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A B S T R A C T

Background and aims: The single nucleotide polymorphisms (SNPs) in SLC30A8 gene have been
recognized as contributing to type 2 diabetes (T2D) susceptibility and colorectal cancer. This
study aims to predict the structural stability, and functional impacts on variations in non-
synonymous SNPs (nsSNPs) in the human SLC30A8 gene using various computational techniques.
Materials and methods: Several in silico tools, including SIFT, Predict-SNP, SNPs&GO, MAPP,
SNAP2, PhD-SNP, PANTHER, PolyPhen-1,PolyPhen-2, I-Mutant 2.0, and MUpro, have been used
in our study.
Results: After data analysis, out of 336 missenses, the eight nsSNPs, namely R138Q, I141N,
W136G, I349N, L303R, E140A, W306C, and L308Q, were discovered by ConSurf to be in highly
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conserved regions, which could affect the stability of their proteins. Project HOPE determines any
significant molecular effects on the structure and function of eight mutated proteins and the
three-dimensional (3D) structures of these proteins. The two pharmacologically significant
compounds, Luzonoid B and Roseoside demonstrate strong binding affinity to the mutant pro-
teins, and they are more efficient in inhibiting them than the typical SLC30A8 protein using
Autodock Vina and Chimera. Increased binding affinity to mutant SLC30A8 proteins has been
determined not to influence drug resistance. Ultimately, the Kaplan-Meier plotter study revealed
that alterations in SLC30A8 gene expression notably affect the survival rates of patients with
various cancer types.
Conclusion: Finally, the study found eight highly deleterious missense nsSNPs in the SLC30A8
gene that can be helpful for further proteomic and genomic studies for T2D and colorectal cancer
diagnosis. These findings also pave the way for personalized treatments using biomarkers and
more effective healthcare strategies.

1. Introduction

Diabetes is a metabolic disease affecting populations globally, arising from insulin production or utilization disruptions. Notably,
type 2 diabetes (T2D) serves as a well-established risk factor for colorectal cancer, a highly prevalent form of malignancy worldwide.
Based on the most recent cancer data, colorectal cancer is a significant contributor to cancer-related deaths, posing a substantial threat
to global health, with 1.9 million new cases recorded in 2020 [1]. A gene associated with insulin signaling, specifically SLC30A8, could
potentially influence the connection between diabetes and the risk of colorectal cancer. This connection may offer new perspectives on
the biological mechanisms that link diabetes and colorectal cancer [2]. Several cancers closely relate to the solute carrier 30 (SLC30)
family of genes during their development and progression [3]. The presence of a specific variant in the SLC30A8 gene was linked
substantially to an increased risk of breast cancer in women [4]. The combined effects of uncontrolled blood sugar, hormone im-
balances, and ongoing inflammation associated with T2D may linked to an increased risk of head and neck cancer development,
metastasis, and severity [5–7]. Additionally, T2D is more prone to infection with Kaposi’s sarcoma-associated herpesvirus (KSHV), the
pathogen accountable for Kaposi’s sarcoma [8].
SLC30A8, a gene responsible for encoding the zinc transporter 8 (ZnT8), is an influential variable in T2D risk [9]. ZnT8, which

belongs to the ZnT family, is mostly found in pancreatic beta cells, and it is essential for transporting zinc from the cytoplasm to
intracellular vesicles [10,11]. Residing inside insulin-storing granules, ZnT8 is essential for the synthesis, encapsulation, and discharge
of insulin. Antibodies against ZnT8 are a potential breakthrough in diagnosing autoimmune diabetes [9].
Single nucleotide polymorphisms (SNPs) represent the predominant genetic variation within the DNA sequence. Their density

varies across regions, yet they occur in approximately 100–300 bases of the human genome, constituting over 90 % of all genetic

Fig. 1. Flow diagram of overall in silico SNPs analysis on the SLC30A8 gene. A, B, C, and D periodically indicate the steps and their subse-
quent results.
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variation in humans [12]. SNPs are present in the human genome’s coding and non-coding areas, potentially influencing
transcription-factor binding, splicing, or gene expression. Some SNPs do not impact cell function, while others can increase suscep-
tibility to illness or alter medication response [13,14]. Approximately 500,000 SNPs have been identified within the coding region of
the human genome [15]. Among these, non-synonymous SNPs (nsSNPs), hold significance compared to other proteins as they can
modify amino acid residues [16]. Although not all structural and functional modifications induced by nsSNPs have the potential to be
harmful. While some nsSNPs have functional effects, others impact structural features [17]. Modifications in function can have a
favorable or detrimental impact on the structure or functionality of proteins. Potentially harmful effects include changes in gene
regulation [18,19], instability of protein structures, effects on protein charge, geometry, and hydrophobicity [20,21] and changes in
protein structure [22]. Therefore, it can be assumed that nsSNPs are associated with several human illnesses. The significant impact of
nsSNPs on human health and disease has made this research more effective in recent years.
Researchers have found hundreds of SNPs in the SLC30A8 gene’s coding region because of advancements in genotyping methods.

Nevertheless, more work needs to be done to determine which SNPs of the SLC30A8 gene are the most harmful and disease-prone.
Several studies conducted according to these techniques, using NCBI dbSNP, UniProtKB, SIFT, Predict-SNP, SNAP2, PANTHER,
SNPs&GO, PolyPhen, PhD-SNP, I-Mutant, ConSurf, GPS-MSP, NetPhos, Mutpred2, MUpro, Mutation 3D, Project Hope, EnrichR,
STRING, Chimera, AutoDock Vina, SwissADME, pkCSM, Kaplan-Meier Plotter, etc., have been employed to forecast the functional
consequences of the most harmful nsSNPs in SLC30A8 gene (Fig. 1(A-D)) [23,24] Additionally, we suggested novel treatment ap-
proaches that provide insightful information regarding their potential impact on the protein’s functionality, stability, and structure.
Our study also identified potentials biomarkers as drug targets for mutations linked to T2D and its progression to CRC. Therefore, it can
be predicted how patients will respond to treatments, enabling more effective and developing personalized therapeutic strategies.

2. Materials and Methods

2.1. Retrieval of SLC30A8 nsSNPs dataset

The dataset of the human SLC30A8 gene polymorphisms and protein sequence (Uniprot ID: Q8IWU4) was collected from NCBI
dbSNP (https://www.ncbi.nlm.nih.gov/snp/) and UniProtKB (https://www.uniprot.org/) databases, respectively. The dataset
comprised 82339 SNPs, including 336 nonsynonymous SNPs (nsSNPs) in the coding area and 945 in non-coding regions. Non-
synonymous mutations are those that result in a change in the amino acid sequence of a protein and can have a significant impact
on the structure and function of the protein. In our dataset preparation, we excluded only missense variant of nsSNPs because, its
impact can vary from benign to highly detrimental, depending on the role of the substituted amino acid in the protein’s function or
structure compared to nonsense variant [25]. As a result, coding region of 336 nsSNPs were prioritized for further investigation due to
their recognized ability to significantly influence protein structure and function, potentially responding to the progression of several
disease states. Subsequently, all the 336 nsSNPs were isolated and retrieved for further investigation.

