
RESEARCH ARTICLE

Estimating effective population size changes

from preferentially sampled genetic

sequences

Michael D. Karcher1, Luiz Max Carvalho2, Marc A. Suchard3,4,5, Gytis DudasID
6,7, Vladimir

N. MininID
8*

1 Department of Statistics, University of Washington, Seattle, Washington, U.S.A., 2 National School of Public

Health, Oswaldo Cruz Foundation, Brazil, 3 Department of Human Genetics, David Geffen School of

Medicine at UCLA, University of California, Los Angeles, California, U.S.A., 4 Department of Biomathematics,

David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, U.S.A.,

5 Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles,

California, U.S.A., 6 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center,

7 Gothenburg Global Biodiversity Centre (GGBC), Gothenburg, Sweden, 8 Department of Statistics,

University of California, Irvine, California, U.S.A.

* vminin@uci.edu

Abstract

Coalescent theory combined with statistical modeling allows us to estimate effective popula-

tion size fluctuations from molecular sequences of individuals sampled from a population of

interest. When sequences are sampled serially through time and the distribution of the sam-

pling times depends on the effective population size, explicit statistical modeling of sampling

times improves population size estimation. Previous work assumed that the genealogy relat-

ing sampled sequences is known and modeled sampling times as an inhomogeneous Pois-

son process with log-intensity equal to a linear function of the log-transformed effective

population size. We improve this approach in two ways. First, we extend the method to

allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and

other model parameters. Next, we improve the sampling time model by incorporating addi-

tional sources of information in the form of time-varying covariates. We validate our new

modeling framework using a simulation study and apply our new methodology to analyses

of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West

Africa.

Author summary

Estimating changes in the number of individuals in a given population is a challenging

problem in some settings. For example, estimating population size trajectories of the num-

ber of people infected by a pathogen (e.g., Influenza virus) is a difficult problem, because

many infections in a large population remain unobserved/hidden. One indirect way of

assessing population size changes is to take a sample of individuals from the population

of interest and analyze genetic sequences from these individuals (e.g., Influenza virus
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genomes). Intuitively, genetic data is informative about population size changes, because

genetic diversity increases/decreases together with the population size. However, if we

sample more individuals when the population size increases and less when it decreases,

this strategy produces biased results. To avoid this bias, we propose a method that explic-

itly and flexibly models potential dependency of genetic sequence sampling on the popula-

tion size. An added bonus of this new modeling framework is more precise estimation of

population size changes. We demonstrate strengths of our new methodology on simulated

data and on genetic sequences of Influenza and Ebola viruses.

Introduction

Phylodynamic inference—the study and estimation of population dynamics from genetic

sequences—relies upon data sampled in a timeframe compatible with the evolutionary dynam-

ics under question [1]. One important class of phylodynamic methods seeks to estimate mag-

nitudes and changes in a measure of genetic diversity called the effective population size, often

considered proportional to the census population size [2] or number of infections in epidemi-

ological contexts [3]. One subtle and often ignored complication of phylodynamic inference

occurs when there is a probabilistic dependence between the effective population trajectory

and the temporal frequency of collecting data samples, such as in case of sampling infectious

disease agent genetic sequences with increasing urgency and intensity during a rising epi-

demic. This issue of preferential sampling was studied in depth by Karcher et al. in the limited

context of a known, fixed genealogy reconstructed from the genetic data [4]. Karcher et al.

demonstrated that conditioning on sampling times is not harmless when sampling protocols

(implicitly) depend on effective population size. Such conditioning can be viewed as a model

misspecification and results in biased estimation of the effective population size. Here, we

extend the work of Karcher et al. and develop a Bayesian framework for accounting for prefer-

ential sampling during effective population size estimation directly from sequence data rather

than from a fixed genealogy. We also propose a more flexible model for sequence sampling

times that allows for inclusion of arbitrary time-dependent covariates and their interactions

with the effective population size.

Methods for estimating effective population size from genealogical data and genetic

sequence data have evolved from the earliest low dimensional parametric methods, such as

constant population size [5] and exponential growth models [5, 6], to more flexible, nonpara-

metric or highly parametric methods based on change-point models and Gaussian process

smoothing [7, 8, 9, 10, 11, 12, 13]. Most coalescent-based methods condition on the times of

sequence sampling, rather than include these times into the model, leaving open the possibility

of model misspecification if preferential sampling over time is in play. This is in contrast to

birth-death phylodynamic models that include the sequence sampling model by necessity [14,

15]. Volz and Frost and Karcher et al. introduced coalescent models that include sampling

times as random variables, whose distribution is allowed to depend on the effective population

size [15, 4]. In particular, Karcher et al. propose a method that models sampling times as an

inhomogeneous Poisson process with log-intensity equal to an affine transformation of the

log-transformed effective population size. In the presence of preferential sampling, this sam-

pling-aware model demonstrates improved accuracy and precision compared to standard coa-

lescent models due to eliminating an element of model misspecification and incorporating an

additional source of information to estimate the effective population trajectory.
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The main limitations of the approach in [4] are a reliance on a fixed, known genealogy and

lack of flexibility in the preferential sampling time model that currently does not allow the rela-

tionship between effective population size and sampling intensity to change over time. We

address the issue of fixed-tree inference by implementing a preferential sampling time model

in the popular phylodynamic Markov chain Monte Carlo (MCMC) software package BEAST

[16]. This allows us to perform inference directly from genetic sequence data, appropriately

accounting for genealogical uncertainty, using a wide selection of molecular sequence

evolution models and well tested phylogenetic MCMC transition kernels. Additionally, we

implement a tuning parameter free elliptical slice sampling transition kernel [17] for high

dimensional effective population size trajectory parameters, which allows us to update these

parameters efficiently.

We also address the issue of an inflexible preferential sampling time model by incorporat-

ing time-varying covariates into the model. We model the sampling times as an inhomoge-

neous Poisson process with log-intensity equal to a linear combination of the log-effective

population size and any number of functions of time. These functions can include time vary-

ing covariates and products of covariates and the log-effective population size, referred to as

interaction covariates. The addition of covariates into the sampling time model allows for

incorporating additional sources of information into the relationship between effective popu-

lation size and sampling intensity. One example of time-varying covariates includes an expo-

nential growth function to account for a continuous decrease in sequencing costs that results

in increased intensity of genetic data collection over time. In the context of endemic infectious

disease surveillance, it is likely important to account for seasonality when modeling changes in

genetic data sampling intensity, motivating inclusion of periodic functions as time varying

covariates in the preferential sampling model.

