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Metabolic reprogramming confers cancer cells the ability to grow and survive under  
nutrient-depleted or stressful microenvironments. The amplification of oncogenes, 
the loss of tumor suppressors, as well as context- and lineage-specific determinants 
can converge and profoundly affect the metabolic status of cancer cells. Cumulating 
evidences suggest that highly glycolytic cells under the influence of oncogenes such 
as BRAF, or evolving in hypoxic microenvironments, will promote metastasis through 
modulation of multiple steps of tumorigenesis such as the epithelial-to-mesenchymal 
transition (EMT). On the contrary, increased reliance on mitochondrial respiration is 
associated with hyperplasic rather than metastatic disease. The PGC-1α transcriptional 
coactivator, a master regulator of mitochondrial biogenesis, has recently been shown 
to exert antimetastatic effects in cancer, notably through inhibition of EMT. Besides, 
PGC-1α has the opposite role in specific cancer subtypes, in which it appears to provide 
growth advantages. Thus, the regulation and role of PGC-1α in cancer is not univocal, 
and its use as a prognostic marker appears limited given its highly dynamic nature and 
its multifaceted regulation by transcriptional and posttranslational mechanisms. Herein, 
we expose key oncogenic and lineage-specific modules that finely regulate PGC-1α to 
promote or dampen the metastatic process. We propose a unifying model based on 
the systematic analysis of its controversial implication in cancer from cell proliferation 
to EMT and metastasis. This short review will provide a good understanding of current 
challenges associated with the study of PGC-1α.

Keywords: PGC-1, cancer, metastasis, OXPHOS, oncogenes, tumor suppressors, microenvironment, reactive oxygen 
species

inTRODUCTiOn

Deregulated metabolism is now a well-documented hallmark of cancer cells that provides them 
with the ability to grow and survive under nutrient-depleted or stressful microenvironments  
(1, 2). Metabolic reprogramming is associated with important aspects of oncogenesis such as the 
epithelial-to-mesenchymal transition (EMT), a complex process that allows cancer cells to invade 
surrounding tissues and migrate to the vasculature (3–8). Oncogenes such as BRAF and MYC, 
through multifaceted shaping of central carbon metabolism and mitochondrial activity, can dictate 
the propensity of cancer cells to rely on specific metabolic routes such as glycolysis and glutaminoly-
sis, thus revealing susceptibilities to metabolic drugs (9–13). While a preferential reliance on aerobic 
glycolysis (Warburg effect) instead of mitochondrial respiration has long been linked to increased 
tumor burden and poor outcome, it is now recognized that mitochondria have additional key roles 
in tumorigenesis and represent potential therapeutic targets (14–16).
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Mitochondrial biogenesis and function are under the tight 
control of the peroxisome proliferator-activated receptor-ϒ 
coactivator-1 (PGC-1) family of transcriptional coactivators, 
among which, PGC-1α has been the most extensively studied 
member (17, 18). PGC-1α exerts its function through molecular 
scaffolding of diverse members of the nuclear receptors family, 
transcription factors, the TRAP/mediator complex, as well as vari-
ous acetyl/methyltransferase complexes (19, 20). The magnitude 
and specificity of PGC-1α-directed transcriptional programs can 
be achieved through at least three distinct mechanisms: (1) by 
modulation of its expression level, thus limiting the recruitment 
of binding partners, (2) by the availability and functional status of 
its binding partners, and (3) by posttranslational modifications, 
which can modify both its expression level and the nature of its 
interactions (21–23). Hence, the complex regulation of PGC-1α is 
function of the cellular landscape associated with a given context, 
which makes this coactivator a master integrator of the nutri-
tional and redox statuses, cellular stress, infection, and oncogenic 
signaling. Given its intrinsic capacities to orchestrate cellular 
bioenergetics, it is not surprising that PGC-1α is a key player in 
a variety of systems including muscular physiology, aging, and 
neurological functions (24, 25).

