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ABSTRACT
A year following the initial COVID-19 outbreak in China, many countries have approved emergency 
vaccines. Public-health practitioners and policymakers must understand the predicted populational will
ingness for vaccines and implement relevant stimulation measures. This study developed a framework for 
predicting vaccination uptake rate based on traditional clinical data – involving an autoregressive model 
with autoregressive integrated moving average (ARIMA) – and innovative web search queries – involving 
a linear regression with ordinary least squares/least absolute shrinkage and selection operator, and 
machine-learning with boost and random forest. For accuracy, we implemented a stacking regression 
for the clinical data and web search queries. The stacked regression of ARIMA (1,0,8) for clinical data and 
boost with support vector machine for web data formed the best model for forecasting vaccination speed 
in the US. The stacked regression provided a more accurate forecast. These results can help governments 
and policymakers predict vaccine demand and finance relevant programs.
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Introduction

Approximately one year following the initial COVID-19 out
break in Wuhan, China, two vaccines were approved for emer
gency distribution in the US: Pfizer-BioNTech (BNT162b2) 
and Moderna (mRNA-1273).1 Recent real-world and clinical 
trials showed these vaccines as safe and effective against symp
tomatic infection, hospitalization, intensive care unit admis
sion, and death even during the rising prevalence of the Delta 
variant.2,3 As there is currently no fully approved treatment 
against SARS-CoV-2 implemented on a large scale, the use of 
vaccines is currently the only global public-health strategy 
stopping infection spread and appearance of potentially dan
gerous virus mutations.4,5 Therefore, public-health policy
makers and practitioners must understand and predict the 
future progress of vaccination.

Although the US Centers for Disease Control (CDC) pub
lishes daily statistics on vaccines administered across the US, 
there is usually a 1–3-week delay for veracious data;6 thus, 
traditional forecasting methods on vaccination based on clin
ical data lack accuracy. This adverse impact on decision- 
making processes results in further deaths and expiration of 
vaccine validity. Specifically, nations with surplus vaccines due 
to insufficient forecast on the vaccine demand were difficult to 
donate or swap vaccines with other nations and faced the risks 
of vaccine waste. So, the expiry date of many vaccines that were 
due to expire in a short time was extended without concrete 
empirical evidence.7 To improve the forecast, researchers 
developed a new method: infodemiology, defined as the science 
of abstracting health-related content generated by internet 
users to improve public health.8 Although online user- 
generated information is updated quickly, it is unpredictable 
compared with traditional statistical methods, and machine- 
learning is proving reliable with high predictive power, 

enabling the assessment of the future vaccination progress.9 It 
will provide more information to public health practitioners 
and policymakers to ensure more optimal distribution while 
facilitating the implementation of interventions based on info
demiological approaches to reduce vaccine hesitancy.10 

Optimized management of vaccine distribution may further 
assist governmental decision-making on potential allotment of 
predicted vaccine excess supplies, such as for developing 
nations, which are now facing vaccine shortages.11 

Furthermore, the practice of monitoring vaccinations using 
both clinical and non-clinical web data can result in more 
accurate predictions on future vaccination rates in real-time 
while better elucidating any infodemiological nuances germane 
to vaccination behaviors behind the statistics. The analysis 
using Google Trends search interest in anti-vaccine terms 
revealed a concerning trend, and the burden of COVID-19 
did not dissuade much vaccine hesitancy.12 Therefore, our 
study provides evidence facilitating the development of 
prompter and more accurate public-health policies.13,14 

Importantly, public-health interventions to increase vaccina
tion rates can be improved through a more accurate under
standing of vaccination speed; this is a critical area of 
consideration to stop infection spread and the appearance of 
potentially dangerous virus mutations.