We validate our methods first by simulating genealogies and sequence data and confirming

that our methods successfully reconstruct the true effective population trajectories and true

model parameters. We briefly simulate data in a fixed-tree context to demonstrate the funda-

mentals of incorporating covariates into the sampling time model and what bias is introduced

by model misspecifications. We proceed to simulate genetic sequence data and demonstrate

that our model successfully functions when we estimate effective population size trajectory

and other parameters directly from sequence data. We also use simulations to test a combina-

tion of the two extensions of the preferential sampling model and work with covariates while

sampling over genealogies during the MCMC. Finally, we use our method to analyze two real-

world epidemiological datasets. We analyze a USA/Canada regional influenza dataset [18] to

determine if exponential growth of genetic sequencing or seasonal changes in sampling inten-

sity are important to adjust for during effective population size reconstruction. We also ana-

lyze data from the recent Ebola outbreak in Western Africa to determine if preferential

sampling has taken place and whether time-varying covariates or interaction covariates

improve the phylodynamic inference.

Methods

Sequence data and substitution model

Consider an alignment y = {yij}, i = 1, . . ., n, j = 1, . . ., l, of n genetic sequences across l sites,

collected from a well-mixed population at sampling times

s ¼ fsig
n
i¼1
; s1 � . . . � sn ¼ 0:

The following example shows an alignment of n = 5 samples across l = 10 sites, sampled at dis-

tinct times between time 7 and time 0—with time understood to be time before the latest
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sample:

y
1
¼ ACATGAGCTT; s1 ¼ 7

y
2
¼ ACTTGACCTG; s2 ¼ 4

y
3
¼ TCTTGACCTT; s3 ¼ 2

y
4
¼ AAATCTGCGT; s4 ¼ 1

y
5
¼ AGATGTGCAT; s5 ¼ 0:

All of the individual sequences share a common ancestry, which can be represented by a

bifurcating tree called a genealogy—illustrated in Fig 1.

We assume that sequence data y are generated by a continuous time Markov chain

(CTMC) substitution model that models the evolution of the genetic sequence along the gene-

alogy g. According to this model, alignment sites are independent and identically distributed,

with a transition matrix θ controlling the CTMC substitution rates between the different

nucleotide bases. Some relaxation of these assumptions is possible [19]. Different substitution

models are then defined by different parameterizations of θ [20]. It is simple to simulate from

these models, and we can efficiently compute the probability of the observed sequence data y,

Prðy j g; yÞ;

using Felsenstein’s pruning algorithm [21, 22].

The coalescent

Recall that we assume that the n sampled sequences share a common ancestry, which can be

represented by a bifurcating tree called a genealogy—illustrated in Fig 1. The branching events

of the tree g ¼ ftig
n� 1

i¼1
; t1 > . . . > tn� 1 (with t greater the farther back in time an event occurs)

are called coalescent events. The times associated with the tips of the tree

Fig 1. Illustration of an example heterochronous genealogy with n = 5 lineages. Sampling times s1, . . ., s5 and coalescent times t1,

. . ., t5 are marked below the genealogy, and sequence data y1, . . ., y5 are marked at their corresponding tips.

https://doi.org/10.1371/journal.pcbi.1007774.g001
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s ¼ fsig
n
i¼1
; s1 > . . . > sn, are called sampling times or sampling events. If all of the sampling

events are simultaneous, the sampling is called isochronous. Assuming that the population

evolves according to the Wright-Fisher model of genetic drift and that the size of the popula-

tion is not changing, [23] derived a probability density for an isochronous genealogy, where

the population size plays the role of a parameter of this density. Since the Wright-Fisher model

is a simplified representation of the evolutionary process, the above parameter is called the

effective population size, Ne. Later extensions to the coalescent model incorporated variable

effective population size Ne(t) [5] and the ability to evaluate densities of genealogies with het-
erochronously sampled tips—genealogies with non-simultaneous sampling times [24].

Given sampling times s and effective population size trajectory Ne(t), we would like to

define the probability density for a particular genealogy g. We use the term active lineages, n
(t), to refer to the difference between the number of samples taken and the number of coales-

cent events occurred between times 0 and t. To illustrate, in Fig 1, n(t) can be seen as the num-

ber of horizontal lines that a vertical line at time t will cross. Suppose we partition the interval

(sn, t1), from the most recent sampling event to the time to most recent common ancestor
(TMRCA), into intervals Ii,k with constant numbers of active lineages. Let lcðtÞ ¼

nðtÞ
2

� �
=NeðtÞ.

Then the coalescent density evaluated at genealogy g is

Prðg j NeðtÞ; sÞ /
Yn

k¼2

lcðtk� 1Þ exp �

Z

Ii;k

lcðtÞdt

0

B
@

1

C
A

2

6
4

3

7
5: ð1Þ

Population size prior

Note that without further assumptions the effective population size trajectory function Ne(t) is

infinite-dimensional, so inference about Ne(t) without some manner of constraint is intracta-

ble. A number of approaches, reviewed in the Introduction, have been suggested to address

this fact. Here, we take a regular grid approach that was used before in multiple studies [11, 12,

13, 4]. To review, we approximate Ne(t) with a piecewise constant function, Nγ(t) = exp[γ(t)],
where gðtÞ ¼

Pp
i¼1
gi1ft2Jig and J1, . . ., Jp are consecutive time intervals of equal length. In con-

texts where the genealogy is known, we choose intervals that perfectly cover the interval

between the TMRCA and the latest sample. However, in contexts where the genealogy is esti-

mated from sequence data, the TMRCA is not necessarily fixed. To address this, we choose

equal intervals that extend to a fixed point in time and append an additional interval that

extends from that point infinitely back in time. This allows us to estimate the effective popula-

tion trajectory with user-defined resolution over a window that extends back in time as far as

the user chooses. The choice of the end point of the grid is up to the user, but it is advisable to

choose a point that is farther back in time than an a priori estimate of the TMRCA in order to

extend the high-resolution grid to cover the entire true genealogy.

The population size trajectory Nγ(t) is parameterized by a potentially high dimensional

vector γ = (γ1, . . ., γp). We assume that a priori γ follows a first order Gaussian random

walk prior with precision hyperparameter κ: gi j gi� 1 � N ðgi� 1; 1=kÞ or, equivalently, that

gi � gi� 1 � N ð0; 1=kÞ, for i = 2, . . ., p. We use a Gaussian prior on the first element:

g1 � N ð0; s2
pÞ. Finally, we assign a Gamma(α, β) hyperprior to κ.

