Brodbeck, Presacco, & Simon, 2018; Du, Buchsbaum,

Grady, & Alain, 2016; Fujioka, Trainor, Large, & Ross, 2012) and is in

line with the non-primary sources that we found in motor area. The

locations of the non-primary sources here were also in a similar loca-

tion to the non-primary sources previously detected using the ICA on

the same data as here (Farahani et al., 2017, 2019).

Findings about the non-primary sources can have clinical implica-

tions. Previous animal studies suggested that the middle latency

responses (MLRs) recorded over the temporal lobe mainly originate

from the primary pathway, while those recorded over the midline are

largely influenced by the non-primary pathway (Kraus, Smith, &

McGee, 1988; McGee, Kraus, Littman, & Nicol, 1992). Similar resultsT
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were noted for mismatch negativity responses (Kraus et al., 1994) and

also in response to click trains with slow rates (Abrams, Nicol,

Zecker, & Kraus, 2011). Based on the location of the non-primary

sources identified in the current study, we suggest using the elec-

trodes over the temporal lobe for the audiological assessment by

ASSRs. This choice may be influenced more by the AC than by the

non-primary sources. Animal neurophysiological data suggest that

the non-primary components of the MLR are generated early and are

probably sleep-state dependent, while the primary components are

generated later and are reliable even in sleep (Kraus & McGee, 1993).

This finding about the components of the MLRs has important impli-

cations for the clinical use of MLRs in young children. Similar effects

are also expected for ASSRs, however this needs to be investigated in

a separate experiment. There are different studies suggesting that

the non-primary pathway may be affected in various neurological dis-

orders. Moller, Kern, and Grannemann (2005) showed that some indi-

viduals with autism have an abnormal activation of the non-primary

sensory pathway. The non-primary auditory pathway may also be

involved in the generation of some forms of tinnitus (Moller &

Rollins, 1992).

4.1.2 | Subcortical sources

In recent years, the reconstruction of subcortical activities from

the EEG has received substantial attention (Attal et al., 2009;

Krishnaswamy et al., 2017; Min, Hämäläinen, & Pantazis, 2020;

Seeber et al., 2019). Seeber et al. (2019) employed intra-cortical

recordings in humans to demonstrate that the EEG can detect

and correctly localize subcortical signals. In another study with

relatively low electrode density (70 channels) Krishnaswamy

et al. (2017) showed the possibility of reconstructing both cortical

and subcortical sources using EEG. Due to the importance of

reconstructing subcortical sources to study auditory temporal

processing and the proof of this concept from the above-mentioned

literature we have employed EEG and MNI to estimate deeper brain

sources. Indeed, the lack of individual MRI scans affects localization

accuracy at an individual level. To address this issue we used a

group-level framework for all analyses and reported the results only

at a group-level.

Subcortical sources along the primary auditory pathway

(i.e., MGB, IC, and CN) are tiny regions and very difficult to localize. It

should be noted that, in the current study, we only aimed to recon-

struct the activity of these regions, not to localize them. To this end,

we used the prior knowledge obtained from fMRI studies to define

ROIs in MGB, IC, and CN.

Due to the ill-posed inverse problem of the EEG, the reconstructed

brain maps based on the EEG have limited spatial resolution (Min

et al., 2020). Spatial resolution refers to the ability of an imaging tech-

nique to differentiate between two near-by sources that should be

reconstructed as separate sources (Knaapen & Lubberink, 2015). So,

with regard to the limited spatial resolution of EEG source reconstruc-

tion the distance between desired sources is essential. The subcortical

centers of the primary auditory pathway (i.e., MGB, IC, and CN) are tiny

regions, but they are quite distinct from each other.

The MNI approach was able to reconstruct the activity of subcor-

tical sources of ASSRs in the MGB, IC, and CN. We found significant

ASSR activity in these regions for all the stimulation conditions

(Figure 4). Statistical comparisons showed significantly more cortical

activity than subcortical activity for low modulation frequency

F IGURE 7 Auditory steady-state response (ASSR) amplitudes of the auditory cortex (AC) and the medial geniculate body (MGB) in response
to 4 and 80 Hz amplitude modulated (AM) stimuli presented to the left and the right ears. The bars are clustered per side of stimulation (left ear,
right ear) and represent the ASSR amplitude of the left and right AC and the left and right MGB (indicated by different colors). All ASSRs were
significantly different from the neural background activities (cf. Section 2.4.5). The error bars indicate the SD estimated using the jackknife method
(Efron & Stein, 1981). The dashed lines represent grouping, while the solid lines indicate statistical comparison. *p < .05; **p < .01; ***p < .001
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(i.e., 4 Hz) and more subcortical activity for high modulation frequency

(i.e., 80 Hz). These results were in line with previous electrophysiolog-

ical ASSR studies (Alaerts, Luts, Hofmann, & Wouters, 2009; Gransier

et al., 2017; Herdman et al., 2002) and indicate the validity of the

reconstructed subcortical activity. It should be noted that we com-

pared cortical and subcortical activities here, not different modulation

frequencies. To the best of our knowledge, there is only one study in

which the subcortical activities in response to 80 Hz AM stimuli is

compared with the 40 Hz ones (Herdman et al., 2002). In that study,

they found higher subcortical activity at 39 Hz than 88 Hz which is in

line with our results.