Previously, the autoregressive model (AR) and autoregres
sive integrated moving average (ARIMA) were widely applied 
for infection prediction and analysis of associated vaccination 
uptake,15–17 including confirmed cases of COVID-19.18 During 
COVID-19 vaccination, it was applied to fully vaccinated peo
ple’s clinical data to predict future global vaccination rate.19 

Importantly, ARX, a similar model, can also be applied to non- 
clinical web data, in addition to clinical data, which may con
tain measurement errors. Non-clinical web data are the 
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infodemiological data using user-generated information from 
electronic media such as statistics on online public-health- 
related interactions by individuals, including Tweets, com
ments, and search queries20,21 to inform public-health 
policymaking.22,23 While previous studies24,25 applied the prac
tice of selecting search queries for web data based on expert 
judgments in Sycinska-Dziarnowska et al.,26 heavy reliance on 
human judgment is costly and difficult to justify quantitatively. 
Alternatively, researchers proposed using real-time correla
tions between query term frequencies and clinical reports to 
automatically select terms for future prediction.27 Still, 
dynamic changes in future health events may render histori
cally predictive terms unreliable for later contemporary pre
dictions due to concept drift in machine learning. Müller and 
Salathé28 showed that the use of pre-COVID-19 social media 
data to predict vaccine sentiments would systematically mis
classify data for prediction during the pandemic. Our study 
develops another approach extracting query keywords based 
on their frequency of mention in individual Tweets related to 
vaccinations.

Recently, infodemiological studies and machine-learning 
algorithms were also implemented with non-clinical data to 
better predict vaccinations. One study used a supervised 
machine-learning algorithm with multivariate ordinary least 
squares (OLS) regression to explore the predictive power of 
both non-clinical personal attitudes toward scientific infor
mation and the clinical experience of severe respiratory dis
ease on the influenza vaccination rate; accordingly, the area 
under the receiver operating characteristic curve (AUC) for 
this mixed clinical and non-clinical prediction method was 
85%.29 Carrieri et al.30 implemented the supervised random- 
forest machine-learning algorithm on area-level indicators of 
institutional and socioeconomic backgrounds to predict the 
vaccine hesitancy rate for Italian local authorities, thus help
ing public-health practitioners run targeted awareness cam
paigns. Their findings suggested that non-clinical features had 
the highest predictive powers in the random-forest algorithm, 
with an AUC of 0.836. Besides these algorithms, Gothai et al.31 

proposed supervised machine-learning via the Holt-Winter 
model to obtain a prediction that captured seasonal variations 
in vaccination across the year to improve accuracy. While 
web data had similar strong predictive powers when monitor
ing the Middle East respiratory syndrome outbreak in South 
Korea, Shin et al.32 noted statistically significant lag correla
tion coefficients higher than 0.8 between non-clinical vari
ables of Google query keywords and Tweets from Twitter. 
This emphasizes the importance of using pertinent and accu
rate non-clinical web variables in conjunction with clinical 
data. Building upon the use of a single model for clinical and 
non-clinical data, Santillana et al.’s33 evolved method used 
ensemble methods of stacking regression that combine sepa
rate outcomes from each model of different statistical classi
fiers based on labeled Tweets to predict vaccinations; they 
achieved considerable testing accuracy of 85.71% in the 10- 
fold cross-validation. Besides using a clinical or non-clinical 
data method solely, Hansen et al.14 proposed a mixture 
method using two methods’ predictions to attain higher pre
diction accuracy.

However, no relevant studies have implemented statistical 
and machine-learning predictions using both clinical and info
demiological web data on national-level COVID-19 vaccina
tions. Thus, we focused on finding more accurate ways of 
predicting COVID-19 vaccination rates by innovatively using 
both clinical and web information. This is a method- 
comparison study where not only the compared methods var
ied, but also the dataset used with each method. We innovate 
through an infodemiological approach, that is, in the use of 
non-clinical web data in addition to clinical data so far used in 
this field of research. Specifically, this study proposes to fore
cast COVID-19 vaccination rates using the AR/ARIMA model 
with clinical data and the OLS/least absolute shrinkage and 
selection operator (LASSO)/machine-learning methods with 
web data. Then stacked regressions are used to combine both 
to generate new predictions. This study uses the root-mean- 
squared error (RMSE) across all statistical and machine- 
learning methods to determine the best model. Eventually, 
more accurate predictions are anticipated to better explain 
vaccination behaviors.

