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Tunnelling nanotubes (TNTs) are increasingly recognized as central players

in a multitude of cellular mechanisms and diseases. Although their existence

and functions in animal organisms are still elusive, emerging evidence

suggests that they are involved in developmental processes, tissue regener-

ation, viral infections or pathogen transfer, stem cell differentiation,

immune responses as well as initiation and progression of neurodegenerative

disorders and cancer (see Sisakhtnezhad & Khosravi 2015 Eur. J. Cell Biol.
94, 429–443. (doi:10.1016/j.ejcb.2015.06.010)). A broader field of vision,

including their striking functional and structural resemblance with nano-

tube-mediated phenomena found throughout the phylogenetic tree, from

plants down to bacteria, points to a universal, conserved and tightly regu-

lated mechanism of cellular assemblies. Based on our initial definition of

TNTs as open-ended channels mediating membrane continuity between con-

nected cells (Rustom et al. 2004 Science 303, 1007–1010. (doi:10.1126/science.

1093133)), it is suggested that animal tissues represent supercellular assem-

blies that—besides opening discrete communication pathways—balance

diverse stress factors caused by pathological changes or fluctuating physio-

logical and environmental conditions, such as oxidative stress or nutrient

shortage. By combining current knowledge about nanotube formation, inter-

cellular transfer and communication phenomena as well as associated

molecular pathways, a model evolves, predicting that the linkage between

reactive oxygen species, TNT-based supercellularity and the intercellular

shuttling of materials will have significant impact on diverse body functions,

such as cell survival, redox/metabolic homeostasis and mitochondrial het-

eroplasmy. It implies that TNTs are intimately linked to the physiological

and pathological state of animal cells and represent a central joint element

of diverse diseases, such as neurodegenerative disorders, diabetes or cancer.
1. Introduction
Since our discovery of tunnelling nanotubes (TNTs) in 2004 [1], the phenom-

enon of ‘nanotubular’ cell connections has gained a lot of attention. However,

only a handful of studies address this topic in the in vivo situation [2], e.g. for

myeloid cells in mouse cornea [3] and human lung adenocarcinoma tumour

cells [4,5]. Furthermore, in most TNT-related studies the differentiation

between—per definitionem—open-ended TNTs and close-ended membrane

tubes sharing a similar appearance, such as filopodia, retraction fibres, cyto-

nemes [6], tumour microtubes [7], streamers [8], etc., appears as an

unsolvable task. Thus, until now, and in contrast with e.g. plant plasmodes-

mata, the existence of open-ended membrane channels as a general principle

of supercellularity has not been unequivocally proven for animal cells in

direct contact, not to speak from the in vivo situation.
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Nevertheless, numerous in vitro studies analysing dis-

persed cell systems [2], including primary cultures and tissue

explants, suggest that there is a direct link between nanotube

formation, intercellular material transfer and detrimental phys-

iological, pathological and environmental conditions, such as

oxidative stress or metabolic strains. In this context, hydrogen

peroxide (H2O2) increased the number of TNTs in co-cultures

of rat primary astrocytes and C6 glioma cells [9] and the

amount of TNT-like intercellular connections in rat primary

astrocytes [10]. Likewise, TNT development and bidirectional

transfer of vesicles, proteins and mitochondria can be induced

in human malignant pleural mesothelioma by serum deple-

tion [4]. Increased nanotube numbers and attenuated kidney

tissue damage were also observable in murine kidney tissue

under elevated oxidative stress, such as renal ischaemia or per-

itoneal dialysis [11]. It is intriguing to note that similar

observations were made in plant systems, where reactive

oxygen species (ROS) lead to enhanced formation of secondary

plasmodesmata and increased symplastic connectivity [12].

In general, oxidative stress is defined as an imbalance

between the production of free radicals and reactive metab-

olites, such as H2O2 or superoxide anions, and their

elimination by the antioxidative cell defence system. The list

of severe diseases that have been linked to oxidative stress

is long, including neurodegenerative disorders, such as Alz-

heimer’s and Parkinson’s, chronic inflammation, diabetes

and cancer [13]. As it is well accepted that most ROS are gen-

erated in cells by the mitochondrial respiratory chain [14], it is

hardly surprising that the respective organelles are caught in

the crosshairs of current medical research.