Besides its well-established functions as a master regulator 
of mitochondrial biogenesis and respiration, PGC-1α has been 
shown to regulate many other processes that could be linked to 
oncogenesis. First, PGC-1α conjointly promotes the expression 
of antioxidant genes that will protect cells from the deleterious 
effects of reactive oxygen species (ROS) as byproducts of the 
electron transport chain (26, 27). Second, PGC-1α can modu-
late the expression of VEGF, a key player in inflammation and 
angiogenesis (28). While promoting catabolism of glucose and 
fatty acids in line with increased mitochondrial mass, PGC-1α 
can also promote gluconeogenesis and lipogenesis, and thus 
could exert opposite anabolic functions (29–32). This apparent 
contradiction in PGC-1α functions, which could be explained 
by context-specific determinants, is key to the understanding of 
its dichotomous effects on cancer development. Although PGC-
1α could be considered at first as a potential tumor suppressor 
by promoting mitochondrial oxidation and opposing aerobic 
glycolysis, recent studies revealed that its role in tumorigenesis 
and metastasis is not univocal. In the following sections, we will 
present evidences associating both pro- and anti-tumorigenic 
roles of PGC-1α and will provide a unifying model based on 
multifactorial determinants that shape its role in cancer.

DiCHOTOMOUS eFFeCTS OF PGC-1α  
On OnCOGeneSiS

PGC-1α as a Prognostic Marker
The association between PGC-1α levels and disease-free survival 
in humans revealed that its sole expression is not necessarily 
predictive of outcome (33). While low PGC-1α levels have been 
associated with poor outcome in breast, prostate, and VHL-
deficient clear renal cell carcinoma (34–36), high PGC-1α levels 
have also been associated with poor outcome in the context of 
melanoma, breast, and prostate cancer (37–40), revealing that 

other factors such as tumor heterogeneity and context-specific 
transcriptional programs are critical determinant of the implica-
tion of PGC-1α in disease progression. Importantly, PGC-1α 
levels do not necessarily follow the ones of OXPHOS genes in 
disease progression (41), suggesting that its regulation through 
posttranslational modification is underevaluated in the context 
of cancer research. There is currently limited evidence that 
genomic alterations of the PPARGC1A gene can be associated 
with disease outcome. Mutations in the PPARGC1A gene have 
been detected (42, 43), a specific polymorphism (Thr612Met) 
has been associated with some classes of breast cancer (44), and 
numerous polymorphisms have been linked to ovarian cancer 
susceptibility (45). While PPARGC1A amplification appears to 
be a rare event (38), important shallow deletions of PPARGC1A 
have been found in metastasis derived from prostate cancer in 
human studies (36). This intriguing observation suggests that 
selective pressure can diminish PGC-1α levels, which could 
confer specific advantages to subsets of cells through the course 
of tumor evolution. Taken together, these studies suggest that the 
contribution of PGC-1α on disease progression will be function 
of tumor history and cancer subtypes, and thus do not support 
its sole use as a prognostic marker for cancer medicine. In order 
to get a better understanding of the dualistic nature of PGC-1α 
in cancer development, we surveyed the literature and evaluated 
the impact of PGC-1α experimental manipulation on key aspects 
of disease progression such as cancer cell proliferation, primary 
tumor growth, ROS detoxification, the modulation of EMT, and 
metastasis. From these studies, it can be concluded that both 
high and low PGC-1α levels in primary tumor can potentially 
lead to metastatic disease, which can be easily explained by the 
oncogenic landscape and context-specific determinants within 
the primary tumor (Figure 1).

PGC-1α and Mitochondrial Function
Strikingly, independently of the final outcome that PGC-1α has on 
oncogenesis, all examined studies fully support its classic role as a 
positive regulator of mitochondrial biogenesis and mitochondrial 
respiration in cancer cells (31, 35, 38–40, 46–54). This suggests 
that the dichotomous aspect of PGC-1α on cancer must take root 
in other aspects of cancer development that could be differentially 
regulated by PGC-1α. These aspects will be developed in the fol-
lowing sections.