Preferential sampling model with covariates

[4] model times at which sequences are collected as a Poisson point process with intensity λs(t)
equal to a log-linear function of the log effective population size. Although it is realistic to
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assume that the larger the population, the more members of the population gets sequenced,

other factors may influence the distribution of sequence sampling times. For instance, decreas-

ing sequencing costs may result in increasing sequence sampling intensity even if the popula-

tion size remains constant. We propose an extension to the sampling model that allows for the

incorporation of time-varying covariates as additional sources of information. Suppose we

have one or more real-valued functions, F ¼ ff2ðtÞ; . . . ; fmðtÞg. We let

loglsðt; FÞ ¼ b0 þ b1gðtÞ þ b2f2ðtÞ þ . . .þ bmfmðtÞ þ ½d2f2ðtÞ þ . . .þ dmfmðtÞ�gðtÞ; ð2Þ

where we may set any or all of the β2, . . ., βm or δ2, . . ., δm to zero if we want to avoid modeling

effects of certain covariates or their interactions with the log-population size. Notice that we

reserve f1(t) for γ(t) = log[Ne(t)], which is the covariate that is always present in our model. We

also point out that even though Eq (2) is written in continuous time, in practice we assume

that both the sampling intensity λs(t) and our time varying covariates are piecewise constant,

with changes occurring at the grid points specified in Subsection. We assign independent

N ð0; s2
s Þ priors for all components of the preferential sampling model parameter vector β =

(β0, β1, . . ., βm, δ2, . . ., δm).

Posterior approximation with MCMC

Having specified all parts of our data generating model, we are now ready to define the poste-

rior distribution of all unknown variables of interest:

Prðg; γ; k; β; θ j y; s;FÞ / Prðy j g; θÞ Prðg j γ; sÞ Prðs j γ; β;FÞ Prðγ j kÞ

�PrðkÞ PrðβÞ PrðθÞ;
ð3Þ

where all probabilities and probability densities on the righthand side of Eq (3) are defined in

the previous subsections. Fig 2 illustrates conditional dependencies of model parameters and

data in a graph form.

When the distribution of sampling times does not depend on the effective population size

trajectory (in our model, this happens when β1 = 0 and δ2 = � � � = δm = 0), the posterior takes

Fig 2. Dependency graph for the phylodynamic model parameters and data. Dependencies labeled 1 are explored in

section, those labeled 2 are explored in section, those labeled 3 are explored in section, and those labeled 4 are explored

in section. The dashed lines between γ;β;F and s represent preferential sampling.

https://doi.org/10.1371/journal.pcbi.1007774.g002
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the following form:

Prðg; γ; k; θ; β j y; s;FÞ / Prðy j g; θÞ Prðg j γ; sÞ PrðγjkÞ PrðkÞ PrðθÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/Prðg;γ;k;θjy;sÞ

�Prðs j β;FÞ PrðβÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/Prðβjs;FÞ

:

The factorization above demonstrates that when γ is absent from the Pr(sj�) term, joint and

separate estimations of effective population size parameters γ and preferential sampling model

parameters θ will yield identical results. Moreover, in this case estimation of sampling model

parameters can be dropped from the analysis entirely, since typically these parameters would

be considered nuisance. If we drop preferential sampling, our model specifications reduces to

the Bayesian skygrid model of [12], with the corresponding posterior:

Prðg; γ; k; θ j y; sÞ / Prðy j g; θÞ Prðg j γ; sÞ PrðγjkÞ PrðkÞ PrðθÞ: ð4Þ

We approximate posteriors (3) and (4) by devising MCMC algorithms, implemented in the

software package BEAST [16], that target these distributions. We update model parameters in

blocks—1) genealogy g, 2) substitution parameters θ, 3) population size parameters γ, 4)

random walk prior precision κ, 5) preferential sampling model parameters β—keeping param-

eters outside of the block fixed. We update the genealogy and substitution model parameters

via the default BEAST Markov kernels. We update the log effective population size parameters

γ via an elliptical slice sampler (ESS) operator [17, 25], which takes advantage of the Gaussian

prior distribution of the latent field to perform efficient updates. Informally, it does this by

sampling a set of parameter values from the prior and iteratively moving the values closer to

the current values via elliptical interpolation if the coalescent likelihood falls below a random,

but small, neighborhood of the current likelihood. Because the stepwise differences of the log

effective population size trajectory, Δγ, are modeled as independent Gaussians with precision

κ, and because we give κ a Gamma(α, β) hyperprior, we update κ using a Normal-Gamma

Gibbs update kernel with full conditional

k j Dg � Gamma aþ
p
2
; bþ

1

2

Xp

i¼2

ðgi � gi� 1Þ
2

" #

;

where p is the number of parameters in the latent field. For our sampling conditional model

with posterior (4), we finish here and refer to the method as ESS/BEAST, abbreviated when

appropriate as ESS. For our sampling-aware model with the posterior (3), we update compo-

nents of the preferential sampling model parameter vector β with univariate Gaussian random

walk Metropolis-Hastings kernels. We refer to the method as SampESS/BEAST, abbreviated

when appropriate as SampESS.

Model selection and adequacy

To choose among preferential sampling models, we follow a standard Bayesian model selection

approach by ranking these models according to their marginal likelihoods [26]. See Section

B.1.5 in S1 Text for a quick review of marginal likelihood/Bayes factor-based model selection.

Although this standard approach is helpful in choosing among a small number of candidate

preferential sampling models, it does not answer an important question of whether any of

these models are adequate enough to use instead of a more conventional conditional coales-

cent approach.
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One way to probe model adequacy is posterior predictive model checking [27]. However, as

we demonstrate in Sections B.1.3 and B.2.2 in S1 Text, posterior predictive model checking is

often inconclusive with regard to the question of whether preferential sampling should be

taken into account. So we propose a different strategy, where in addition to preferential sam-

pling models, we use a model, where effective population size trajectory Ne(t) and sampling

rate λ(t) are unrelated and estimated nonparametrically using the same strategy that we use for

nonparametric estimation of Ne(t) in conditional and preferential sampling models. We call a

preferential sampling model adequate if this model has higher marginal likelihood than the

model with unrelated Ne(t) and λ(t). For completeness, we also include into our marginal like-

lihood ranking a model that explicitly assumes uniform sampling of sequences across time.