2.2. Evaluation of the deleterious nsSNPs

In our study, we excluded deleterious nsSNPs that increase the stability of the protein rather than over-stabilization effects. Because
the role of SLC30A8 gene in insulin regulation and pancreatic beta-cell function, under-stabilization may be more immediately
harmful. Over-stabilization, while potentially harmful in the long term, may not have as immediate an impact. Under-stabilization of
the protein can quickly disrupt zinc homeostasis and insulin secretion, leading to metabolic disturbances and contributing to diabetes
risk [26].
Besides, we utilized various bioinformatics tools, such as SIFT, Predict-SNP, MAPP, PANTHER, SNAP2, SNPs&GO, PhD-SNP,

PolyPhen-1, and PolyPhen-2, to assess the functional consequences of the nsSNPs. The use of multiple methods ensured a rigorous
and accurate screening process. Only modifications anticipated to exert harmful effects were chosen for additional scrutiny. SIFT
(Sorting Intolerant From Tolerant) (https://sift.bii.a-star.edu.sg/) can forecast the functional outcomes of amino acid replacements by
examining sequence homology and the physicochemical attributes of amino acids [27]. The PhD-SNP (https://snps.biofold.org/phd-
snp/phd-snp.html) is the Predictor of Human Negative Single Nucleotide Polymorphisms. PhD-SNP uses support vector machines
(SVMs) to identify a point mutation in a human that is associated with a genetic disorder or polymorphism [28]. MAPP, SNAP 2,
PANTHER, and PolyPhen-1 tools were combined into a consensus classifier Predict-SNP (https://loschmidt.chemi.muni.cz/
predictsnp1/), offering much better prediction performance while also providing data for each mutation, showing that consensus
prediction is a reliable and accurate substitute for the predictions made by different tools [29]. SNPs&GO (https://snps-and-go.
biocomp.unibo.it/snps-and-go/) approach predicts harmful single amino acid polymorphisms (SAPs). For each protein variant, the
server’s output gives the likelihood that it will be linked to a disease in humans. When the likelihood score is> 0.5, it suggests that the
variations are disease-associated mutations, and when it is 0.5, it shows that the variations have no effect [30]. The software
PolyPhen-2 (Polymorphism Phenotyping v2) (http://genetics.bwh.harvard.edu/pph2/) predicts the impact of amino acid alterations
on the stability and functionality of human proteins, considering structural and evolutionary comparisons. Coding SNPs are mapped to
gene transcripts, structural and functional information on proteins is collected, functional annotation of SNPs is completed, and
conservation profiles are established. Subsequently, it computes the possibility of the missense mutation being harmful by integrating
all these characteristics [31].
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2.3. Analyzing protein stability

The I-Mutant 2.0 tool is built on a support vector machine (SVM) (https://folding.biofold.org/cgi-bin/i-mutant2.0.cgi). I-Mutant
2.0 is reasonably accurate, it is not infallible and can sometimes give erroneous predictions, especially for less common mutations or
proteins not well represented in the training data. We employed the sequence-based edition of I-Mutant 2.0, which categorizes pre-
dictions into three distinct groups: substantial decrease (0.5 kcal/mol), notable increase (>0.5 kcal/mol), and neutral mutation
(between − 0.5 and 0.5 kcal/mol). The basis for the predicted free energy change (ΔΔG) by I-Mutant 2.0 is the variance between the
unfolding Gibbs free energy change of the mutant and the native protein (in kcal/mol) [32,33].
Additionally, we utilized MUpro (http://mupro.proteomics.ics.uci.edu/), which has two machine-learning applications: neural

networks and support vector machines. We used the program’s sequence-based version and the default settings to run the SVM al-
gorithm. The program’s output indicates the energy change’s sign (+ or -) [34]. With these methods, we could anticipate how nsSNPs
could affect the stability of proteins and guide our subsequent investigation.

2.4. Evolutionary conservation analysis of the most damaging nsSNPs

A trade-off between the need to preserve the structural stability and functionalities of the macromolecule and the natural tendency
of the molecular building blocks to mutate is indicated by the level of evolutionary conservation of nucleic acid in DNA/RNA or amino
acid in proteins [35]. Compared to other popular approaches based on relative entropy and consensus techniques, ConSurf (https://
consurf.tau.ac.il/) has a clear advantage. To estimate evolutionary rates, it considers the distinct dynamics of the sequences under
study and the phylogenetic connections among the homologs using complex probabilistic evolutionary models [36]. The ConSurf
server was utilized to evaluate the level of evolutionary conservation at each amino acid position in the SLC30A8 protein and identify
the high-risk nsSNPs [23].

2.5. Prediction of post-translational modification (PTM) sites

Proteins are fine-tuned by over 400 complex chemical modifications. These act as molecular control panels, meticulously regu-
lating diverse cellular functions by altering protein structure and behaviour [37]. We relied on NetPhos 3.1 (https://services.
healthtech.dtu.dk/services/NetPhos-3.1/) [38] to pinpoint potential areas where phosphate molecules could latch onto our protein.
This software uses several neural networks to anticipate possible phosphorylation sites on tyrosine, threonine, and serine residues. A
score exceeding 0.5 on the software’s scale indicated a high phosphorylation probability at that location. Additionally, we employed
GPS-MSP 1.0 (http://msp.biocuckoo.org/) [39] to predict possible methylation sites on the protein chain.

2.6. Identification of structural and functional alternations

We used Mutpred2 (http://mutpred.mutdb.org/), which integrates genetic and molecular data using machine learning methods
and employs the amino acid sequence to predict structural and functional alteration caused by amino acid changes. Additionally, the
instrument provides information on the precise biological mechanisms behind the onset of diseases [23]. We provided amino acid
substitution and protein FASTA sequences as input for the Mutpred2 study. The g-score, derived from the collective scores of all neural
networks within MutPred2, indicates pathogenicity. A g-score surpassing 0.50 (g > 0.50) is considered indicative of pathogenicity
[40].

2.7. Evaluation of cancer-associated nsSNPs

Mutation 3D (http://www.mutation3d.org/) is employed to detect a group of amino acid substitutions arising from somatic cancer
mutations. It proves invaluable in investigating the spatial arrangement of amino acid alterations within protein models and structures.
This software utilizes a 3D clustering method to detect possible cancer-causing changes in amino acids inside a protein. It requires a
target protein and its mutations as input [41].