Cellular Growth is Conditioned by the 
Microenvironment
Opposite to its uniform impact on mitochondrial function, 
PGC-1α has divergent outcomes on cell proliferation and tumor 
growth, which can be largely explained by cancer type. For 
example, elevated PGC-1α expression impairs clear renal cell 
carcinoma and prostate cancer cell lines proliferation and their 
ability to form tumors (35, 36), while it does the inverse in a 
subset of melanoma cells (38). Besides, the impact of PGC-1α 
expression on cancer cell proliferation does not necessarily cor-
relate with the growth of primary tumors established with the 
same cell lines (31, 50, 55). An explanation for these discrep-
ancies is that in  vitro culture conditions are not representative 
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FiGURe 1 | Unifying model for the dichotomous effects of PGC-1α on tumorigenesis and metastasis. PGC-1α status usually reflects the metabolic profile of cancer 
cells. High PGC-1α will promote mitochondrial metabolism and OXPHOS, while low PGC-1α is usually associated with increased glycolysis. The switch between 
glycolytic and OXPHOS status will be the result of a complex interplay between oncogenes, tumor suppressor, and context-dependent determinants such as 
lineage-specific proteins. BRAF mutants, MYC amplification, and the loss of tumor suppressors such as VHL will downregulate PGC-1α and will confer a glycolytic 
phenotype in line with the establishment of the epithelial-to-mesenchymal transition (EMT). Besides, context-specific proteins such as microphtalmia-associated 
transcription factor (MITF, melanocyte lineage) or KISS1 will promote PPARGC1A transcription or PGC-1α protein stabilization, respectively. The emergence of 
metastasis in situations of high PGC-1α despite its inhibitory role on EMT suggests that PGC-1α will confer selective advantage to cancer cells evolving in specific 
contexts. Increased OXPHOS due to PGC-1α activity will generate reactive oxygen species (ROS). To overcome this stress, an efficient antioxidant gene expression 
program must be induced, which will depend on the activity of PGC-1α itself, the functionality, and availability of its transcriptional partners, as well as other 
context-dependent regulators. High PGC-1α has been linked to increased tumor growth (hyperplasia), but not necessarily to promote metastasis. The selective 
pressure imposed to cancer cells by the tumor microenvironment will favor the survival of well-adapted cells, likely through the regulation of PGC-1α by SIRT1 and 
AMP kinase (AMPK), as well as other context-specific factors. Notably, high PGC-1α expression in specific cancer cells can generate metabolic hybrids (both 
OXPHOS and glycolytic), making these cells particularly flexible. Given that metastatic and circulating tumor cells with high PGC-1α levels have been detected, 
several mechanisms could explain the propensity of some high PGC-1α cells to metastasize. First, the completeness of EMT is not mandatory. Second, context-
specific oncogenes such as the HER2 receptors could increase survival upon cellular matrix detachment (anoikis). Third, glycolytic cells (low PGC-1α) could 
collaborate in the migration and invasion process of high PGC-1α cells through the release of tissue remodeling factors. Finally, the growth advantages conferred by 
PGC-1α might increase cancer cell survival and growth at distant metastatic niches, in spite of their low metastatic potential.
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of the microenvironment experienced by cancer cells in  vivo, 
which suggests that elevated PGC-1α expression might provide 
growth advantage in vivo, notably by increasing glucose uptake 
or by promoting the use of glutamine to support mitochondrial 
respiration and lipogenesis (31, 32, 50). Interestingly, a recent 
study revealed that PGC-1α potentiates bioenergetics capacity 
and fuel flexibility of cancer cells (56). Thus, the development 
of appropriate in vitro culture conditions that better mimic the 
tumor microenvironment will be required to further determine 
which metabolic processes are selectively modulated by PGC-1α 
to confer growth advantage (57).