Because it was realized that functional mitochondria can be

transferred via TNTs between various cell types, studies have

proven that this transfer serves as a potent rescue mechanism

to compensate for severe stress conditions (for review, see

[2]). This allows e.g. cancer cells to survive extreme scenarios,

such as the loss of mitochondrial functionality [15]. These find-

ings complete the picture of an intimate link between ROS

levels, TNT-based supercellularity and the intercellular shut-

tling of materials that defines the overall condition of animal

cells in health and disease. Along with the assumption that

TNTs are a universal feature, this linkage culminates in the fol-

lowing three-stage model, describing a surprisingly simple

framework that could significantly update our understanding

of biological and pathological processes.
2. Mechanistic model of reactive oxygen
species-dependent tunelling nanotube
formation

2.1. Stage 1: maintenance of redox/metabolic
homeostasis

Physiological, pathological and environmental influences,

such as oxidative and reductive stress, hypoxia, hypergly-

caemia, nutrient shortage, ultraviolet (UV) radiation, etc., can

lead to local cell stress, accompanied by ROS increase

(figure 1a-1). To counter this, stressed cells will distribute

‘call-for-help’ signals to determine the position of unstressed

cells in their surroundings. Although the nature of these signals

is still under debate, candidate molecules are advanced glyca-

tion end products (AGEs), such as S100A4 [16]. Indeed, high
concentrations of S100A4 were shown to induce and attract

outgrowing TNTs from e.g. astrocytes [16].

Corresponding receptors on the target cells, here the recep-

tor for advanced glycation end products (RAGE), will function

as ‘signal receivers’ (figure 1a-2). AGE–RAGE interaction will

lead to local cytoplasmic (c)ROS production that initiates a

self-amplifying ‘ping–pong’ loop between sender and recei-

ver, determining the optimal positions for TNT formation.

Consistently, multiple studies with RAGE-expressing cells

have demonstrated that ligand–RAGE interaction leads to

the generation of cROS, downstream signal transduction

and regulation of gene expression [17]. A comparable mechan-

ism was observed during hyphal fusion, where components

of the MAK-2 mitogen activated protein kinase cascade,

e.g. Ste-50, are recruited in an oscillatory manner to the tips

of communicating germlings of Neurospora crassa [18].

Only if a defined ROS level is reached—probably at first

in the initially stressed sender cells—the formation of TNTs

via actin-based filopodia-like cell protrusions will be initiated

(figure 1a-2). Accordingly, in a RAGE(–/–) knockout mouse

model under standard conditions, strongly reduced TNT

numbers were detectable [11]. Also knocking down RAGE

in astrocytes reduced the number of TNTs formed towards

the target cells [16]. Furthermore, Chinese hamster ovary

(CHO) cells, which lack endogenous RAGE, were not able

to develop TNTs under normal conditions [16]. A potentially

related model suggests that in TNT-initiating cells, the

tumour suppressor p53 activates caspase-3, which leads to

S100A4 cleavage, resulting in AGE gradients, potentially

involved in TNT guidance [16]. This scenario describes an

efficient way to avoid TNT formation towards stressed or

pathological cells. It might be reasonably assumed that also

other factors, in particular the condition of the extracellular

matrix (ECM), will have significant impact on TNT formation

[19]. In this context, it was shown that hyaluronan synthase 3

overexpression induces the formation of filopodia-like cell

protrusions [20] resembling TNTs, a process potentially

linked with the PI3K pathway [21].

On the molecular level, TNT formation is probably con-

trolled by a ROS-dependent pathway that links AGE–RAGE

signalling and redox homeostasis with cytoskeletal modifi-

cations and finally leads to apoptosis (figure 1, box). At this

stage, central functions may be taken by the mammalian

Ste-20-like protein kinase 1 (Mst1) (an evolutionarily conserved

counterpart of yeast Ste-20 kinase [22]), p53 and Akt, also

known as protein kinase B, the latter in parallel delaying further

steps downstream on the pathway (figure 1, box). In this con-

text, it was shown that hyperactivation of the Akt/PI3K/

mTor signalling pathway by low serum stimulated nanotube

formation in human malignant pleural mesothelioma [4] and

this pathway inhibits Mst1 [22] and FOXO transcription factors

[23]. p53 activation was found in astrocytes and neurons after

TNT induction by H2O2 [24]. Downstream, further studies

identified e.g. CDC42, the arp2/3 complex, myosin X, M-Sec,

MHC class III protein Lst1, filamin, RalA-GTP, Ral binding

protein 1 (RalBP1) and the exocyst complex as important regu-

lators of TNT formation (for review, see [2]), proving the close

interconnection with actin cytoskeleton-related processes.