2.8. Estimating the effects of high-risk nsSNPs on the structure of protein

An automated approach for analyzing mutants called Project HOPE (https://www3.cmbi.umcn.nl/hope/input/) helps examine the
structural, functional and metabolic consequences of point mutations within protein sequences. It investigates how changes in amino
acid composition affect native structures and the variations in hydrophobicity, charge, and size between residues of the wild-type and
mutant-types. Project HOPE combines structural data with knowledge from literature and databases to predict the functional impact of
mutations. It often compares the mutation in question to similar known mutations. The accuracy can vary depending on the extent and
relevance of available comparative data [42]. Several computational studies utilizing the Project HOPE server to identify significance
mutations in specific proteins including human LYZ C gene [43], CDK4 gene [44], and human RASSF5 gene [24]. Protein Data Bank
(https://www.rcsb.org/) provides the SLC30A8 protein sequence to Project HOPE for predicting the 3D structure of the mutated
protein. It also provides a plethora of information on changing amino acids and estimates the composition and function of proteins
after mutations [23,44].
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2.9. Gene Ontology (GO) enrichment analysis

Genome-wide experiments generate massive datasets of genes, and enrichment analysis offers a powerful tool for extracting
meaningful insights from these sets. Gene ontology analysis was performed using Enrichr (https://maayanlab.cloud/enrichr-kg) [45]
to detect statistically noteworthy (P < 0.05) associations between the input gene set and curated databases of cellular components,
molecular activities, and biological processes [46]. Employing SRplot (https://www.bioinformatics.com.cn/en), we constructed
graphical summaries of the enriched analysis results [47].

2.10. Prediction of protein-protein interaction (PPI)

The online database STRING (Search Tool for Recurring Instances of Neighboring Genes) predicts the PPI network of the SLC30A8
protein (https://string-db.org/). It retrieves the genes that are tangentially (via other genes) linked to the query gene using an
evolutionary method [48]. The STRING output furnishes details regarding the protein’s expression, localization, transcription,
experimental evidence, and graphical depictions of the interactions in which the queried protein participates [49].

2.11. Superimposition and molecular docking of raw and mutated proteins

Protein structure determination and modeling involve determining and positioning protein structures in 3D space, known as
protein structure superimposition. The best superimposition reflects dynamic changes over time and aligning structures to reveal
common structural or functional patterns [50]. We used Chimera 1.16 [51] for the superimpositioning of native SLC30A8 protein and
its mutant variants.
Further, to assess the impact of deleterious point mutations on the binding affinity of SLC30A8 (UniProt accession no. Q8IWU4.2),

we employed the Autodock Vina (version 1.2.1) [52] to perform molecular docking analysis. We generated a mutated form of the
target protein using the crystal structure complex of SLC30A8 obtained from RCSB (https://www.rcsb.org/) [53] using phyr2 (http://
www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) [54], and energy minimization employed by Swiss-PdbViewer (https://
spdbv.unil.ch/) [55].
The mutated SLC30A8 protein containing eight nsSNPs is the docking procedure’s target protein along with normal protein. Li-

gands like Luzonoid B and Roseoside [56] obtain from pubchem (https://pubchem.ncbi.nlm.nih.gov/) [57]. The PDB format of these
input ligands was transformed into pdbqt format using Autodock Vina. We tailored the grid box size for maximum efficiency. The
docking outcome and the binding interactions between the ligand and receptor proteins were observed through BIOVIA Discovery
Studio (version 21.1.0) [58].

2.12. ADME properties and toxicity analysis

Compounds such as Luzonoid B and Roseoside [56] exhibit notable physicochemical properties, pharmacokinetics, and
drug-likeness while demonstrating no significant adverse effects according to the ADMET assay. These compounds could be assessed as
potential therapeutic agents targeting SLC30A8 in cancer and T2D [2]. Each compound was characterized in silico as a potential drug
candidate to evaluate its pharmacokinetic properties, particularly absorption, distribution, metabolism, and excretion (ADME) [59].
Following the docking process, we assessed our chosen compounds’ Pharmacokinetics and ADME characteristics using SwissADME

Fig. 2. The clustered pyramid illustrates the quantity and arrangement of SNPs within the human SLC30A8 gene derived from the dbSNP database
(nsSNPs: 336; synonymous SNPs: 127; intronic SNPs: 81076; others: 800).
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(https://www.swissadme.ch/) [59] and the pkCSM (https://biosig.lab.uq.edu.au/pkcsm/) [60] online server.

2.13. Gene diseases Co-relation through survival analysis

The Kaplan-Meier technique (https://kmplot.com/analysis/) is a particularly effective way to evaluate changes associated with
treatment interventions and forecast how they may affect cancer survival rates. This strategy makes use of overall survival (OS) and
relapse-free data from the Cancer Genome Atlas (TCGA), European Genome Phenome Atlas (EGA), and Gene Expression Omnibus
(GEO). It makes it possible to generate and assess cancer biomarkers through thorough meta-analyses. Once the survival job has been
submitted, a Kaplan-Meier plot will demonstrate whether there is a substantial difference in the length of survival between the two
patient groups [61].

3. Results

3.1. Retrieving missense variant of nsSNPs of SLC30A8 gene

The NCBI dbSNP database was employed to get polymorphism data for the SLC30A8 gene. There were 82,339 SNPs, including 127
synonymous variants, 81,076 intron region variants, 336 missense variants of nsSNPs, and the remaining were different types (Fig. 2
and Supplementary Table S1). We excluded the other SNPs and only concentrated on 336 non-synonymous SNPs (missense variations)
for our investigation. A missense variant is a single nucleotide change in the coding region for a different amino acid substitution,
potentially affecting the protein’s structure and function.

3.2. Prediction and analysis of deleterious nsSNPs

We used nine different harmful SNP prediction algorithms (SIFT, Predict-SNP, MAPP, SNAP 2, SNPs&GO, PANTHER, PhD-SNP,
PolyPhen-1, and PolyPhen-2) to identify deleterious nsSNPs capable of modifying the overall arrangement or function of the
SLC30A8 protein. For analysis, a dataset of 336 polymorphic inputs was employed in total. All nine in silico tools predicted that 29 out
of 336 nsSNPs were harmful (Table 1).

Table 1
A compilation of nsSNPs predicted to be highly deleterious by nine computational methods.