Currently, we implemented the unrelated Ne(t) and λ(t) model and its marginal likelihood cal-

culation using INLA for a fixed tree. We plan to add this model to BEAST in the future so we

can take advantage of multiple robust marginal likelihood calculation procedures that are

already implemented in BEAST [28].

Implementation

We implemented INLA-based, fixed-genealogy BNPR-PS method with simple covariates in R

package phylodyn (https://github.com/mdkarcher/phylodyn). The package has also MCMC

functionality that can handle inference from a fixed genealogy with simple and interaction

sampling model covariates. See phylodyn vignettes for more details. MCMC for direct infer-

ence from sequence data is available in the development branch of software package BEAST
(https://github.com/beast-dev/beast-mcmc). We provide examples of how to specify our pref-

erential sampling models in BEAST xml files at https://github.com/mdkarcher/BEAST-XML.

The last repository also contains XML files needed to replicate our simulations and real data

analyses.

Results

Simulation study

Inference assuming fixed genealogy. In Section, we proposed an extended sampling time

model that incorporated time-varying covariates. We perform a simulation study to confirm

the ability of our method to recover the true effective population trajectory and model coeffi-

cients with covariates affecting the sampling intensity. We begin here with fixed genealogies

and move on to direct inference from sequence data in the next section.

We start with the inhomogeneous Poisson process sampling model with log-intensity as in

Eq 2. If we restrict all βs and δs to be zero aside from β0, the model collapses to homogenous

Poisson process sampling (equivalently, uniformly sampling a Poisson number of points

across the sampling interval). If we allow β1 to be nonzero, the model becomes the sampling-

aware model in [4]. If we allow additional βs, each corresponding to a fixed function of time,

to be nonzero (but not δs) we say that the model includes simple or ordinary covariates.
For computational efficiency in this simulation study, we build upon the methods from [4],

including Bayesian Nonparametric Population Reconstruction (BNPR) which uses integrated

nested Laplace approximation (INLA) to efficiently approximate the marginal posterior for

fixed-genealogy data, and Bayesian Nonparametric Population Reconstruction with Preferen-

tial Sampling (BNPR-PS) which does the same but includes our sampling time model (without

covariates). We incorporate our extended sampling time model into BNPR-PS, but due to con-

straints in the INLA R package, upon which BNPR-PS relies, we can only include simple

covariates.
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Because our sampling time model is an inhomogeneous Poisson process, it is straightfor-

ward to simulate sampling times. We use a time-transformation method [29, pages 98–99],

which, informally, treats the waiting times between events as transformations of exponential

waiting times based on the intensity function following the previous event. Because the coales-

cent likelihood is sufficiently similar to an inhomogeneous Poisson process, we can use a simi-

lar time-transformation technique to generate the coalescent events of simulated genealogies

[30]. We implement these methods for simulating sampling times and coalescent times in R

package phylodyn [31].

In Fig 3, we illustrate BNPR, BNPR-PS, and BNPR-PS with simple covariates applied to a

single simulated genealogy with sampling events distributed according to log-intensity 1.56 +

γ(t) − 0.05t, resulting in 1013 tips, where γ(t) = log[Ne,2,6(t)] and Ne,a,o(t) is a family of func-

tions that approximate seasonal changes in effective population size, defined as follows:

Ne;a;oðtÞ ¼

(
2þ 18=ð1þ expfa½3 � ðt þ o ðmod 12ÞÞ�gÞ; if t þ o ðmod 12Þ � 6;

2þ 18=ð1þ expfa½3þ ðt þ o ðmod 12ÞÞ � 12�gÞ; if t þ o ðmod 12Þ > 6:
ð5Þ

We see that BNPR (the sampling conditional model) suffers from the kind of model misspe-

cification induced bias illustrated in [4]. BNPR-PS with no additional covariates beyond γ(t) =

log[Ne(t)], in contrast, suffers even more strongly from a misspecified sampling model. Table 1

shows that the model fails to correctly infer the coefficient of γ(t). This illustrates the care one

Fig 3. Effective population size reconstruction for BNPR, BNPR-PS, and BNPR-PS with simple covariates. The dotted black line represents the true effective

population trajectory. The solid colored line represents the marginal posterior median effective population trajectory inferred by BNPR (yellow), BNPR-PS (blue), and

BNPR-PS with simple covariates (purple), and the gray region represents the corresponding pointwise 95% credible intervals for the effective population trajectory.

The log sampling intensity was 1.557 + γ(t) − 0.025t.

https://doi.org/10.1371/journal.pcbi.1007774.g003

Table 1. Summary of simulated fixed-tree data inference. Posterior distribution quantile summaries for BNPR-PS with no covariates (model: {γ(t)}, first row) and

BNPR-PS with an ordinary covariate (model: {γ(t), −t}, second and third rows).

Model Coef Q0.025 Median Q0.975 Truth

{γ(t)} γ(t) 1.67 1.99 2.34 1.0

{γ(t), −t} γ(t) 0.86 1.01 1.16 1.0

−t 0.040 0.047 0.053 0.050

https://doi.org/10.1371/journal.pcbi.1007774.t001
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must take in choosing parameterizations of the sampling model. BNPR-PS with simple covari-

ates, γ(t) and −t, the correctly-specified model, produces a reconstruction of the effective pop-

ulation trajectory that is very close to the true trajectory used to simulate the data. Table 1

shows that the true values of the sampling model coefficients are within 95% Bayesian credible

intervals produced by our inference method with the correctly specified model.

We also perform a simulation study, where we repeatedly simulate a genealogy from a fixed

effective population size trajectory and use this genealogy to perform Bayesian inference.

Without model misspecification, frequentist properties of our Bayesian estimators improve

when when the number of sampled sequences/lineages increases, with bias diminishing and

coverage of credible intervals converging to the nominal level. In addition to validating our

method on simulations with no model misspecification, we investigate behavior of our Bayes-

ian inferential procedure in situations when the sampling model is misspecified. As expected,

such model misspecification, which includes ignoring preferential sampling when it is present,

results in systematic bias, underscoring the importance of scrutinizing preferential sampling

model adequacy. See Section B.2.1 in S1 Text for more details.

Model selection and adequacy assuming fixed genealogy. We test our model selection

and checking model adequacy strategies using the same simulated data that we use in Section.

We observe frequency of our marginal likelihood ranking procedure selecting the correct

model approaches 1.0, as we increase the number of sampled sequences/lineages. More impor-

tantly, we find that when effective population size and sampling intensity are not related in

any way, the marginal likelihood ranking frequently selects the unrelated Ne(t) and λ(t) model,

which correctly points to the conclusion that none of the preferential sampling models under

consideration is adequate and it is best to stick with the standard conditional coalescent

model. See Section B.2.1 in S1 Text for more details.