Materials and methods

Data sources

We obtained study data from January 2 to July 27, 2021. 
The study data, collected from CDC, is the daily first-dose 
vaccination in the United States. Regarding the outcome 
variable, Hansen et al.14 proposed that the vaccination-to- 
expectation ratio is a more accurate measurement than 
the simple daily vaccination rate. It is defined as 

daily first � dose vaccination
number of people expected to be vaccinated in hundreds , where people 
expected to be vaccinated are all individuals in the US 
who have not received relevant vaccinations.

We considered daily records of the first COVID vaccine 
dose published by the CDC as clinical data, while the relative 
interest as searched using selected words from Google Trends 
was considered as web data.

We initially downloaded the “Covid Vaccine Tweets” dataset 
from Kaggle, which consisted of the texts of all the tweets related 
to COVID-19 vaccines. We then converted the Tweet texts into 
a corpus file to select words for the web data, which was pre
processed to remove irrelevant numbers, punctuations, symbols, 
and stop words. We extracted 68,409 features mentioned more 
than once and created a table of features ranked by their fre
quency of occurrence. Next, we qualitatively assessed the top 
1,000 most frequent words and checked such queries’ availability 
on Google Trends to select 12 words for each category of attitude 
(positive, negative, and neutral). To ensure that the added words 
were relevant to vaccination, we used the relative search volume 
of queries with the word “vaccine” before each identified key
word. Finally, to convert web searches into quantitatively analyz
able “web data,” we searched the relative interest in Google 
Trends from December 21, 2020, to July 27, 2021, in the US. 
As Google Trends allows up to five words per search, the refer
ence word “Joker” was used to standardize the index of relative 
search volume across each search. We then added all standar
dized indices into three categories (Table 1).
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The outcome variable is represented as Daily_0, and the 
altitude variables (positive, neutral, and negative) are repre
sented as pt_0, nt_0, ng_0 (Table 2).

Overview of forecasting methods

Previously, statistical models with clinical data are widely 
used to predict vaccine uptake rate. The performance of 
forecasts is hypothesized to be improved when they are 
incorporated into infodemiological datasets. Herein, we 
generated our predictions through three stages. The first 
stage is repeating the most common statistical model AR/ 
ARIMA with clinical data. The second stage is implement
ing machine-learning approaches on infodemiological data
sets where OLS is the reference of the machine learning 
algorithms. The third stage is to “stack” different combina
tions of predictions from the first two stages, similar to the 
forecasting averaging method in traditional statistics.

Forecast with clinical data

AR/ARIMA models are widely applied to forecast future 
vaccine uptake rates solely using clinical data, and the 
reliability of applying AR/ARIMA on clinical data had 
been proven in history. This requires stationarity of time- 
series data; a given sequence is stationary if the joint 
probability distribution remains constant over time. The 
Dickey-Fuller (dfuller) and unit-root tests can be applied 
to confirm stationarity, and the dfuller test’s null hypothesis 
is the existence of a unit root. If the null hypothesis is 
rejected, stationarity is satisfied.

As Table 3 shows, stationarity holds so that AR/ARIMA can 
be implemented without further differencing. Autocorrelation 
and partial correlation are necessary to identify our AR/ 
ARIMA model. To estimate AR(p), we needed to choose the 
number of AR lags (p) as follows: 

Êc tð Þ ¼ μþ
Xp

i ¼ 1
βiE t � ið Þ: (1) 

In clinical data analysis, Êc tð Þ is the expected value of daily 
vaccination-to-expectation ratio on day t, μ is the intercept, 
E t � ið Þ is the value of daily vaccination-to-expectation ratio 
on day (t-i), and βi is the weight of the ith lag term. According 
to the principle of parsimony, we chose lags 1, 3, 5, 6, and 7 due 
to their positive partial autocorrelation out of the 95% confidence 
interval34 (Figure 1). The ARIMA model is required to further 
ensure accurate predictions. A non-seasonal ARIMA model is 
presented as ARIMA(p,d,q), where p represents AR lags, 
d represents differencing (I) lags, and q represents moving aver
age (MA) lags. The first two symbols are identified as ARIMA 
(p,0,q), as stationarity holds without differencing, and AR(p) is 
identified earlier. Autocorrelation is required to identify MA lags.