Rs no A.A. change SIFT MAPP PANTHER SNP&GO PHD-SNP Predict-SNP SNAP2 PolyPhen1 PolyPhen2

Rs73317647 R165C DL DL DL D D DL E DL PD
Rs139489847 G296R DL DL DL D D DL E DL PD
Rs140404252 L74R DL DL DL D D DL E DL PD
Rs141730422 H54R DL DL DL D D DL E DL PD
Rs142407509 W152R DL DL DL D D DL E DL PD
Rs145677283 R165H

R165L
DL DL DL D D DL E DL PD

Rs149524118 A216T DL DL DL D D DL E DL PD
Rs201697165 S182F DL DL DL D D DL E DL PD
Rs746249658 R138L

R138Q
DL DL DL D D DL E DL PD

Rs751350884 S182P DL DL DL D D DL E DL PD
Rs762384069 H301N DL DL DL D D DL E DL PD
Rs763719329 H304P

H304L
DL DL DL D D DL E DL PD

Rs765852756 I141N DL DL DL D D DL E DL PD
Rs771191320 W136G DL DL DL D D DL E DL PD
Rs771330275 V219E DL DL DL D D DL E DL PD
Rs776903420 S230R DL DL DL D D DL E DL PD
Rs780551100 I349N DL DL DL D D DL E DL PD
Rs866700996 L303R DL DL DL D D DL E DL PD
Rs1035358113 R215G DL DL DL D D DL E DL PD
Rs1255515664 W306C DL DL DL D D DL E DL PD
Rs1264823419 H137P DL DL DL D D DL E DL PD
Rs1271726667 L111R DL DL DL D D DL E DL PD
Rs1300885615 E140A DL DL DL D D DL E DL PD
Rs1305371427 S234R DL DL DL D D DL E DL PD
Rs1325443204 L308Q DL DL DL D D DL E DL PD
Rs1586608274 Q227R DL DL DL D D DL E DL PD
Rs1822266670 D103V DL DL DL D D DL E DL PD
Rs1822805541 L222R DL DL DL D D DL E DL PD
Rs2130999340 L146R DL DL DL D D DL E DL PD

DL: deleterious; D: disease; E: effect; PD: probably damaging.
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3.3. Analyzing the protein stability of 29 identified mutant variants

To evaluate protein stability, 29 nsSNPs previously identified as harmful were further analyzed using two additional tools: I-Mutant
2.0 and MUpro. I-Mutant showed that 25 nsSNPs decreased protein stability, while four nsSNPs were found to increase the stability,
using the reliability index (RI) value and changes in free energy (ΔΔG). MUpro also predicted that 28 nsSNPs destabilized the protein,
while one (R138L) nsSNP stabilized it. For further analysis, we only focused on missense variants of nsSNPs predicted to destabilize by
all in silico tools (Table 2).

3.4. Evolutionary conservation analysis of high-risk nsSNPs

It is crucial for a protein’s function and biology that its amino acids remain conserved throughout evolution. Mutations in these
conserved regions often have detrimental effects and can disrupt the protein’s normal function. It has been discovered that among 25
nsSNPs, 22 are located within highly conserved regions, with nine of them being buried and eight exposed (Fig. 3). The remaining of
five nsSNPs were classified as buried or exposed based on the network algorithm employed by the Consurf online database. Three SNPs
were excluded from this analysis as they fall within the variable region (Supplementary Table S2).

3.5. Prediction of post-translation modification (PTM) site

Using the GPS-MSP 1.0 tool, we identified R325 as a potential methylation site on the SLC30A8 protein. We turned to NetPhos 3.1
to predict phosphorylation sites (Fig. 4). It identified S307 in the native protein and S299 in the mutant as potential phosphorylation
sites (Supplementary Table S3).

3.6. Evaluation of cancer-associated nsSNPs

Mutation 3D server classified our reported nsSNPs into two groups. One group, comprising SNPs W152R, R215G, A216T, V219E,
L222R, S230R, and S234R, is designated as covered mutations (represented in blue) in Fig. 5. The "covered mutation group” in the
context of the Mutation 3D server typically refers to a set of mutations that are analyzed for their potential impact on protein structure
and function. Mutation 3D server provided several default exclusion criteria for the selection of covered mutation group such as (i)

Table 2
Changes in the stability of the SLC30A8 protein structure predicted by I-mutant 2.0 and MUpro.

Rs no Mutation I-Mutant 2.0 MUpro

Rs73317647 R165C D D
Rs139489847 G296R D D
Rs140404252 L74R D D
Rs141730422 H54R D D
Rs142407509 W152R D D
Rs145677283 R165H

R165L
D
D

D
D

Rs149524118 A216T D D
Rs201697165 S182F I D
Rs746249658 R138L

R138Q
D
D

I
D

Rs751350884 S182P I D
Rs762384069 H301N D D
Rs763719329 H304P

H304L
I
I

D
D

Rs765852756 I141N D D
Rs771191320 W136G D D
Rs771330275 V219E D D
Rs776903420 S230R D D
Rs780551100 I349N D D
Rs866700996 L303R D D
Rs1035358113 R215G D D
Rs1255515664 W306C D D
Rs1264823419 H137P I D
Rs1271726667 L111R D D
Rs1300885615 E140A D D
Rs1305371427 S234R D D
Rs1325443204 L308Q D D
Rs1586608274 Q227R D D
Rs1822266670 D103V D D
Rs1822805541 L222R D D
Rs2130999340 L146R D D

Five SNPs including one isoform (H304P) of rs746249658 have been excluded for further analysis (Bold).
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mutations are typically annotated with their exact position in the protein sequence and structure, (ii) the specific substitution of amino
acid such as missense at the given position, (iii) mutations in highly conserved regions indicating potential functional importance, (iv)
finally, mutations that are predicted to affect the stability or folding of the protein structure.
Another group is the clustered mutations are categorized consisting of the eight nsSNPs (shown in red) and divided into two

clusters. According to this research, our identified eight nsSNPs including W136G, R138Q, E140A, I141N, L303R, W306C, L308Q, and

Fig. 3. The ConSurf server conducted an analysis of evolutionary conservation for SLC30A8. Here, ’f’ represents a predicted functional residue
(highly conserved and exposed), while ’s’ denotes a predicted structural residue (highly conserved and buried).

Fig. 4. PTM sites (methylation and phosphorylation) predicted by GPS-MSP 1.0, and NetPhos 3.1 (using IBS software).

Md.M. Uddin et al.



Heliyon 10 (2024) e37280

9

Fig. 5. The mutation 3D server identified certain nsSNPs as potential cancer-causing mutations (red mark). Red indicates clustered mutations,
whereas blue signifies covered mutations. A represents cluster-1, where five nsSNPs (W136G, R138Q, E140A, I141N, and L303R) are present, and B
represents cluster-2 where four nsSNPs are (L303R, W306C, L308Q, and I349N) present related with cancer (red mark).

Table 3
MutPred2 predicts structural and functional modifications of SLC30A8 protein. The term "g-value” refers to the MutPred2 general score.