The formed intercellular bridges, in the following specified

as actin-based (AC)-TNTs, can finally be used to distribute

various materials among cells of the connective, thereby coun-

teracting the initial stress factors and opening discrete

communication channels that are required for numerous
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Figure 1. Model of ROS-dependent TNT formation: a universal principle of cellular assemblies to level out stress conditions? Local stress leads to increasing ROS
levels and AGE distribution from the stressed cell (a-1). AGE – RAGE interaction at the target cells leads to cROS increase (a-2) and AC-TNT formation via actin-based,
filopodia-like cell protrusions in order to restore redox/metabolic homeostasis by intercellular material exchange (a-3). Further increasing ROS levels lead to MT-TNT
formation (b-1), allowing for efficient redox/metabolic rescue of stressed cells, e.g. via motor protein-mediated intercellular transfer of mitochondria along micro-
tubules (b-2). Finally, exaggerated ROS levels induce apoptosis (c-1). Note that prior to apoptosis, remaining TNT connections are severed in order to isolate and
remove ‘degenerated’ cells from the collective (c-2)—probably controlled by altered cholesterol/oxysterol homeostasis. Increasing ROS levels are indicated by the
green to yellow to red colour gradient. The superimposed box depicts the key players of the suggested molecular pathway. Black arrows indicate positive feedback;
orange blunt arrows indicate negative feedback.
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body functions (for review, see [2]; figure 1a-3). This includes

‘passive’ diffusion of nutrients, smaller organelles, sterols,

plasma membrane components, cytoplasmic and/or signal-

ling molecules, proteins, RNAs, ions and so on, as well as the

active, energy consuming, bidirectional transfer of organelles,

protein complexes, etc., via myosin motors. Respective transfer

and communication phenomena have already been described

for a multitude of cargos and between a large number of cell

types (for review, see [2]).

Nonetheless, diffusion as well as active transfer of mol-

ecules and organelles along AC-TNTs may be hampered by

their actin backbone tightly enwrapped by the plasma mem-

brane. Consistently, no mitochondria were observable inside

AC-TNTs tensed between cultured PC12 cells [15], and also

the diffusion of a dye with low molecular weight was found

to be restricted [1]. However, such findings still have to be inter-

preted with caution, because in vivo the appearance and

characteristics of TNTs might be significantly different. Also

variances between cell types and developmental stages may

exist, as well as mechanisms to match TNT permeability with
current requirements. Such regulatory mechanisms are well

known for plasmodesmata, where the size exclusion limit

(SEL) can be varied, a mechanism that is discussed to be closely

related to actin and microtubuli modifications [25] or callose

homeostasis [26]. Likewise, alterations to the cytoskeleton

and to the ECM would be efficient ways to influence

TNT-based transfer processes between animal cells.

As, at least on the cell-culture level, AC-TNTs were fre-

quently found to have limited lifetimes in the range of

several minutes up to a few hours [2,15], the formed connec-

tive may rather reflect a temporary measure that does not

permanently endanger cellular identity.
2.2. Stage 2: redox/metabolic rescue of cells under
elevated reactive oxygen species levels

Within a tolerance range, based on the compensatory possibi-

lities of AC-TNT-mediated cell connectivity, rising stress/

ROS levels can be compensated for by increased nanotube
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formation (figure 2a-1). If, however, these levels further

increase, endangering e.g. proper mitochondrial function,

another TNT type will come into play (figure 1b-1). This type

resembles so-called microtubule containing (MT)-TNTs [15],

which differ from AC-TNTs by (i) an additional detyrosinated

microtubule core, (ii) an increased diameter, (iii) a prolonged

lifetime, and (iv) decreased membrane fluidity, suggested to

be caused by the oxidation of unsaturated phospholipids

[15]. Such ‘stabilized’ TNTs were first described in the context

of an efficient rescue of apoptotic pheochromocytoma (PC12)

cells, stressed by UV radiation, via nanotube-mediated mito-

chondria donation from unstressed control cells [15]. So far, it

is unclear whether the increased lifetime is based on their

detyrosinated microtubule backbone, on altered membrane

fluidity, on ECM alterations or a combination thereof.