According to the principle of parsimony, we chose lags 8, 15, 
21, and 28 due to their autocorrelation out of the 95% confi
dence interval (Figure 2).34 Therefore, ARIMA (p,0,q) estimates 

Êc tð Þ ¼ μþ
Xp

i ¼ 1
βiE t � ið Þ þ

Xq

k ¼ 1
λket� k; (2) 

where et� k is the forecast error on day (t-k) and λk is the weight 
of the forecast error. Further, ARIMA(p,0,q) uses q MA lags to 
smooth the data. Hence, ARIMA(1,0,8), ARIMA(1,0,15), 
ARIMA(1,0,21), ARIMA(1,0,28), ARIMA(3,0,8), ARIMA 
(3,0,15), ARIMA(3,0,21), ARIMA(3,0,28), ARIMA(5,0,8), 
ARIMA(5,0,15), ARIMA(5,0,21), and ARIMA(5,0,28) have 

Table 1. Web data (search categories and related words).

Attitude Related Search Words

Negative Vaccine fever Vaccine variant
[ng_0] Vaccine pain Vaccine restriction

Vaccine headache Vaccine reaction
Vaccine side effect Vaccine adverse
Vaccine death Vaccine risk
Vaccine cost Vaccine blood clot

Neutral Vaccine update Moderna
[nt_0] Vaccine safety Vaccine used

Vaccine rate Vaccine information
Vaccine last Vaccine impact
Current vaccination Vaccine feeling
Pfizer Vaccine effectiveness

Positive Vaccine available Vaccine cdc
[pt_0] Vaccine near me Vaccinate child

Vaccine registration Vaccine doses
Vaccine appointment Second dose
Vaccine booking First dose
Vaccine location Vaccinated

Table 2. Summary of raw data.

Variable Obs Mean Std. Dev. Min Max

Day 219 22,379 63.36403 22,270 22,488
daily_0 219 1.501081 1.036814 .0034924 4.534625
ng_0 219 1.398338 .5264653 .4320988 3.76
nt_0 219 9.035692 4.044199 2.837719 22.61224
pt_0 219 8.836565 5.366234 1.356429 55.42065

Table 3. Dickey-Fuller test.

Variable Degree of Integration Test Statistic

daily_0 I(0) −4.541***

* p < .10 ** p < .05 *** p < .01.

Figure 1. Partial autocorrelation plots.
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been identified. The Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) can be applied to deter
mine the best-fit parameters of p and q.

As Table 4 shows, ARIMA(7,0,28) had the smallest AIC, 
while ARIMA(7,0,8) had the smallest BIC and second smal
lest AIC. As the AIC of ARIMA(7,0,8) showed a very small 
difference compared with ARIMA(7,0,28) (according to the 
principle of parsimony), ARIMA(7,0,8) was identified as the 
best fit to our ARIMA model. Therefore, ARIMA(7,0,8) 
estimates 

Êc tð Þ ¼ μþ
X7

i ¼ 1
βiE t � ið Þ þ

X8

k ¼ 1
λket� k: (3) 

Briefly, the forecast for vaccination-to-expectation ratio on day 
t involves the weighted sum of vaccination-to-expectation 
ratios for the last seven days and the weighted sum of the 
forecast errors for the last eight days.

Forecast with web data

We applied linear regressions with OLS/LASSO, and machine- 
learning with boost and the random-forest algorithm to ana
lyze comparably unpredictable web data. Machine-learning 
methods were implemented due to irregularity (e.g. outliers) 
of search frequencies.

Linear regression with OLS
Linear regression with OLS simply estimates 

Êw tð Þ ¼ αþ
X6

i¼1
βixi: (4) 

In non-clinical web data analysis, xi represents the altitude, and 
its weight is given by βi. Our independent variables were three 
altitudes and their one-period lags in the web data, so there were 
six independent variables. The one-period lag was decided 
because of a strong partial correlation between the two periods.