Mutation Actionable/confident hypothesis g-value p-value Probability Affected PROSITE and ELM Motifs

R138Q Altered Transmembrane protein 0.690 0.03 0.28 None
Altered Ordered interface 0.03 0.25

I141N Altered Transmembrane protein 0.768 4.9e-03 0.34 ELME000045
Altered Ordered interface 0.04 0.28
Gain of Relative solvent accessibility 0.02 0.28
Gain of Allosteric site at R138 0.01 0.24

W136G Gain of Intrinsic disorder 0.899 4.8e-03 0.44 ELME000008, ELME000062, PS00008
Altered Ordered interface 2.8e-03 0.34
Altered Transmembrane protein 0.01 0.31
Gain of Relative solvent accessibility 0.01 0.29
Gain of Catalytic site at R138 0.05 0.08

I349N Gain of Intrinsic disorder 0.810 6.5e-03 0.41 ELME000173
Altered Stability 5.5e-03 0.30

L303R Altered Metal binding 0.888 4.5e-03 0.29 ELME000051, ELME000063
Altered Ordered interface 0.04 0.24
Loss of Catalytic site at H304 7.7e-03 0.23
Gain of Allosteric site at W306 0.03 0.21
Altered Stability 0.04 0.11

E140A Altered Transmembrane protein 0.823 3.8e-04 0.28 None
Altered Ordered interface 0.03 0.25
Loss of Relative solvent accessibility 0.04 0.24

W306C Altered Ordered interface 0.839 3.3e-03 0.32 None
Altered Metal binding 4.5e-03 0.30
Loss of Allosteric site at W306 0.02 o.25
Loss of Catalytic site at H304 0.01 0.21

L308Q Altered Metal binding 0.707 8.3e-03 0.26 ELME000202
Altered Ordered interface 0.04 0.24
Loss of Catalytic site at H304 9.0e-03 0.22
Gain of Allosteric site at W306 0.03 0.21
Altered Stability 0.04 0.11
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I349N are linked to cancer and being examined further (Fig. 5(A-B)).

3.7. Identification of functional and structural modifications

Eight nsSNPs were identified as potentially harmful and further analyzed using the MutPred2 tool. The results, including g-scores
and p-values, are summarized in Table 3. Notably, all eight nsSNPs (W136G, R138Q, E140A, I141N, L303R, W306C, L308Q, and
I349N) exhibited strong pathogenic potential, with g-scores exceeding 0.60 and p-values below 0.05.

3.8. Estimating the effects of high risk nsSNPs on the structure of protein

Project HOPE utilizes computational methods to analyze the structural alterations induced by amino acid changed in native
protein. The study revealed that wild-type and mutant-type amino acids exhibit distinct physicochemical attributes, including size,
charge, and hydrophobicity. All eight nsSNPs resulted in changes in amino acid size. Four mutant amino acids (I141N, L303R, L308Q,
I349N) exhibited increased size compared to their wild-type counterparts, while the remaining four mutations displayed reduced size.
Three nsSNPs (R138Q, E140A, L303R) were found to alter the amino acid charge. Additionally, E140A exhibited increased hydro-
phobicity in the mutant form. R138Q did not affect hydrophobicity, while all other six mutants showed reduced hydrophobicity
compared to the wild type (Table 4).
Project HOPE identified notable distinctions between wild-type and mutant-type amino acids regarding structural alterations,

mutations within conserved domains, and properties of amino acids (Supplementary Table S4). The study employed computational
methods to predict the physicochemical attributes, including structural features and conserved domains, which were then used to
assess the possible molecular impact of high-risk nsSNPs on protein structure (Supplementary Table S5). Furthermore, Project HOPE
generated 3D model structures for the eight mutated SLC30A8 proteins. Fig. 6 illustrates the ribbon presentation and resulting 3D
models following the introduction of mutations. These pictures show how mutations in the SLC30A8 protein change its structure,
which helps us understand valuable insights.

3.9. Gene Ontology (GO) analysis

We assessed the biological properties of SLC30A8 by functionally annotating the primary targets on GO enrichment. The three
components of the GO enrichment analysis are biological process (BP), cellular component (CC), and molecular function (MF),
depicted by green, orange, and blue bubbles, respectively. About 34 GO words in all were produced, of which BP provided 24, CC
provided 4, and MF provided 6. Node sizes indicated linked target genes, and green to red colors represented high to low p-values
(Fig. 7).

3.10. Prediction of protein-protein interaction (PPI)

Changes in a protein’s structure caused by mutations can affect its function. An analysis of the SLC30A8 protein’s interaction
network using the STRING server revealed interactions with PTPRN, HHEX, CDKAL1, INS, TCF7L2, GAD2, IGF2BP2, KCNJ11, FTO,
and KIF11 (Fig. 8 and Supplementary Table S6). The SLC30A8 protein exhibits high connectivity within this network, interacting with
ten other proteins to form a highly interconnected network with 39 edges and 11 nodes. The mean node degree stands at 7.09, while
the PPI enrichment value is 6.27e-10. This network suggests these proteins have strong functional associations and potential regulatory
relationships.

3.11. Superimposition and molecular docking of raw and mutated proteins

A molecular docking simulation predicted the binding affinities of eight mutated SLC30A8 for two target compounds. After
matchmaking (superimposed) through chimera tools, the SLC30A8 protein and eight mutant proteins are structurally similar (Fig. 9(A-
H)). There is no significant difference between the wild-type and mutant-type SLC30A8 protein structures after superposition. In the

Table 4
Properties of wild-type and mutant-type amino acids regarding size, charge, and hydrophobicity analyzed by Project HOPE.

AA change Wild type AA Mutant type AA

Size Charge Hydrophobicity Size Charge Hydrophobicity

R138Q Larger Positive None Smaller Neutral None
I141N Smaller _ More hydrophobic Larger _ Less hydrophobic
W136G Larger _ More hydrophobic Smaller _ Less hydrophobic
I349N Smaller _ More hydrophobic Larger _ Less hydrophobic
L303R Smaller Neutral More hydrophobic Larger Positive Less hydrophobic
E140A Larger Negative Less hydrophobic Smaller Neutral More hydrophobic
W306C Larger _ More hydrophobic Smaller _ Less hydrophobic
L308Q Smaller _ More hydrophobic Larger _ Less hydrophobic

‘_’ indicates neutral effect.

Md.M. Uddin et al.



Heliyon 10 (2024) e37280

11

Fig. 9, we have only illustrated the substitution of amino acids. While validating our docking tools using RMSD analysis, we identified
eight complexes with co-crystallized unique ligands to those complexes: luzonoid B and Roseoside, along with normal protein. The
6xpd exhibited a high binding affinity for luzonoid B (− 6.9 kcal/mol) and Roseoside (− 6.5 kcal/mol). Eight mutated proteins also
show promising affinities with luzonoid B and Roseoside, as shown in Table 5. Among their hydrogen and hydrophobic bonds, the
residues like Glu66, Tyr67, Asn311, Met344, and His345 share between mutated proteins (Fig. 10(A-H) and Fig. 11(A-H)).