The mechanism involved in MT-TNT formation and their

connection to AC-TNTs are still speculative. It was shown

that microtubules polymerize from stressed cells towards

the distal end of the nanotubes and microtubule depolymer-

ization by nocodazol did not prevent their formation [15]. It

is thus conceivable that pre-formed AC-TNTs are modified

in response to exaggerated ROS levels. This transition is prob-

ably controlled by a pathway that connects increased stress/

ROS levels and mitochondrial dysfunction with modifi-

cations of the microtubule cytoskeleton (figure 1, box). On

the molecular level, the cascade may involve Mst1, the fork-

head box O3 (FOXO3) transcription factor and the Bcl-2-like

protein 11 (Bim), leading to mitochondrial depolarization by

transitory mitochondrial outer membrane permeabilization

[28], followed by the production of mitochondrial (m)ROS,

cytochrome c release and caspase-3 activation [28], the latter

providing negative feedback on Bim [29], temporarily prevent-

ing downstream apoptosis initiation (figure 1, box). In this

context, it was shown that oxidative stress induces the acti-

vation of Mst1 and FOXO [30], e.g. during diabetes-induced

hyperglycaemia [31]. AGE–RAGE interaction—at this

stage—does not seem to play an essential role, because cells
of RAGE(–/–) knockout mice as well as CHO cells are able

to form TNTs under oxidative stress conditions [11,16], prob-

ably because ROS levels already exceed the necessary

concentration. Consistently, in CHO cells the outgrowth of

TNTs is undirected and A100A4 independent [16], implying

that under these conditions TNTs can be formed also between

pathological cells. It is important to note that moderate ROS

production from plant mitochondria in response to oxidative

stress increases the SEL of plasmodesmata and enhances inter-

cellular trafficking [12], highlighting again the conceptual

similarities across species.

The existence of a microtubule backbone inside MT-TNTs,

along with their increased lifetime and diameter, represents an

intercellular transit route allowing for efficient diffusion and

active transfer within the collective. Now, also, larger orga-

nelles such as mitochondria can be transferred effectively via

microtubule-specific motor proteins or intrinsic motor activi-

ties (figure 1b-2). Mitochondria inside TNTs have been

observed for various cell types, e.g. between human endo-

thelial progenitor cells and rat cardiomyoctes [32], human

mesenchymal stem cells and cardiomyocytes and endothelial

cells and cancer cells (summarized in [15]). Furthermore, it

was shown that the mitochondrial Rho-GTPase Miro1, attach-

ing mitochondria to motor proteins for antero- and retrograde

transport, regulates their shuttling from mesenchymal stem

cells to epithelial cells and its overexpression leads to increased

stem cell repair [33]. The direction of such transfer processes

might be defined by intercellular gradients, as exemplarily

shown for the intracellular movement of mitochondria in

yeast cells, linked with ATP gradients [34].
2.3. Stage 3: isolation and removal of ‘degenerated’
cells from the collective

It is a matter of course that, if stress/ROS levels further increase,

tantamount with a failure of AC- and MT-TNT-based rescue
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mechanisms, cells will initiate apoptosis by following well-

known pathways, here via mitochondria, involving mROS,

cytochrome c and caspase-3 (figure 1c-1). This irreversible

switch necessitates the break-down of remaining TNT connec-

tions in order to isolate and dispose of ‘degenerated’ cells

from the collective and to prevent e.g. apoptotic signals from

being transferred to ‘healthy’ cells (figure 1c-2). In this context,

it was shown that the death signal Fas ligand can be propagated

via TNTs between T lymphocytes to induce cell death [35,36],

probably through activation of the caspase cascade.

The mechanism underlying the uncoupling of TNT

connections—that presumably defines their lifetime too—so

far is speculative. It could involve ‘passive’ scenarios, e.g. mem-

brane rupture as a consequence of membrane ruffling, the

remodelling of cytoskeletal components or cellular movements.