LASSO regression
The LASSO regression is very similar to linear regression but is 
more accurate for predictions. It aims to fit the best-fitting 
model of least bias by minimizing the squared errors whilst 
avoids overfitting irrelevant features by selecting a reduced set 
of known covariates and reducing the size of coefficients. In 
this study, we used the same variables as in “Linear regression 
with OLS” to make predictions via LASSO.

Boost classification
Machine-learning was used to further ensure accurate predic
tion. In this process, we implemented the STATA module 
r_ml_STATA.35 For all classifications, we used 10-fold cross- 
validation as the rule of thumb. We also used the first 212 days 
as training data and the last 7 days as testing data for all 
methods. The boost classification is an ensemble method that 
reduces errors by introducing a strong classifier from several 
weak classifiers, which is done by building an initial model for 
training data and then building models to minimize variance. 
A single robust model is based on many smaller models. The 
final prediction is a weighted sum of sequenced models known 
as weak classifiers.

Random-forest classification
Similarly, random-forest classification is also a machine- 
learning algorithm. It is another ensemble method referred to 
as the bagging algorithm together with featured randomness. It 
reduces the variance of individual classification trees by ran
domly selecting from the dataset. Averaging these uncorrelated 
predictors produces a final prediction using this algorithm.

Forecast with mixed clinical and non-clinical web data 
model

To combine clinical and non-clinical web data models, we use 
stacking regression. Specifically, we regress the actual vaccina
tion-to-expectation ratio on predictions from the AR/ARIMA 
clinical model and predictions from one of four non-clinical 

Figure 2. Autocorrelation plots. MA(q): moving average model of order q.

Table 4. Results of Akaike information criterion (AIC) and Bayesian information 
criterion (BIC).

Models AIC BIC Degrees of Freedom

ARIMA(1,0,8) 208.5404 245.4628 11
ARIMA(1,0,15) 128.1185 188.537 18
ARIMA(1,0,21) 105.6378 182.8393 23
ARIMA(1,0,28) 72.20644 166.1909 28
ARIMA(3,0,8) 193.7227 234.0017 12
ARIMA(3,0,15) 132.6614 193.0799 18
ARIMA(3,0,21) 59.20707 139.7651 24
ARIMA(3,0,28) 39.18046 139.878 30
ARIMA(5,0,8) .437416 50.78621 15
ARIMA(5,0,15) −.5987349 73.24616 22
ARIMA(5,0,21) −1.744196 85.52705 26
ARIMA(5,0,28) 37.42017 141.4743 31
ARIMA(6,0,8) 2.424118 56.1295 16
ARIMA(6,0,15) 1.519492 78.72098 23
ARIMA(6,0,21) 3.681404 101.0224 29
ARIMA(6,0,28) −6.415284 114.4218 36
ARIMA(7,0,8) −23.78244 33.27953 17
ARIMA(7,0,15) −17.77218 62.78589 24
ARIMA(7,0,21) −18.72024 81.97735 30
ARIMA(7,0,28) −23.18934 94.29118 35

ARIMA: autoregressive integrated moving average.

e2017216-4 X. ZHOU AND Y. LI



web data models. Since there are two clinical models and four 
non-clinical web data models, eight combinations are available 
for each stacking method.

Stacking with linear regression
Linear regression is first used to “stack” predictions from the 
clinical data analysis bEc tð Þ and web data analysis cEw tð Þ. The 
model estimates 

Ê tð Þ ¼ μþ βc
bEc tð Þ þ βw

cEw tð Þ: (5) 

Ê tð Þ is the expected value of daily vaccination-to-expectation 
ratio in day t, μ is the constant term, and βc and βw are weights 
of predictions based on clinical and non-clinical web data, 
respectively. Then, we used OLS to minimize the residual: 

Xn

t
E tð Þ � μ � βc

bEc tð Þ � βw
cEw tð Þ

� �2
; (6) 

where E tð Þ is the actual value of daily vaccination-to-expectation 
ratio on day t. We minimize differences between the actual and 
predicted daily vaccination-to-expectation ratios on day t.