4.2 | Comparison between MNI and group-ICA

The fundamental distinction between the MNI and the group-ICA

approach (Farahani et al., 2019) is the use of head-model information

for source decomposition. While the decomposition of the source

activities is only based on EEG data for the group-ICA approach (data-

driven), the activity of sources is estimated based on EEG data and

the head-mode in the MNI approach.

The performance of the proposed MNI approach is compared

with the group-ICA approach (Farahani et al., 2019) on the same

recording in the following paragraphs, to determine the more effective

approach for the purpose of reconstructing ASSR sources.

4.2.1 | Detection of sources in the AC

With the group-ICA approach, no source was detected in the AC

in response to 20 Hz AM stimuli (Farahani et al., 2019). However,

the activity in the AC in response to 20 Hz AM stimuli can be

reconstructed using the MNI approach (Figure 4). Moreover, activity

in the AC was also reconstructed for 80 Hz ASSRs, although it was

relatively small compared to other modulation frequencies. These

results suggest that the MNI approach can overcome the limitations

of group-ICA in the detection of primary sources located in the AC, at

some modulation frequencies.

4.2.2 | Reconstruction of subcortical activity

With the exception of the AC, most centers along the auditory

pathway are subcortical (Langers et al., 2005; Overath et al., 2012;

Steinmann & Gutschalk, 2011). As a result, the reconstruction of sub-

cortical activity can be very informative for research on early auditory

processing in the central auditory system. However, because of the

deep location and special cell architecture of the subcortical regions,

the reconstruction of subcortical activities using electrophysiological

measurements can be problematic (Attal et al., 2009; Attal &

Schwartz, 2013). Given this consideration, the MNI approach poses a

great advantage over group-ICA for the reconstruction of subcortical

activity.

4.2.3 | Reducing computational load

AMICA was chosen among many available ICA algorithms for the imple-

mentation of group-ICA (Farahani et al., 2019) because of its superior

performance in terms of the remaining mutual information between

components and the number of components with dipolar scalp projec-

tions (Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012). Applying

AMICA on the concatenated data matrix of participants (with the size

of 64 × 17.1e6) took around 3 days with a powerful computer (“Ivy

Bridge” Xeon E5-2680v2 CPU, 2.8 GHz, 25 MB level 3 cache, 32 GB

RAM), while the development of the ASSR map for the MNI approach

took only 10 min using a normal computer (Core i7-4600M CPU,

2.9 GHz, 4 MB level 3 cache, 16 GB RAM), thereby indicating a much

lower computational load than the group-ICA approach.

Comparison between the MNI approach and group-ICA on the

same EEG data (the above-mentioned paragraphs) suggests that the

use of head-model information in the MNI (head-model based) is ben-

eficial and leads to a better performance than group-ICA (data-driven)

in reconstructing ASSR sources. However, it should be noted that an

accurate head-model is a prerequisite for an accurate source map. In

the current study, we used a template MRI to generate the head-

model. The use of a template MRI for individuals is a rough approxi-

mation and can impose errors into source reconstruction. Therefore,

we used a group-wise framework for source reconstruction (Farahani

et al., 2019).

It is also possible that the MNI approach performs better as

a result of the distributed nature of MNI source analysis with no

assumption of independence between sources. This feature of MNI

can provide more degrees of freedom for the reconstruction of the

sources, especially the subcortical one.

5 | CONCLUSIONS

In this study, an MNI technique was used to simultaneously recon-

struct a wide range of neural sources of ASSRs, including cortical and

subcortical sources. A novel extension to MNI was proposed which

facilitates ASSR source analysis by quantifying the ASSR amplitude

for each dipole and developing the ASSR map. The MNI approach was

capable of reconstructing the sources located outside of the AC, des-

ignated as non-primary sources, as well as primary sources, bilaterally

located in AC. The non-primary sources were in similar location to

those reported in the previous studies (Arnal et al., 2019; Farahani

et al., 2017, 2019; Martin, 2012). Primary sources were consistently

detected in every stimulation condition (four modulation frequencies

and two sides of stimulation), thereby demonstrating the robustness

of the approach. Moreover, the MNI approach was successful in

reconstructing the subcortical activities of ASSRs as validated by com-

paring between cortical and subcortical activities, in response to low

and high modulation frequencies.

Finally, the MNI approach in our study showed a better perfor-

mance than the group-ICA approach (Farahani et al., 2019) in terms of

detection of sources in the AC, reconstruction of subcortical activity
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and reduction of computational load. The superior performance of this

approach is most likely due to the involvement of head-model infor-

mation for the decomposition of the sources.
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