Cell Survival is Function of ROS 
Detoxification
In specific models, the growth-suppressive effects of PGC-1α 
could be attributed to its capacity to induce apoptosis (47, 48, 58), 
to increase ROS production, and DNA damage response (35), 
and to block cell cycle progression (36). One explanation for these 

unexpected findings is that PGC-1α overexpression can lead to 
dramatic imbalance between ROS production by the electron 
transport chain and ROS detoxification, both orchestrated by 
PGC-1α (27). Some cell lines might respond well to increased 
PGC-1α input, while others might be unable to mount a proper 
antioxidant gene program due to differential availability of tran-
scriptional partners or effectors. Only one study systematically 
measured the impact of PGC-1α overexpression and knockdown 
on a panel of antioxidant genes, confirming that it can indeed 
promote ROS detoxification in a subset of melanoma cells (38).

OXPHOS and Glycolysis Are  
Modulators of eMT
A novel link between PGC-1α and the inhibition of the EMT gene 
expression program is emerging and supports its tumor suppres-
sive functions. Indeed, PGC-1α has been shown to positively 
regulate the expression of the epidermal marker E-cadherin 
and inhibit the expression of multiple genes within the integrin/
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TGFβ/WNT pathways (49, 59–61). There is now strong evidence 
that metabolic changes associated with cancer, such as mitochon-
drial dysfunction and increased glycolysis, efficiently promote 
EMT activation (6), which is in agreement with the notion that 
PGC-1α antagonizes EMT. Moreover, OXPHOS downregulation 
is associated with low survival in most human cancers and shows 
negative correlation with EMT (41). To reconcile these facts with 
the observation that PGC-1α can indeed promote metastasis (39, 
56), context-specific and spatiotemporal regulation of PGC-1α 
must be taken into account. Notably, tumor cells can exhibit wide 
differences in the completeness of their EMT program and still 
be able to invade (62). Also, PGC-1α expression and functional 
status (acetylation, phosphorylation) is likely highly heterogene-
ous within a given tumor according to its highly dynamic expres-
sion (61). Thus, its inhibitory effect on EMT might be transient, 
bypassed by context-specific oncogenes, or influenced by neighbor 
cells. It will be important to determine how cells expressing high 
and low levels of PGC-1α can coexist within a tumor and if they 
can collaborate during EMT. Finally, very limited studies system-
atically evaluated the impact of PGC-1α on VEGF production, 
angiogenesis, and anchorage-independent growth. Therefore, it 
would be too early to conclude that PGC-1α can indeed directly 
regulates these important tumorigenesis steps.

OnCOGeniC AnD LineAGe-SPeCiFiC 
ReGULATiOn OF PGC-1α
As stated above, the apparent dichotomous effects that PGC-1α 
has on many steps of tumorigenesis are mostly explained by 
context-specific considerations. Recent literature revealed that 
the expression of PGC-1α is under the tight control of oncogenes, 
tumor, and metastasis suppressors, as well as lineage-specific 
determinants (Figure 2). The study of melanoma provided impor-
tant insights into both oncogenic and cell-lineage regulation of 
PGC-1α (Figure 2, top left). Microphtalmia-associated transcrip-
tion factor (MITF), a transcription factor whose expression is 
largely restricted to the melanocytic lineage, has been shown to be 
amplified in 30% melanomas and required for survival of a subset 
of melanomas (63). MITF directly binds the PGC-1α promoter 
and regulates the expression of mitochondrial genes (37, 38). 
Interestingly, PGC-1α has been shown to regulate MITF expres-
sion in melanocytes (64), suggesting that a possible feed-forward 
mechanism might also occur in melanomas. Additional mecha-
nisms by which PGC-1α is positively regulated in melanoma are 
through KISS1-mediated increase in protein stabilization (65) 
and through direct transcriptional regulation by BRD4 (66). In 
melanoma, the differential impact of PGC-1α on tumorigenesis 
appears to be associated with specific melanoma subsets. While 
PGC-1α is essential to support mitochondrial respiration and 
survival in MITF-expressing cells (38), PGC-1α can also block 
melanoma progression by at least two distinct mechanisms. First, 
PGC-1α can directly regulate the expression of inhibitors of DNA 
binding (ID) proteins 2 and 3 that suppress TCF4, a major regula-
tor of EMT and metastatic programs (61). Second, PGC-1α and 
hypoxia-inducible factor 1α (HIF-1α) were shown to inversely 
correlate through a ROS-dependent mechanism (67). Given that 