Stacking with support vector regression (SVR)
We continued to “stack” predictions from clinical data analysis 
bEc tð Þ and web data analysis cEw tð Þ, but with a different regres
sion: SVR. SVR classification is a supervised machine-learning 
model that splits the dataset into two categories. We applied it 
to the continuous variable here using SVR, which generates 
a regression similar to the linear regression model. In contrast 
with the OLS method, we find the coefficients of SVR by 
minimizing the coefficient vector’s norm: 

min
μ;βc;βw

Xn

t
V E tð Þ � μ � βc

bEc tð Þ � βw
cEw tð Þ

� �

þ
λ
2

μ2 þ β2
c þ β2

w
� �

; (7) 

where λ controls the penalty for large weights of clinical and 
non-clinical web data predictions. We defined V rð Þ ¼ rj j� 2 , 
where E tð Þ � μ � βc

bEc tð Þ � βw
cEw tð Þ is represented by r, 

and 2 is a hyperparameter that controls the maximum error 
of predictions allowed. Both 2 and λ allow us to define the 
tolerance level of error in our model. Unless rj j< 2 , V(r) = 0.

To find the model with the least prediction error, RMSE is 
used to compare among traditional clinical, innovative infode
miological, and stacked models by calculating differences 
between predictions byi and actual values yi: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

byi � yið Þ
2

N

s

(8) 

A model with smaller RMSE has less prediction error and 
higher accuracy.

Results

As Table 5 shows, both clinical models have smaller RMSE 
than non-clinical models. Besides, ARIMA(7,0,8) had a smaller 
RMSE than AR(7). So, ARIMA(7,0,8) performed better than 

AR(7), and models with only clinical data performed better 
than models with only web data. Further, linear regression with 
OLS performed best across all web data methods.

As Table 6 shows, under stacking with both OLS and 
SVR, the combination of ARIMA(7,0,8) and boost per
formed the best, and stacking with SVR outperformed 
stacking with OLS. Further, the regression using SVR to 
stack ARIMA(7,0,8) and boost together has smaller RMSE 
than the traditional clinical data model ARIMA(7,0,8). So, 
stacked regression improves prediction accuracy.

Table 7 shows 7-day predictions of the vaccination-to- 
expectation ratio. During the forecasting process, we 
removed actual vaccination-to-expectation ratios from 
July 21 to 27, 2021, so that this 1-week forecast was the 
“out-sample.”

Figure 3 shows the forecast for the last 40 days. Prior to 
July 21, 2021, predictions were made based on all available 
data; beginning with July 21, 2021, actual data of the daily 
vaccination-to-expectation ratio were removed when 
forecasting.

Table 5. Root-mean-square error of forecast models based on single clinical or 
web data.

Clinical Data Web Data

AR(7) .3480
ARIMA(7,0,8) .2524
OLS .9069
LASSO .9253
boost 1.024
randomforest .9485

Boldfaced numbers: better than other models with same data; underlined 
numbers: better than all other models; AR: autoregressive; ARIMA: autoregres
sive integrated moving average; OLS: ordinary least squares; LASSO: least 
absolute shrinkage and selection operator.

Table 6. Root-mean-square error of forecast models based on ensemble models.

OLS SVR

AR + OLS .3195 .3506
ARIMA + OLS .2441 .3019
AR + LASSO .3180 .3322
ARIMA + LASSO .2438 .2369
AR + Boost .3292 .3478
ARIMA + Boost .2405 .2294
AR + Randomforest .3197 .2929
ARIMA + Randomforest .2425 .3387

Boldfaced numbers: better than other models with same data; underlined 
numbers: better than all other models; AR: autoregressive; ARIMA: autoregres
sive integrated moving average; OLS: ordinary least squares; SVR: support vector 
regression; LASSO: least absolute shrinkage and selection operator.