However, the importance of this process rather implies the

involvement of a precisely regulatable mechanism. In this con-

text, cholesterol plays the essential role of regulating the

physical properties of the plasma membrane by controlling

lipid organization and phase behaviour and, thus, managing

membrane fluidity and its mechanical strength [37]. In this con-

text, cholesterol-rich lipid rafts were found to be enriched in

TNT-forming mesothelioma as well as non-malignant mesothe-

lial cells [38]. Changes in membrane composition, in particular

the differential occurrence of cholesterol and its oxidized

derivatives, the so-called oxysterols, in response to oxidative

stress may cause dramatic changes in membrane fluidity mod-

ulating mechanical strength as well as the activity of membrane

proteins, including enzymes and receptors [39]. Accordingly,

studies have shown that cholesterol depletion from patient-

derived primary cells by methyl-b-cyclodextrin strongly

influenced TNT numbers [40]. Furthermore, depletion of

cholesterol from the plasma membrane was demonstrated to

lead to Akt inactivation and apoptosis [41]. Of note, Akt inacti-

vation by methyl-b-cyclodextrin also reduces hyaluronan

synthesis [42], which could again point to a participation of

the ECM, e.g. as a stabilizing matrix.

In summary, membrane composition, in particular lipid

and sterol homeostasis, in correlation with oxidative stress

could play an essential role in TNT lifetime control. It is well

documented that altered cholesterol/oxysterol homeostasis

plays a key role in e.g. neurodegenerative diseases [43] and

diabetes [44]. This would create opportunities to modulate

the intercellular connectivity of cells or tissues, e.g. via pharma-

cological interventions, such as statin treatment, or targeted

adaption of nutrition.
3. Physiological and pathological
implications

It is evident that the ability of cells to increase their connec-

tivity and to ‘share’ a common pool of resources represents

a double-edged sword and requires effective control mechan-

isms. On the one hand, TNT-based supercellularity is a

potent communication and rescue mechanism that provides

significant survival advantages by allowing ‘individual’

cells—as part of a collective—to exchange information and

to maintain redox and metabolic homeostasis under

fluctuating physiopathological and environmental conditions.

In particular, the intercellular transfer of mitochondria has

multiple beneficial functions. First, cells can be rescued from

metabolic failures or mitochondrial dysfunction, i.e. ‘dead’ or
impaired mitochondria disposed of by autophagocytosis can

be replaced. In this context, it was found that the active transfer

of mitochondria from adult mammalian stem cells to somatic

cells rescued aerobic respiration in cells with non-functional

mitochondria [45]. Similar observations were made for bone

marrow-derived stromal cells protecting alveolar epithelium

cells against acute lung injury [46] and mesenchymal stem

cells rescuing injured cardiomyoblasts or endothelial cells [47].

Furthermore, the exchange of mitochondria can induce cell

fate changes of stem or progenitor cells, or—more general—

cellular reprogramming. In this view, it was suggested that

nanotube-mediated transfer of mitochondria between adult

human endothelial progenitor cells and neonatal rat cardiomyo-

cytes could have a reprogramming function [32]. Similarly, it

was shown that human mesenchymal stem cells reprogrammed

adult cardiomyocytes towards a progenitor-like state through

nanotube-mediated mitochondria transfer [48]. Finally, TNT-

based supercellularity will have significant impact on the level

of mitochondrial heteroplasmy and counteracts the evolution-

ary/developmental accumulation of deficient mitochondrial

DNA (mtDNA) in otherwise isolated cells that can lead to

severe diseases, like maternally inherited diabetes and deafness

(MIDD) or mitochondrial myopathies. Accordingly, it was

found that mesenchymal stem cells can transfer mitochondria

to mtDNA-deficient cells and restore their mitochondrial

function [49]. It is intriguing to note that, in a similar way at

least, plastids—potentially also mitochondria—can be shuttled

via plasmodesmata between plant cells, and their redox state

regulates symplastic permeability [50].

On the other hand, TNT-based supercellularity can cause

significant adverse side effects. It is obvious that anomalies in

TNT formation and their mechanical or temporal stability

will result in severe pathological implications. Current discus-

sions regard neurodegenerative diseases, such as Parkinson’s,

Alzheimer’s or Huntington’s diseases, as closely related with

(i) impaired mitochondrial function [51], (ii) oxidative stress

[52], (iii) pathological cell–cell-communication [53] or (iv)

intercellular prion propagation [54]. As the existence of TNTs

between brain cells has already been shown (for review see

[2]), the presented model describes a simple and compelling

mechanism that melts together all four aspects into one

common scenario. Accordingly, the degeneration of neurons

would be explainable by reduced temporal and/or mechanical

TNT stability or diminished TNT formation leading to a stand-

still in intercellular exchange, synonymous with a persistent

undersupply and loss of networking capabilities, allowing

the compensation of critical stress conditions. Alternatively,

but not mutually exclusively, chronically elevated ROS levels

could lead to a shift from AC- towards MT-TNT formation

and apoptosis (figure 2a-2), accompanied by reduced stress tol-

erance, enhanced tissue damage or the risk of an uncontrolled

intercellular spread of autoantigens and pathogens. Corre-

spondingly, monomers and protofibrils of Ab were detected

in TNTs after extracellular uptake, and Ab can be transferred

via TNTs to induce cytotoxicity between e.g. astrocytes [24].