3.12. ADME properties and toxicity analysis

The tools SwissADME and pkCSM analyze the molecular properties of selected compounds to ensure compliance with Lipinski’s
rule of five, a crucial factor in drug design. The chosen compounds obtained from PubChem were assessed for their drug-likeness and
physiochemical characteristics. To determine the most promising candidates’ drug-likeness, we evaluate selected compounds’ ADME
properties. This evaluation included Lipinski’s rule of five compliance, bioactivity rating, and ADME parameters such as Total Solvent
Accessible Surface Area (TPSA), Predicted Aqueous Solubility (PSA), Human Oral Absorption (HIA), Molecular Weight (MW), Blood-
Brain Barrier (BBB) permeability, Hydrogen Bond Donor (HBD) count, Hydrogen Bond Acceptor (HBA) count, Central Nervous System
(CNS) permeability, and Partition Coefficient (LogP). These factors are crucial for determining a compound’s potential to effectively
interact with its target site and be safely metabolized and eliminated from the body (Table 6). The toxicity evaluation of the selected
compounds revealed encouraging results, suggesting their potential as drug candidates. The AMES test, Hepatotoxicity, Oral Rat Acute
Toxicity (LD50), and Skin Sensitization tests all demonstrated low toxicity and minimal adverse effects, supporting the compounds’
safety and suitability for further development (Table 6). These ligands’ favorable physiochemical properties and ADME profiles
suggest their potential as promising drug candidates for future development.

3.13. Gene diseases Co-relation through survival analysis

A research investigation was carried out to examine the correlation between the SLC30A8 gene and the survival rates of patients

Fig. 6. The 3D model structure of the SLC30A8 protein was predicted using Project HOPE. The location of the mutation is depicted in violet on the
ribbon diagram. The native and mutated amino acids are represented by green and red colors, respectively.
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Fig. 7. Gene Ontology (GO) pathway study of SLC30A8 gene using Biological Process (BP), Cellular Component (CC), and Molecular Function (MF).
The pathway term outcomes (based on P-value) were sorted using the combined score. The color gradient green to red color indicates the higher to
lower p-value.

Fig. 8. PPI network of SLC30A8 protein predicted by STRING server and Designed through Cytoscape software. The circular shape indicates the
neighboring proteins and solid line indicates the interaction between those proteins.
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with breast cancer, colorectal cancer, head-neck squamous cell carcinoma, and sarcoma. The findings indicated that individuals
exhibiting elevated levels of SLC30A8 expression faced reduced mortality risk across all four types of cancer. For colorectal and breast
cancer, the HR ratio and P-value were (HR 1.38 [1.1–1.74], P = 0.0057) and (HR 1.33 [0.92–1.91], P = 0.13), respectively. Similarly,
for head-neck squamous cell carcinoma and sarcoma, the HR ratio and P-value stood at (HR 1.28 [0.96–1.71], P= 0.092) and (HR 1.53
[1.02–2.29], P = 0.037), respectively (Fig. 12(A-D)). These findings imply that the SLC30A8 gene could be a prognostic indicator for
these cancers. Furthermore, eight nsSNPs were detected within the SLC30A8 gene. These nsSNPs are anticipated to impair the function
of the SLC30A8 protein, potentially fostering cancer progression.

Fig. 9. Superimposition of Wild type of SLC30A8 protein with eight mutated proteins. Superimposed structure of wild-type SLC30A8 protein and
mutant-type having mutations from (A) Tryptophan to Glycine at position 136, (B) Arginine to Glutamine at position 138, (C) Glutamic acid to
Alanine at position 140, (D) Isoleucine to Asparagine at position 141, (E) Leucine to Arginine at position 303, (F) Tryptophan to Cysteine at position
306, (G) Leucine to Glutamine at position 308 and (H) Isoleucine to Asparagine at position 349. Ash color indicates wild-type protein, sky blue for
mutant protein, and the yellow box for mutations between a wild-type protein and eight mutated proteins, along with their positions.
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3.14. Biological validation of reported SNP

According to our study, nsSNPs of the SLC30A8 gene may have a detrimental impact on several fatal diseases like T2D, Colorectal
cancer, and so on. The SLC30A8 gene polymorphism rs13266634 raises the probability of developing T2D in Jordanian population
(Mashal et al. [62]). A different study detected the SLC30A8 rs13266634 and rs16889462 genetic variations in Chinese individuals
diagnosed with T2D, which were connected with susceptibility to the disease and the effectiveness of repaglinide as a treatment
(Huang et al. [63]). Also, other research groups investigated and examined the correlation between the rs13266634 polymorphism and
T2D in Iranian populations (Faghih et al. [64]) and the rs13266634 SLC30A8 gene variant in Han Chinese and minority ethnic groups
in China (Wang et al. [65]).
The association between diabetes and colorectal cancer risk was modified by variants on chromosome 8q24.11 within the SLC30A8

gene, with rs3802177 being the genetic variant showing the most significant effect (Dimou et al. [2]). Four single-nucleotide poly-
morphisms (SNPs) in T2D were found to increase the risk of colorectal cancer: rs7578597 (THADA), rs864745 (JAZF1), rs5219
(KCNJ11), Rs7961581 (TSPAN8, LGR5) (Cheng et al. [66]). The patients who possessed the TCF7L2_rs7903146_T gene variant were
more likely to develop colorectal cancer (Sainz et al. [67]).
Above all, the SLC30A8 gene with different rs IDs potentially impacts T2D and Colorectal cancer in humans. We evaluated eight rs

IDs of nsSNPs of the SLC30A8 gene, possibly linked to several diseases, including T2D, colorectal cancer, etc.

4. Discussion

Single nucleotide polymorphisms (SNPs) can change the structure and function of proteins, thereby influencing human diseases,
traits, drug responses, and therapeutic outcomes [68,69]). However, characterizing these SNPs is a laborious and expensive technique
due to their complex relationship with specific phenotypes. In silico approaches, which utilize computer simulations to analyze bio-
logical data, can provide insights into genetic differences in disease susceptibility and their phenotypic impacts, hence lowering the
number of candidates for molecular screening [70].
This research determines genetic variations within the SLC30A8 gene to assess their potential impact on gene function. Out of the

336 documented missense SNPs, eight high-risk SNPs (rs746249658, rs765852756, rs771191320, rs780551100, rs866700996,
rs1300885615, rs1255515664, and rs1325443204) were determined to be harmful by nine distinct computational techniques
(Table 1). Two computational approaches, MuPro and I-Mutant 2.0, were employed to assess the impact of 29 identified nsSNPs on
protein stability. According to I-Mutant, the S182F, S182P, H304P, H304L, and H137P SNPs are anticipated to enhance protein
stability. Meanwhile, MuPro suggested that the R138L SNP would also increase protein stability. Since mutations stabilizing the
protein were not the focus of this study, they were excluded from this study. Only the 25 SNPs, which were consistently forecasted by
both tools to instabilize the protein, were kept for further studies (Table 2).
Utilizing ConSurf, a study evaluated how the residues in the SLC30A8 protein have evolved according to their conservation. This

Table 5
Interaction of ligands showing high docking scores for mutated SLC30A8 protein.