Direct inference from sequence data. We simulate several genealogies and DNA

sequences from different sampling scenarios in order to evaluate how well our population

reconstruction and parameter inference performs. Given a sampling model and, optionally, an

effective population size trajectory, we generate sampling times within a sampling window. We

generate sampling and coalescent times for a genealogy using the same time-transformation

methods as for our fixed-tree simulations. We simulate the topology of the genealogy by pro-

ceeding backward in time, adding an active lineage at each sampling time and joining a pair of

active lineages uniformly at random at each coalescent event. We provide an implementation

of this tree-topology simulation method in phylodyn. We generate simulated sequence

alignments using the software SeqGen [32], using the Jukes-Cantor 1969 (JC69) [33] substitu-

tion model. Initially, we set the substitution rate to produce an expected 0.9 substitutions per

site, in order to produce a sequence alignment with many sites having one mutation, and some

sites having zero or multiple mutations. As we discuss below, we also experiment with the sub-

stitution rate of 0.09 substitutions per site in a subset of our simulations. For all of our simula-

tions, we use the same seasonal effective population trajectory, Ne,2,6(t), as for our fixed-tree

simulations.

First, we simulate a genealogy with 200 tips and sequence data with 1500 sites and uniform

sampling times and apply both of our sampling-conditional methods. We apply the INLA-

based fixed-tree BNPR from [4] to the true genealogy, and we apply the MCMC-based tree-

sampling ESS/BEAST (specified above) to the sequence data. In Fig 4 (upper left), we compare

the truth with the resulting pointwise posterior medians and credible intervals. The two meth-

ods’ results are mutually consistent, with additional uncertainty in the tree-sampling method

(visible in the wider credible intervals) due to having to estimate the genealogy jointly with

other model parameters. We see similar results comparing BNPR-PS with SampESS/BEAST in

Fig 4 (upper right), where we sample sequences (1500 sites) with sampling times generated
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from an inhomogeneous Poisson process with intensity proportional to effective population

size (log-intensity 2.9 + γ(t)) resulting in 170 samples and infer using a sampling model with

log-intensity β0 + β1γ(t). We also see similar results in Fig 4 (lower left), where we add time as

an additional covariate and sample sequences (1500 sites) with log-intensity 3.35 + γ(t) − 0.5t,
resulting in 199 samples, and perform inference using a sampling model with log-intensity β0

+ β1γ(t) + β2 � (−t). Table 2 shows that SampESS does a reasonable job at reconstructing the

true model coefficients, though the credible interval for −t includes 0.

We also simulate a genealogy and sequence data (1500 sites) with log-intensity 1.89 + γ(t) +

γ(t) � 1t2[0.5,1], resulting in 210 samples. This produces an interval we refer to as a sampling
spike which requires the use of an interaction covariate. Because of design limitations of the R

Fig 4. Effective population size reconstructions for four sequence data simulations, all based on the same seasonal effective

population size trajectory. Upper left: Uniform sampling times, sampling-conditional posterior. Upper right: Sampling frequency

proportional to effective population size, sampling-aware posterior. Lower left: Sampling frequency proportional to effective

population times a time-covariate (exp(t)), sampling- and covariate-aware posterior. Lower right: Sampling frequency proportional

to effective population size with a sampling spike, sampling- and covariate-aware posterior.

https://doi.org/10.1371/journal.pcbi.1007774.g004
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implementation of INLA, we are limited in how we may implement interaction covariates in

BNPR-PS. Therefore, in Fig 4 (lower right) we plot SampESS/BEAST with the correct interac-

tion covariate (and a corresponding ordinary covariate) against BNPR-PS with no covariates.

We see SampESS (with covariates) perform better than BNPR-PS (without covariates) at

reconstructing the correct trajectory. We also see that our method, using the full covariate

model, with log-intensity β0 + β1γ(t) + β2 � 1t2[0.5,1] + δ2 � γ(t) � 1t2[0.5,1], produces a 95% Bayes-

ian credible interval for the coefficient of the ordinary covariate that contains the true value

(β2 = 0), while the true value of the interaction covariate coefficient (δ2 = 1) is correctly inside

the 95% Bayesian credible interval produced by SampESS/BEAST.

We repeat simulations with proportional preferential sampling without covariates and

with a simple time covariate 10 times and show the corresponding population size recon-

structions in Figures B-8 and B-9 in S1 Text. In addition, we repeat proportional preferential

sampling without covariates and with a simple time covariate simulations 10 more times,

while reducing the substitution rate from 0.9 to 0.09 (Figures B-10 and B-11 in S1 Text).

Both high (0.9) and medium (0.09) substitutions rate simulations pass a sanity check: most

of the effective population size reconstructions recover the true trajectory and show wider

credible intervals when we increase the phylogenetic uncertainty in the medium substitution

rate regime.

Seasonal influenza example

We reanalyze the H3N2 regional influenza data for the USA/Canada region as analyzed with

fixed-tree methods in [4]. The data contain 520 sequences aligned to form a multiple sequence

alignment with 1698 sites of the hemagglutinin gene. This dataset is a subset of the dataset of

influenza sequences from around the world analyzed in [18]. We use ESS/BEAST with our

tree-sampling MCMC targeting posterior (4) to analyze these data and mark the pointwise

posterior median and 95% credible region in black, summarized in Fig 5 (upper row). We

observe a seasonal pattern consistent with flu seasons observed in the temperate northern

hemisphere [18]. Our results are also consistent with previous fixed-tree method results but

with larger credible interval widths due to correctly accounting for genealogical uncertainty in

our analysis.

We apply our sampling-aware model SampESS/BEAST to the USA/Canada influenza data,

following the posterior from Eq (3). We used several different log-sampling-intensity models.

The simplest one has log-intensity β0 + β1γ(t) (abbreviated {γ(t)}) and is summarized in Fig 5

(upper left). We include a time term in one model, with log-intensity β0 + β1γ(t) + β2 � (−t)
(abbreviated {γ(t), −t}) summarized in Fig 5 (upper center). We use seasonal indicator

Table 2. Summary of simulated sequence data inference. Posterior distribution quantile summaries for BEAST implementation of BNPR-PS models: with no covariates

(model: {γ(t)}, first row), with an ordinary covariate (model: {γ(t), −t}, second and third row), with both an ordinary and interaction covariate (model: {γ(t), 1t2[0.5,1],

1t2[0.5,1] � γ(t)}, last three rows).