the interplay between HIF-1α and PGC-1α is not fully elucidated 
(28, 68), and that HIF-1α has major functions in tumorigenesis 
and metastasis (69, 70), it would be important to determine how 
HIF-1α can influence the outcome of PGC-1α in other cancer 
models. Importantly, the MIFT-PGC-1α-ID2/3 axis in under 
the control of the BRAF (V600E) oncogene, the most frequent 
BRAF mutation in melanoma. Mechanistically, BRAF appears 
to inhibit MITF transcription through ERK activation (37). In 
addition, NFATc2, a transcription factor activated by oncogenic 
BRAF (71), was recently identified as a potent suppressor of 
MITF-PGC-1α in melanoma cells (72). Thus, multiples pathways 
under the control of BRAF might converge to oppose PGC-1α 
and OXPHOS in subsets of melanoma.

The study of PGC-1α in prostate cancer revealed a completely 
different regulatory landscape (Figure 2, top right). Prostate can-
cer is also a highly heterogeneous disease in which PGC-1α appear 
to have dualistic functions (36, 73). PGC-1α expression is lost 
during disease progression, notably by genomic deletions, which 
suppresses a gene expression program mediated by PGC-1α and 
by the nuclear receptor estrogen-relator receptor α (36). Besides, 
PGC-1α expression is enriched in a subset of prostate cancer 
patients in late disease stages (52). Importantly, two mechanisms 
that could potentially regulate PGC-1α in prostate cancer rely on 
AMP kinase (AMPK) and the sirtuin SIRT1. AMPK and SIRT1 
are sensors of metabolic stress that will, respectively, phosphoryl-
ate and deacetylate PGC-1α in order to promote its transactivat-
ing functions (74). Strikingly, both proteins have been recognized 
for their dualistic contribution to cancer (75, 76), suggesting that 
the context-specific dualism of PGC-1α might correlate with 
AMPK or SIRT1 statuses. Mechanistically, the androgen receptor, 
which is required for prostatic cancer cell growth and survival, 
is able to modulate PGC-1α through CAMKKβ kinase and 
AMPK (52). Besides, the promyelocytic leukemia (PML) gene 
encodes for a tumor suppressor protein that potentiates PGC-1α 
deacetylation through SIRT1, thus promoting bioenergetics and 
protection against anoikis in breast cancer (77). Interestingly, 
PML is frequently co-deleted with PTEN in metastatic prostate 
cancer (78), suggesting that PML loss could modulate PGC-1α in 
prostate cancer through SIRT1. Moreover, PGC-1α mediates the 
pro-metastatic functions of SIRT1 in other cancers such as hepa-
tocellular carcinoma (40), further strengthening the importance 
of the SIRT1-PGC-1α axis in cancer.