Receptor type Receptor Binding Affinity
of Luzonoid B

Binding
Affinity of
Roseoside

Interacting residues

Hydrogen bond Hydrophobic bond

Luzonoid B Roseoside Luzonoid B Roseoside

Normal
SLC30A8
protein

6xpd − 6.9 − 6.5 His106, Glu164,
Arg165, Glu227,
Ser228

Thr102, Ser182 Leu158, Leu161,
Met178, Val181,
Ala185

Ala105, His106,
Ile109, Val154,
Leu158, Leu161

Mutated
SLC30A8
protein

W136G − 6.6 − 6.6 Lys73, Asn311 Tyr67, Asn311 Glu66, Tyr67, Ala210 Thr343, Met344,
His345

R138Q − 7.9 − 7.2 Glu66, Lys73,
Glu209, Asn211,
Arg215

Gly56, His137,
Asn311, Met344,
His345

Tyr67, His137,
Ala210, Leu196,
Thr309

Tyr67

E140A − 7.2 − 8.0 Gln209 Glu66, Asn311 Tyr67, Ala70, Leu74,
Leu121, Ala140,
Arg215

Tyr67, Ala70, Leu74,
Leu121, Ala140,
Met310

I141N − 7.4 − 6.5 Tyr67, Lys73, Ser213,
Thr309

Pro59, Lys126,
His137, His345

His137, Leu196,
Ala210

Ala64, Tyr67, Ser124

L303R − 7.3 − 6.3 Gln209, Asn211,
Arg215, Gln312

Asn211, Ser213,
Ser281

Tyr67, Tyr69, Thr309 Leu273, Pro279,
Met310, Phe342

W306C − 7.0 − 7.5 Cys53, Ser55, Glu66,
Ser339, Met344,
His345

Ser55, Met344 Lys62, Asn311 Gly56, Pro59, Lys62,
His345

L308Q − 7.3 − 7.2 Lys73, His137,
Gln209, Ser213,
Arg215

Ser55, Asn311,
Thr343, Met344,
His345

Tyr67, Ala70, Thr309 Pro59, His137

I349N − 7.2 − 7.4 Cys53, Thr343,
Met344, His345,
Leu347

Ser55, Gly63,
Met344

Pro59, Lys62, Tyr67 His54, Pro59, Lys62,
His345
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analysis revealed that mutations are more likely to occur in conserved regions, where critical amino acid positions change less
frequently due to their importance for protein function. An amino acid’s evolutionary conservation indicates its mutability, with highly
conserved and exposed residues most prone to harm (Ashkenazy et al. [36]). The Evolutionary Trace approach and its variations are
the most well-known substitute for ConSurf for discovering functional areas [71,72] Among 25 nsSNPs, ConSurf revealed 22 nsSNPs
with a conservation score of 8 or 9, indicating they were highly conserved (Supplementary Table S2, and Fig. 3). Afterward, the study
of mutation 3D servers revealed the correlation of W136G, R138Q, E140A, I141N, L303R, W306C, L308Q, and I349N nsSNPs with
cancer (Fig. 4). GPS-MSP 1.0 anticipated R325’s methylation location. The NetPhos 3.1 program predicted the phosphorylation sites to
be wild-type residues (S307) and mutant residues (S299) (Fig. 5(A-B)).
Protein stability alterations influence the conformational structure, dictating protein function [73]. In this research, the MutPred2

web server was employed to investigate potential molecular alterations in the structure or function of the SLC30A8 protein caused by
mutations. According to their g and p scores, every detected deleterious SNP was categorized as "pathogenic” (Table 3). Among the
eight analyzed nsSNPs, W136G possesses the highest probability score, indicating its significant potential to affect protein structure
and function. Conversely, R138Q exhibits the lowest g-value, suggesting a comparatively less impact. This analysis reveals G47R as the
most impactful mutation, with the remaining seven potentially influencing protein stability and possibly affecting structure and
function. As demonstrated by previous studies, reduced protein stability can result in altered folding mechanisms, accelerated
breakdown, and erroneous aggregation [74,75]).
Project HOPE provides new insights into the adverse effects of point mutations on protein structure. It demonstrates notable

Fig. 10. Analysis of binding interactions of (O) raw and mutated SLC30A8 proteins using Autodock Vina. From the right side, (A) depicts the
interaction between W136G and Luzonoid B, (B) R138Q and Luzonoid B, (C) E140A and Luzonoid B, (D) I141N and Luzonoid B, (E) L303R and
Luzonoid B, (F) W306C and Luzonoid B, (G) L308Q and Luzonoid B, (H) I349N and Luzonoid B.
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variances in physicochemical characteristics between wild and mutant amino acids, encompassing size, charge, and hydrophobicity.
Notably, the mutations I141N, L303R, L308Q, and I349N result in increased amino acid size compared to the wild-type counterpart,
whereas W136G, R138Q, E140A, and W306C mutations lead to a size decrease. Moreover, three mutations (R138Q, E140A, and
L303R) exhibit altered amino acid charges in the mutant variant. Regarding hydrophobicity, W136G, I141N, L303R, W306C, L308Q,
and I349N mutations render the protein less water-repellent than the wild-type residue, while E140A exhibits increased hydropho-
bicity, potentially impacting hydrophobic interactions. Notably, R138Q does not contribute to hydrophobic interactions (Table 4).
STRING analysis shows that the SLC30A8 protein plays crucial roles in several vital processes. It works with other proteins like

PTPRN, INS, and TCF7L2 to maintain normal levels of necessary brain chemicals like norepinephrine, dopamine, and serotonin; boost
critical metabolic processes in the liver, including glycolysis, the pentose phosphate cycle, and glycogen synthesis; and additionally,
involves in the important Wnt signalling pathway (Fig. 8). ZnT8, a protein encoded by SLC30A8, may transport zinc ions from the
cytoplasm to the granules that secrete insulin. While high zinc concentrations within these granules are well-documented, the precise
physiological function of secreted zinc remains unclear. It validated three loci in a noncoding region close to CDKN2A and CDKN2B, in
an intron of IGF2BP2, and in an intron of CDKAL1, which was shown to be related to T2D. Additionally, it replicated associations close
to HHEX and in SLC30A8 [76,77].