Model Coef Q0.025 Median Q0.975 Truth

{γ(t)} γ(t) 0.98 1.42 2.16 1.0

{γ(t), −t} γ(t) 0.75 1.06 1.55 1.0

−t -0.06 0.44 0.94 0.5

{γ(t), 1t2[0.5,1], 1t2[0.5,1] � γ(t)} γ(t) 0.72 1.26 2.14 1.0

1t2[0.5,1] -9.01 -1.50 1.64 0.0

1t2[0.5,1] � γ(t) 0.13 1.75 5.75 1.0

https://doi.org/10.1371/journal.pcbi.1007774.t002
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functions in the final model, defined as,

IwinterðtÞ ¼ Iðt mod 1:0Þ2½0;0:25Þ;

IautumnðtÞ ¼ Iðt mod 1:0Þ2½0:25;0:5Þ;

IsummerðtÞ ¼ Iðt mod 1:0Þ2½0:5;075Þ;

with t measured in decimal calendar years (going forward in time). This results in the log-

intensity β0 + β1γ(t) + β2Iwinter(t) + β3Iautumn(t) + β4Isummer(t) (abbreviated {γ(t), Iwinter, Iautumn,

Isummer}), summarized in Fig 5 (upper right).

We summarize the sampling model coefficient results for each model in Table 3. The {γ(t)}
model corresponds to the preferential sampling model of [4], but has noticeably different esti-

mates. We attribute this to the differences between the fixed-tree (with a tree inferred using a

constant effective population size BEAST model), INLA-based approach of [4], and the tree-

sampling MCMC-based approach of this paper. We also note that the {γ(t), −t} model does not

perform better (or even noticeably differently) than the {γ(t)} model. The coefficient summary

for {γ(t), −t} bears this out, because the 95% Bayesian credible interval for the coefficient for −t

Fig 5. Effective population size and sampling rate reconstructions for the USA and Canada influenza dataset. Upper row: Dashed lines and dotted black lines

are the pointwise posterior effective population size estimates and credible intervals of the sampling-conditional model. The blue lines and the light blue regions are

the pointwise posterior effective population size estimates and credible intervals of that column’s sampling-aware model. Lower row: Dashed lines and dotted black

lines are the pointwise posterior sampling rate estimates and credible intervals of a nonparametric sampling-time-only model. The blue lines and the light blue

regions are the pointwise posterior sampling rate estimates and credible intervals of that column’s sampling-aware model.

https://doi.org/10.1371/journal.pcbi.1007774.g005
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contains 0. This is expected as each year has approximately the same number of sequences, so

there should be no exponential growth of sampling intensity. We do observe differences in the

{γ(t), Iwinter, Iautumn, Isummer} model. The coefficient of γ(t) is close to 1.0, which is the easiest

value to interpret under preferential sampling, suggesting a baseline sampling rate propor-

tional to effective population size. The coefficients for the indicators suggest increased sam-

pling in the flu season intervals, as compared to the summer intervals and especially the spring

intervals—with spring treated as a baseline rate without an indicator for the sake of identifia-

bility. We also fit a model with seasonal indicator covariates and their interactions with the

log-effective population size, but do not find any support for including the interaction covari-

ates into the preferential sampling model (see Section A.1 in S1 Text).

We observe the seasonality of our estimates of the effective population size trajectory. In Fig

6, we superimpose the twelve years of estimates per model, and plot the posterior median

annual estimate. We note that the sampling aware models all show increased seasonality com-

pared to the sampling conditional model. We also note that the 2008-2009 flu season stands

out on the seasonality plot for having a peak in the summer months of 2009, particularly in the

preferential sampling models. This behavior is most likely due to a misspecification of our

model for sampling intensity. This misspecification is expected given the first documented

emergence of the H1N1 strain in the United States in April of 2009 and the resulting, unac-

counted in our model, increased surveillance of all influenza strains in summer 2009 [34].

Higher than usual sampling intensity in summer 2009 makes our preferential sampling models

conclude that the effective population size during this time period must be also elevated. Also,

note that the estimated effective population size of H3N2 strain during 2009/2010 flu season is

markedly lower than during most of other seasons. This is in line with the H1N1 strain suc-

cessfully competing with the H3N2 strain, resulting in the lower prevalence of the latter.

To check adequacy of the preferential sampling models, we compare the posterior distribu-

tions of sampling intensities obtained via our BEAST implementation of BNPR-PS with a non-

parametric INLA-based estimate of the sampling rate (using a method similar to BNPR-PS

without the coalescent likelihood or covariates). Fig 5 (lower row) shows the comparison. The

methods produce very similar estimates, with the BEAST/MCMC methods having thinner

credible intervals due to incorporating additional information from the coalescent likelihood.

However, when we apply our model selection strategy to a fixed majority clade credibility phy-

logenetic tree used in [4], the preferential sampling model with seasonal covariates emerges as

a winner with the highest marginal likelihood (see Table 3). We note that all but constant λs(t)

Table 3. Summary of USA/Canada influenza data inference. Posterior distribution quantile summaries for BEAST implementation of BNPR-PS models: with no covari-

ates (model: {γ(t)}), with an ordinary covariate (model: {γ(t), −t}), and with seasonal indicator covariates (model: {γ(t), Iwinter, Iautumn, Isummer}). Using a fixed tree, we also

include marginal likelihoods (MLs) for all of the above models, plus a model with Ne(t) and λs(t) estimated independently and nonparametrically (Unrelated Ne(t) and

λs(t)) and a conditional model combined with a constant sampling intensity model for sampling times (Constant λs(t)).

Model ML Coef Q0.025 Median Q0.975

Unrelated Ne(t) and λs(t) -732 — — — —

Constant λs(t) -975 — — — —

{γ(t)} -626 γ(t) 1.11 1.45 2.01

{γ(t), −t} -632 γ(t) 1.21 1.52 2.00

−t -0.10 -0.02 0.07

{γ(t), Iwinter, Iautumn, Isummer} -604 γ(t) 0.72 0.92 1.21

Iwinter 1.91 2.79 3.83

Iautumn 1.88 2.85 3.85

Isummer 0.44 1.52 2.58

https://doi.org/10.1371/journal.pcbi.1007774.t003
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preferential sampling models outperform the unrelated Ne(t) and λs(t) model. We also per-

formed posterior predictive checking, described in Section B.1 in S1 Text, but found that this

method lacked power to discriminate among preferential sampling models (see Section B.5.1

in S1 Text).