Further studies have shown that TNTs are able to transmit

infectious forms of prion PRPSc between dendritic cells and pri-

mary neurons [55], and it is speculated that this transfer can

occur via F-actin-dependent transport directed by myosin Va

or lateral diffusion [56].

In another context, it was demonstrated that TNTs connect

HIV-1-infected human T cells and present a novel route for

virus transmission [57]. HIV-1 also induces TNT formation in
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human macrophages to promote virus propagation between

cells [58,59]. Likewise, influenza A virus was shown to use

actin-rich TNT structures to spread to neighbouring cells [60].

It is worth mentioning that in a similar way plasmodesmata

are either ‘hijacked’ or manipulated by plant viruses for their

intercellular spread, e.g. by increasing the SEL via actin cyto-

skeleton modifications [61]. It is interesting to add that for

filopodial protrusions and TNTs, ‘surfing’ of pathogens such

as viruses and bacteria along the outer membrane surface

was also demonstrated (for reviews see [2,62]).

It should be borne in mind that the described scenarios not

only apply to neurodegenerative diseases. Continued oxidative

stress accompanied by chronic inflammation is one of the

major characteristics of many chronic diseases, such as dia-

betes. It is known that AGE–RAGE interaction induces cROS

that promotes mitochondrial superoxide generation specifi-

cally in hyperglycaemic environments [63], again indicative

of a shift towards MT-TNT formation and apoptosis. Consist-

ently, diabetic RAGE(–/–) knockout mice are protected from

multiple diabetes-induced pathologies [64] and show reduced

increases in mitochondrial superoxide e.g. in the renal cortex

[63]. Also, metformin, a popular antidiabetic medication, inhi-

bits AGE-induced renal tubular cell injury by suppressing ROS

generation due to reduced RAGE expression [65]. Similarly,

Mst1 was identified as a critical regulator of apoptotic b-cell

death and function that under diabetogenic conditions is

strongly activated and specifically induces the mitochondrial-

dependent pathway of apoptosis through upregulation of

Bim [66]. Consequently, knocking out Mst1 had a protective

effect, characterized by abrogated caspase-3 cleavage, reduced

cytochrome c release and lowered rate of apoptosis [66].

Also with regard to of cancer, the entanglement between oxi-

dative stress and TNTs might play a pivotal role. Initiation and

progression of a large number of cancers, such as breast or pros-

tate cancer, have been linked to ROS [13]. At the same time, TNT

formation between cancer cell lines and primary cancer cells

derived from ovarian, breast, pancreatic, prostate and colon

cancer was demonstrated and proposed to play an important

role in cancer cell pathogenesis and invasion [4], achieved

e.g. by an intercellular transfer of functional P-glycoprotein, a

drug efflux pump mediating multi-drug resistance [67,68], or

oncogenic microRNAs [69]. Furthermore, it has been shown

that tumour cells can acquire mtDNA [70] or mitochondria dis-

played chemoresistance from the ‘host’ cells, as demonstrated for

the TNT-dependent exchange of mitochondria between endo-

thelial and cancer cells [71], implying that TNT-dependent

genetic exchange can also lead to tumour heterogeneity [4]. Simi-

larly, it was shown that tumour cells devoid of mtDNA can

acquire mtDNA of host origin, resulting in stepwise recovery

of respiration from primary to metastatic tumour cells [72].

This suggests that cancer cells, by forming TNT connections to

preferentially—but not exclusively—senescent cells, will signifi-

cantly increase their connectivity and chance of survival,

whereas the prognosis for the patient deteriorates.