Fig. 11. Analysis of binding interactions of (O) raw and mutated SLC30A8 proteins using Autodock Vina. From the right side, (A) depicts the
interaction between W136G and Roseoside, (B) R138Q and Roseoside, (C) E140A and Roseoside, (D) I141N and Roseoside, (E) L303R and
Roseoside, (F) W306C and Roseoside, (G) L308Q and Roseoside, (H) I349N and Roseoside.
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We employed molecular docking to explore the possibility that luzonoid B and roseoside bind to a mutated SLC30A8 protein, which
plays a role in both T2D and colorectal cancer [2,9] Based on their exceptional binding affinity to the eight mutated SLC30A8 proteins
along with normal protein, luzonoid B and roseoside were identified as the most promising compounds with promising binding scores
(Figs. 10 and 11 and Table 5). This suggests that the two compounds exhibit the strongest attraction to the mutant proteins and are
more effective at inhibiting them compared to the normal SLC30A8 protein. The increasing binding affinity towards mutant SLC30A8
proteins has been demonstrated not to contribute to drug resistance [78,79].
We evaluated the pharmacokinetics of the selected compounds to ensure they can be effectively absorbed, distributed, metabolized,

and excreted, allowing them to reach their target sites and exert their desired effects [80]. Lower molecular weight (<500) enhances
permeability, facilitating transport, diffusion, and absorption through the cell membrane [81]. Selected compounds displayed mo-
lecular weights under 500 g/mol, including Luzonoid B (462.49 g/mol) and Roseoside (386.44 g/mol). Higher positive LogP values
suggest enhanced permeation of compounds across biological membranes, with a recommended threshold below 5 considered
acceptable [82]. LogS indicates drug solubility, with lower values representing higher solubility [83]. These results demonstrate the
compounds as promising candidates for further evaluation as drugs for T2D and colorectal cancer in living organisms (in vivo). Optimal
membrane permeation for drugs requires a specific range of hydrogen bonds (H-donors: <5 H-acceptors: <10). Optimal oral
bioavailability necessitates limiting the number of rotatable bonds in a drug molecule to a maximum of 10. ADMET prediction suggests
that all two docked compounds possess properties within the allowed range for predicted drug development (Table 6).
The SLC30A8 gene dysregulation was found to have a prognostic significance and to impact the total survival rate for individuals

who have suffering from breast cancer, colorectal cancer, sarcoma, and head-neck squamous cell carcinoma using the Kaplan-Meier
plotter. All four malignancies combined posed a decreased death risk to those with greater expression of SLC30A8. These results
suggest any dysregulation of SLC30A8 expression may significantly impact patient survival in these four cancers (Fig. 12). While the in-
silico approach is powerful, the study would be strengthened by experimental validation including in vitro or in vivo of the predicted
effects in near future. This approach allows researchers to efficiently predict the impact of genetic mutations on protein function and
disease pathophysiology, thereby prioritizing variants for further experimental validation and saving time and resources in the
research process [84]. Therefore, we will be emphasized the need for experimental validation to elucidate how SLC30A8 affects cancer
progression and investigate its viability as a potential drug in the future of the predicted impacts of identified mutations.

5. Conclusion

Analyzing genetic variations (SNPs) in SLC30A8 suggests it might be an essential gene for impacting the onset of type 2 diabetes, a
recognized risk factor for colorectal cancer. Eight potentially harmful nsSNPs of SLC30A8 were found in this study using various in
silicomethods. Finding these nsSNPs should facilitate quick and effective screening to identify diseases linked to SLC30A8 expression.

Table 6
Analysis of reported compounds, considering their ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity), physicochemical
properties, lipophilicity, and drug-likeness.

Properties Model Name luzonoid B Roseoside

Absorption Intestinal absorption (human) 96.016 47.786
Skin Permeability − 2.781 − 2.859
caco-2 0.176 0.379

Distribution VDss (human) − 0.113 − 0.131
Fraction unbound (human) 0.228 0.601
BBB permeability − 1.227 − 1.067
CNS permeability − 3.526 − 3.632

Metabolism CYP2D6 substrate No No
CYP3A4 substrate Yes No
CYP2D6 inhibitor No No
CYP3A4 inhibitor No No

Excretion Total Clearence 0.873 1.389
Toxicity AMES toxicity No No

Oral Rat Acute Toxicity (LD5) 2.808 2.2
Hepatotoxicity No No
Skin Sensitization No No

Physicochemical Molecular weight 462.49 g/mol 386.44 g/mol
LogP 1.4985 − 0.576
Num. H-bond acceptors 9 8
Num. H-bond donors 4 5
Molar Refractivity 117.94 96.23
TSPA 142.75 Å2 136.68 Å2

Lipophilicity Consensus Log Po/w 1.61 0.01
Water Solubility Log S (ESOL) − 2.91 − 1.24

Solubility class Soluble Soluble
Drug-likeness Lipinski violation Yes; 0 violation Yes; 0 violation

Bioavailability Score 0.55 0.55
Medicinal Chemistry PAINs 0 alert 0 alert
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After identifying nsSNPs of SLC30A8, we developed a novel drug against its harmful effects; this suggests that the two compounds
exhibit the strongest attraction to the mutant proteins and are more effective at inhibiting them compared to the normal SLC30A8
protein. The high binding affinity towards mutant SLC30A8 proteins has been exhibited not to contribute to drug resistance, which
might be detrimental to curing these fatal diseases. Moreover, it will greatly simplify the process of creating experiments for upcoming
lab-based research.

Clinical significance

In our study, identification of specific genetic polymorphisms can serve as biomarkers for early detection of diseases progression,
helping to tailor treatment plans based on individual risk profiles. In addition, studying such types of polymorphisms can provide
insights into the molecular pathways as well as prognostic indicators allowing for more proactive management of T2D and CRC. In the
area of pharmacogenomics, understanding how genetic variations affect drug metabolism can optimize drug selection and dosing,
minimizing side effects and maximizing efficacy. Besides, advances in gene editing technologies, such as CRISPR, might allow for the
correction of our identified genetic variants that contribute to T2D and CRC.

Limitations

In silico methods can predict SNP functional effects, although they are only sometimes accurate. Database accuracy and
completeness are crucial to in silico SNP analysis. Reference data errors or gaps can affect SNP identification and interpretation. The
SNP identification of SLC30A8 is just the beginning. Interpreting their functional significance or relationship with other genetic traits/

Fig. 12. SLC30A8 gene expression levels and survival rates in patients with various cancer types using microarray data by Kaplan–Meier Plotter.
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diseases and environmental factors related to glucose homeostasis and insulin secretion is complicated and requires further experi-
mental validation and in vitro or in vivo research.
Even though SLC30A8 has been linked to insulin secretion, diabetes risk, and many malignancies, our knowledge of its genetic

diversity and the functional effects of its variants continues growing. This suggests that some crucial genetic variations and their
impacts may be insufficiently identified using computer-based SNP analysis. Since SNPs in genes’ coding regions are more likely to
affect gene function, most in silico techniques concentrate on these regions. On the other hand, SNPs in non-coding areas should be
more appropriately characterized for their potential importance. Finally, SNP impacts on SLC30A8 function typically necessitate
experimental validation.
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