Ebola outbreak

Next, we analyze a subset of the Ebola virus sequences arising from the recent Western Africa

Ebola outbreak (as collated in [35]). The data consist of 1610 aligned whole genomes, collected

from mid-2014 to mid-2015. The resulting alignment has 18,992 sites. The dataset represents

over 5% of known cases of Ebola detected during that outbreak, providing an unprecedented

Fig 6. Effective population size seasonal overlay for the USA and Canada influenza dataset. The light blue lines are the pointwise

posterior estimates for each year, and the dark blue line is the median annual estimate. Upper left: Sampling-conditional posterior.

Upper right: Sampling-aware posterior with only log-effective population size γ(t) informing the sampling time model. Lower left:
Sampling- and covariate-aware posterior, with γ(t) and −t. Lower right: Sampling- and covariate-aware posterior, with γ(t) and

seasonal indicators Iwinter, Iautumn, Isummer.

https://doi.org/10.1371/journal.pcbi.1007774.g006
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insight into the epidemiological dynamics of an Ebola outbreak. We consider two subsets of

the data, corresponding to the samples from Sierra Leone and Liberia. For Sierra Leone, we

subsampled 200 sequences, chosen uniformly at random out of 1010 samples for computa-

tional tractability. For Liberia, we use the entire collection of 205 sequences obtained from

infected individuals in this country.

We begin by applying ESS/BEAST method with no preferential sampling to the Sierra

Leone dataset. We use MCMC to target our tree-sampling posterior from Eq (4) and depict

the pointwise posterior median effective population curve, Ne(t), with a black dashed line and

its corresponding 95% credible region boundaries with black doted lines, shown in all panels

of the first row of Fig 7. The resulting effective population size trajectory visually resembles a

typical epidemic trajectory of prevalence or incidence that peaks in Autumn of 2014. Next, we

apply our sampling-aware model SampESS/BEAST to the Ebola data, targeting with MCMC

the posterior from Eq (3). We use several different log-sampling-intensity models. The sim-

plest model, abbreviated as {γ(t)}, has log-sampling-intensity β0 + β1γ(t). We include a t term

in our next sampling model, abbreviated as {γ(t), −t}, with log-intensity β0 + β1γ(t) + β2 � (−t).
This model postulates that even if the effective population size remains constant, the sampling

intensity is growing or declining exponentially. We make −t an interaction covariate as well in

the next model, abbreviated {γ(t), −t, −t � γ(t)}, resulting in the log-sampling-intensity β0 + β1γ
(t) + β2 � (−t) + δ2 γ(t) � (−t). For the final model, we include −t and −t2 as ordinary covariates,

abbreviated {γ(t), −t, −t2}, with log-sampling-intensity β0 + β1γ(t) + β2 � (−t) + β3 � (−t2). The

resulting posterior distribution summaries of the effective population size trajectory are shown

Fig 7. Effective population size and sampling rate reconstructions for the Sierra Leone Ebola dataset. Upper row: Dashed lines and dotted black lines are the

pointwise posterior effective population size estimates and credible intervals of the sampling-conditional model. The blue lines and the light blue regions are the

pointwise posterior effective population size estimates and credible intervals of that column’s sampling-aware model. Lower row: Dashed lines and dotted black

lines are the pointwise posterior sampling rate estimates and credible intervals of a nonparametric sampling-time-only model. The blue lines and the light blue

regions are the pointwise posterior sampling rate estimates and credible intervals of that column’s sampling-aware model.

https://doi.org/10.1371/journal.pcbi.1007774.g007
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in blue in the upper row of Fig 7. Parameter estimates of all models fit to the Sierra Leone data

are summarized in Table 4.

Having concluded that posterior predictive checks are underpowered in our setting (see

Section B.2.3 in S1 Text), we use our model selection approach applied to a fixed phylogenetic

tree obtained using a fast approximate maximum likelihood method implemented in

TreeTime software package [36]. Recall that our INLA implementation of BNPR-PS does

not allow for interaction covariates, so we compute marginal likelihoods, shown in Table 4,

only for models without interactions. The quadratic model has the highest marginal likelihood,

but the marginal likelihood of the preferential sampling model without additional covariates is

only slightly lower. Again, marginal likelihoods of all preferential sampling models but with

the constant sampling intensity are higher than the likelihood of the unrelated Ne(t) and λs(t)
model.

As another way to compare adequacy of preferential sampling models, we overlay our

reconstructed effective population size trajectories and Ebola weekly incidence time series. We

use a sum of confirmed and probable case counts from the supplementary data of [35]. Assum-

ing a susceptible-infectious-removed (SIR) model, an approximate structured coalescent

model, and taking into account the fact that the number of susceptible individuals never

decreased appreciably during the Ebola outbreak, we can interpret effective population size as

a quantity proportional to Ebola incidence [37, 3]. Figure C-1 in S1 Text shows aligned inci-

dence time series and posterior summaries of effective population size for all considered coa-

lescent models. All models produce reasonable agreement between incidence and effective

population size during the increase of incidence. However, the end of the outbreak is captured

better by preferential sampling models, with the quadratic model {γ(t), −t, −t2} outperforming

the other preferential sampling models.

We apply the same models to the Liberia Ebola dataset, summarized across the upper row

of Fig 8 and in Table 5. We note that the {γ(t)} and {γ(t), −t} models perform very similarly,

but the {γ(t), −t} model has slightly wider pointwise credible intervals in places. This is consis-

tent with the coefficients, as the credible interval for the −t term contains 0. The {γ(t), −t, −t �
γ(t)} model has even wider pointwise credible intervals, and the credible intervals for the

coefficients all contain 0. However, the {γ(t), −t} has the highest marginal likelihood, closely

Table 4. Summary of Sierra Leone Ebola sequence data inference. Posterior distribution quantile summaries for BEAST implementation of BNPR-PS models: with no

covariates (model: {γ(t)}), with an ordinary covariate (model: {γ(t), −t}), with both an ordinary and interaction covariate (model: {γ(t), −t, −t�γ(t)}), and with linear and

quadratic ordinary covariates (model: {γ(t), −t, −t2}). Using a fixed tree, we also include marginal likelihoods (MLs) for all of the above models with no interactions, plus a

model with Ne(t) and λs(t) estimated independently and nonparametrically (Unrelated Ne(t) and λs(t)) and a conditional model combined with a constant sampling inten-

sity model for sampling times (Constant λs(t)).