Finally, other PGC-1α regulatory modules have been 
described for renal cell carcinoma (Figure  2, bottom left) and 
pancreatic ductal carcinoma (Figure  2, bottom right). These 
studies revealed that PGC-1α expression can be downregulated 
by HIF-1α-mediated gene transcription of Dec1 (35) and by 
the MYC oncogene through direct binding of the PPARGC1A 
promoter (53). In both cases, the ratios of PGC-1α to HIF-1α 
or MYC function as rheostats that will dictate the propensity of 
cancer cells to rely on glycolysis or OXPHOS for survival. Hence, 
therapeutic strategies targeting the BRAF oncogene, HIF-1 α, or 
MYC will promote PGC-1α-dependent mitochondrial biogenesis 
and will favor OXPHOS addiction, thus revealing vulnerabilities 
to metabolic agents such as biguanides that target complex I of the 
electron transport chain (79). Moreover, recent studies unveiled 
additional determinants of PGC-1α expression in breast cancer. 
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FiGURe 2 | Oncogenic and context-specific determinants that modulate PGC-1α in cancer. The expression of PGC-1α is influenced by the presence of oncogenes, 
the loss or dysfunction of tumor suppressors, and the expression of lineage-specific regulators. Context-specific regulation depends on the expression of 
lineage-specific modulators, such as microphtalmia-associated transcription factor (MITF) in melanoma, or the expression of the androgen receptor (AR) in prostate 
cancer. It is also function of cellular stresses, such as limitation in nutrient supply, hypoxia, and redox state, and will depend on the activity of the SIRT1 deacetylase 
and the AMP kinase (AMPK) that will potentiate PGC-1α transactivating functions and might modify its gene expression programs. The oncogenic landscape [BRAF 
mutation, MYC amplification, VHL, or promyelocytic leukemia (PML) loss] will regulate PGC-1α expression at the transcriptional level, likely through direct binding of 
transcriptional inhibitors to the PPARGC1A promoter. Cumulating evidences support the notion that PGC-1α and mitochondrial OXPHOS are antagonistic to the 
establishment of the epithelial-to-mesenchymal transition (EMT). One mechanism supporting the inhibitory role of PGC-1α on EMT is through induction of Inhibitors 
of DNA binding (ID) proteins 2 and 3 that suppress TCF4, an important modulator of EMT. Therefore, oncogenic signaling could relieve EMT inhibition by 
downregulating PGC-1α and OXPHOS. By suppressing reactive oxygen species (ROS) though transcriptional regulation of antioxidant genes, PGC-1α exerts 
antagonistic effects on hypoxia-inducible factor 1α (HIF-1α). These findings converge to delineate the existence of critical rheostats opposing the expression of 
PGC-1α to the one of oncogenes and pro-glycolytic transcription factors such as HIF-1α. Question marks underline unknown links in the specified cancers in the 
context of PGC-1α modulation.
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Mitochondrial mass and PGC-1α expression are controlled by 
β-catenin in estrogen receptor positive breast cancer cells (80). 
Interestingly, PGC-1α expression is higher in the HER2+ and 
basal breast cancer subtypes, both associated with lower survival 
(32). It would be relevant to further characterize the interplay 
between HER2 and the capacity of PGC-1α-expressing cells to 
metastasize, given pleiotropic roles of this oncogenic receptor in 
breast cancer metastasis (81–83).

COnCLUSiOn

To summarize, it is now appreciated that diverse oncogenic 
and lineage- and context-specific determinants can potentially 
modulate PGC-1α expression and function in cancer. For a given 
cancer, assessment of PGC-1α status to predict outcome seems 
insufficient without an exhaustive documentation on these criti-
cal determinants. Here, we presented different key mechanisms 
that explain the dualist impact of PGC-1α on cancer progression. 
A key idea emerging from recent literature is that while PGC-1α 
and mitochondrial OXPHOS usually suppress the metastatic 
process, PGC-1α might still provide growth advantage in  vivo 

by modulating other pathways in a context-dependent manner. 
Besides its regulation through sensing of various cellular stresses, 
its expression level and activity might be highly dynamic and 
heterogeneous during tumor evolution. Therefore, the survival 
of cancer cells and their ability to metastasize will be function 
of selective pressure dictated by the tumor microenvironment. 
Hence, systematic evaluation of oncogenes and context-specific 
determinants will undoubtedly contribute to expand our under-
standing of PGC-1α function within a given context and will pave 
the way to the development of new prognostic marker combina-
tions and new therapeutic strategies.
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