In consistency with the presented model, in vivo overex-

pression of S100A4 led to a significant increase in tumour

growth and vascularization in a human melanoma xenograft

M21 model [73]. Conversely, when silencing S100A4 by

shRNA technology, a dramatic decrease in tumour develop-

ment of the pancreatic MiaPACA-2 cell line was observed

[73]. Furthermore, high levels of detyrosinated tubulin post-

translational modifications were found to enhance disease

aggressiveness of breast and prostate cancer [74], pointing to
a participation of ‘stabilized’ MT-TNTs. This connection

would provide an additional explanation for the mode

of action of pharmacological compounds used for cancer treat-

ment, such as microtubule-targeting agents (MTAs). These are

known to suppress microtubule dynamics and to induce apop-

tosis by the mitochondrial-dependent pathway, via mROS,

Bim and cytochrome c release [75]. Hence, they should signifi-

cantly interfere with MT-TNT formation, depriving cancer cells

of their survival strategy. Consistently, recent studies have

shown that metformin can also suppress TNT formation

between cancer cells [5]. A negative effect of oxysterols on

TNT stability would be supported by the observation that

they interfere with proliferation and cause the death of many

cancer cells, such as glioblastoma, breast and prostate cancer,

while they have little or no effect on senescent cells [76].

Given the above, the direct connection between ROS, TNT-

based supercellularity and intercellular material exchange

indeed represents a universal framework of numerous

chronic and lifestyle diseases, and would mark these structures

as highly promising targets for novel therapeutical and clinical

approaches. Keeping in mind the suggested ubiquitous

appearance, the structural and functional differences between

AC- and MT-TNTs might in future enable precise control and

manipulation of specific cell/tissue functions in order to

balance pathological alterations.
4. Concluding remarks
The principal question of to what extent animal tissues rep-

resent continuous supercellular assemblies is anything but

new. Already the late nineteenth century Camillo Golgi and

Santiago Ramón y Cajal in disputed whether nerve cells in

the brain represent a continuous reticular network or an

assembly of ‘self-contained’ individuals. This dispute, against

the background of TNTs observed between respective cells,

might again become a topical issue.

Considering the striking structural and functional simi-

larities among animal TNTs, plant plasmodesmata, fungal

septal pores, bacterial nanotubes, etc. (figure 2b), the stipulat-

ing question arises as to whether these phenomena are

expression of a conserved mechanism of cell collectives to

maintain redox, metabolic and information homeostasis up

to the organism level. It might be assumed that such a mechan-

ism evolved as a necessary adaption of cellular life-forms to

increasing O2 levels in the Earth’s atmosphere approximately

2.5 billion years ago, requiring efficient strategies to compen-

sate for oxidative stress or varying O2 and nutrient

availability, in particular when considering the evolution of

larger multicellular assemblies. In accordance with this view,

it is speculated that e.g. plant cells interpret low concentrations

of ROS as a stress that might be compensated for by increased

cellular connectivity, while higher concentrations signal a

hazardous state, where cellular isolation becomes beneficial

[77]. An explanation for the relationship between mitochondria

and increased symplastic transfer via plasmodesmata is that

during anoxia enhanced intercellular connectivity would

allow end products of the carbohydrate catabolism to flow

from anoxic zones to regions capable of supporting oxidative

phosphorylation, thus promoting efficient use of metabolic

resources [78]. In this context, it is intriguing to note that mem-

brane-derived nanotubes where also found between bacteria

and being used for metabolic cross-feeding [79]. If, as
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suggested here, TNTs and other nanotube-based phenomena

observed from plants down to bacteria are indeed homologous

developments, the unbiased combination of current knowl-

edge and the search for conserved or homologous functions,

molecules and signalling pathways might help to boost our

understanding of these poorly understood structures.

However, as general and appealingly simple the presented

model may appear, its verification in the animal system puts

us to the limits of detection methods and leads to a couple

of elementary questions: how to prove functional TNTs in

contiguous tissue or inside the body; and how to distinguish

them from, per definitionem, close-ended filopodia, retraction

fibres, tumour microtubes, streamers, cytonemes, etc., dis-

playing a similar appearance (a question neglected by

numerous ‘nano-/microtube’-related publications). How do

we differentiate experimentally between intercellular transfer
and communication phenomena based on TNTs and

those mediated by e.g. gap junctions or extracellular shuttles,

such as exosomes and argosomes, distributed by exo- and

endocytosis? It is becoming increasingly obvious that corpor-

ate endeavours from different scientific fields, the

development of novel tools and a unified terminology are des-

perately needed to prove or disprove the relevance of these

peculiar structures in the in vivo situation.
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