Model ML Coef Q0.025 Median Q0.975

Unrelated Ne(t) and λs(t) -821 — — — —

Constant λs(t) -616 — — — —

{γ(t)} -597 γ(t) 0.28 0.46 0.71

{γ(t), −t} -601 γ(t) 0.30 0.49 0.83

−t -0.58 0.27 1.46

{γ(t), −t, −t � γ(t)} — γ(t) 1.01 1.76 3.32

−t -0.88 0.18 1.02

−t � γ(t) 0.89 1.65 3.11

{γ(t), −t, −t2} -596 γ(t) 0.47 1.00 1.80

−t 2.02 9.05 20.63

−t2 -13.08 -5.58 -1.09

https://doi.org/10.1371/journal.pcbi.1007774.t004
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Fig 8. Effective population size and sampling rate reconstructions for the Liberia Ebola dataset. Upper row: Dashed lines and dotted black lines are the

pointwise posterior effective population size estimates and credible intervals of the sampling-conditional model. The blue lines and the light blue regions are the

pointwise posterior effective population size estimates and credible intervals of that column’s sampling-aware model. Lower row: Dashed lines and dotted black

lines are the pointwise posterior sampling rate estimates and credible intervals of a nonparametric sampling-time-only model. The blue lines and the light blue

regions are the pointwise posterior sampling rate estimates and credible intervals of that column’s sampling-aware model.

https://doi.org/10.1371/journal.pcbi.1007774.g008

Table 5. Summary of Liberia Ebola sequence data inference. Posterior distribution quantile summaries for BEAST implementation of BNPR-PS models: with no covari-

ates (model: {γ(t)}), with an ordinary covariate (model: {γ(t), −t}), with both an ordinary and interaction covariate (model: {γ(t), −t, −t � γ(t)}). Using a fixed tree, we also

include marginal likelihoods (MLs) for all of the above models with no interactions, plus a model with Ne(t) and λs(t) estimated independently and nonparametrically

(Unrelated Ne(t) and λs(t)) and a conditional model combined with a constant sampling intensity model for sampling times (Constant λs(t)).

Model ML Coef Q0.025 Median Q0.975

Unrelated Ne(t) and λs(t) -825 — — — —

Constant λs(t) -567 — — — —

{γ(t)} -527 γ(t) 0.53 0.78 1.20

{γ(t), −t} -524 γ(t) 0.53 0.81 1.23

−t -3.39 -0.74 1.84

{γ(t), −t, −t � γ(t)} — γ(t) -0.07 0.40 1.51

−t -3.26 -0.31 2.67

−t � γ(t) -2.98 -1.21 1.20

https://doi.org/10.1371/journal.pcbi.1007774.t005
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followed by the simple preferential sampling model {γ(t)}. Again, all marginal likelihoods,

reported in Table 5, are computed using a fixed phylogeny estimated using TreeTime. We

also note that in the {γ(t)} model, the median estimate for the coefficient for γ(t) is close to 1.0,

suggesting direct proportional sampling.

As in the previous section, we compare the sampling rates we derive from our BEAST runs

to a nonparametric INLA-based estimate of the sampling rate. Fig 7 (lower row) and Fig 8

(lower row) show the comparisons. The two methods produce very similar estimates, and

again the sampling-aware methods have thinner credible intervals due to incorporating addi-

tional information from the coalescent likelihood.

All coalescent models produce reasonable agreement between estimated effective popula-

tion size trajectories and Ebola incidence time series in Libera (see Figure C-2 in S1 Text). The

model without preferential sampling looks the best in this comparison, mostly because the

incidence curve does not support multiple “ups” and “downs” in effective population size tra-

jectories estimated under the preferential sampling models. We note that although Ne(t) tracks

incidence fairly well in our Ebola analyses, such correspondence requires many assumptions

to hold, which is not the case in many applications.

Discussion

Currently, few phylodynamic methods incorporate sampling time models in order to address

model misspecification and take advantage of the additional information contained in sam-

pling times in preferential sampling contexts. Even fewer methods implement sampling time

models by appropriately integrating over genealogies relating the sampled genetic sequences

and performing inference directly from these sequence data. We extend previous sampling

time models to incorporate time-varying covariates in order to allow the sampling model to be

more flexible under different scientific circumstances. We implement this sampling time

model into the MCMC software BEAST, and also implement an elliptical slice sampler into

BEAST for efficient MCMC draws of grid-based effective population size parameterizations.

However, the additional flexibility of the sampling time model comes with additional

uncertainty around which set of covariates is the best one for a given scientific context. There

is a danger of including too many irrelevant covariates into the model, leading to identifiability

problems. If one wishes to pursue a preferential sampling model with a large number of poten-

tial covariates, we recommend using Bayesian regularization priors to guard against overfitting

[38]. Regardless of the number of covariates, one needs to probe adequacy of the preferential

sampling model Although posterior predictive checks [27] lacked sufficient power to discrimi-

nate between models in all of our applications, using marginal likelihoods to compare prefer-

ential sampling models to the model with unrelated Ne(t) and λ(t) offers a promising

alternative. We have implemented this model comparison approach for a fixed tree and plan

to port this approach to BEAST in the future.

Another approach to extending and increasing the flexibility of the sampling model is to

decouple the fixed temporal relationship between effective population size and sampling inten-

sity. Introducing an estimated lag parameter to the sampling time model would allow for

cause-and-effect phenomena and delays to be accounted for within the model. Incorporating

an estimated lag parameter would also allow for an additional avenue of model verification.

Under most imaginable circumstances, if there is a relationship between the effective popula-

tion size and sampling frequency, changes to the population size would effect sampling fre-

quency with zero or positive delay. Estimating a credibly negative lag would be a possible

indicator that some element of the model or data is worth re-examining.
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In terms of flexibility, the ideal sampling time model would be a separate Gaussian latent

field distinct from the (log) effective population size. However, methods for primarily phylody-

namic inference with this feature would suffer from severe identifiability problems. One

approach that would retain most of the flexibility of the separate Gaussian field while also

retaining the identifiability of the original model would be to model the (log) effective popula-

tion size and sampling intensities as correlated Gaussian processes. Estimating the correlation

parameter between the two processes would allow for estimation of the preferential sampling

strength. Finally, since preferential sampling can occur both in space and in time [39], it would

be natural to extend our framework to structured/not well mixed populations [40].

Supporting information

S1 Text. The file S1_Text.pdf contains appendices with additional simulation and real

data analysis details.

(PDF)
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