Table 7. Seven-day forecast of the best model compared with the actual data and 
traditional clinical model.

Day daily_0 (Actual) ARIMA (Clinical) SVR [ARIMA + Boost]

2021–07-21 3.4929 3.2058 3.1999
2021–07-22 3.8026 3.2589 3.2807
2021–07-23 4.5346 3.5598 3.4643
2021–07-24 2.9873 2.4667 2.5136
2021–07-25 1.7189 1.5900 1.6573
2021–07-26 3.9796 2.9922 2.9534
2021–07-27 2.5781 3.4296 3.4175

Best model: SVR [ARIMA + boost]; actual model: daily_0; traditional clinical model: 
ARIMA. SVR: support vector regression: ARIMA: autoregressive integrated mov
ing average.
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Discussion

Using web data, this study produced more accurate forecasts 
than traditional forecasting methods with solely clinical data, as 
reflected by RMSE, proving the function of online networks in 
predicting populational willingness to receive vaccinations. 
Specifically, compared with the traditional ARIMA model with 
clinical data, SVR with the predictions of both clinical data using 
ARIMA (7,0,8) and web data using Boost algorithm reduced 
RMSE by 9.1%. Figure 4 shows the vaccination uptake rate from 
December 21, 2020, to April 5, 2021. Over this period, the 
vaccination rate steadily increased, likely attributed to both the 
initial supply shortages and growing efficiency in vaccination 
facilities as rollout progressed. As Figure 5 shows, the vaccina
tion-to-expectation ratio remained steady at approximately 2.2 
from April 6, 2021, to June 30, 2021, likely attributed to two 
factors. First, on April 26, 2021, US President Joseph Biden 
announced that the US would begin donating vaccines to 
other countries.36 This implied that the US was very likely to 
have sufficient vaccines for its whole population. Two, the 

number of new COVID-19 cases steadily declined over this 
period,37 which alleviated populational concerns over the possi
bility of a more serious pandemic. As Figure 6 shows, the 
vaccination-to-expectation rate rose slowly and steadily from 
July 2 to 30, 2021. In this regard, the number of new COVID- 
19 infections rose sharply on July 1, 2021, which increased 
concerns that the pandemic would worsen. It might potentially 
be the factor leading populational willingness to receive vaccina
tions to increase. As Table 8 shows, these trends are also math
ematically evident through Kendall’s τ. In sum, policymakers 
must understand daily vaccine demands in relation to vaccine 
supply and other factors when making relevant decisions.

On July 27, 2021 (the last day considered in this study), it 
initially seemed that forecasts of the vaccination-to-expectation 
ratio were quite different from actual data in numbers and 
trends. Thus, forecasts appeared to overestimate this day and 
were higher than those from the previous day, whereas actual 
data showed a decline here. Despite this seemingly large error, 
forecasts may have provided some information based on 

Figure 3. Actual data and predictions. SVR: support vector regression; ARIMA: 
autoregressive integrated moving average.

Figure 4. Actual data and predictions from December 21, 2020, to April 5, 2021. 
SVR: support vector regression; ARIMA: autoregressive integrated moving 
average.

Figure 5. Actual data and predictions from April 6, 2021, to June 30, 2021. SVR: 
support vector regression; ARIMA: autoregressive integrated moving average.

Figure 6. Actual data and predictions from July 1, 2020, to July 27, 2021. SVR: 
support vector regression; ARIMA: autoregressive integrated moving average.
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potentially existing measurement errors by the CDC. In this 
regard, data gathered by the CDC are rarely of sufficient accu
racy in the daily real-time context. Many such organizations and 
agencies globally implement the standard protocol of checking 
and adjusting data on later dates. The authors initially began this 
research in June but repeated the procedures multiple times until 
July 27, 2021. As the data provided by the CDC were adjusted 
several times over this period, it was observed that CDC also 
made measurement errors. Herein, the increased predictions 
from July 27, 2021 may signify that the CDC made positive 
measurement errors. This point may also help public-health 
practitioners and policymakers improve the accuracy of their 
policies.

Unfortunately, this research had a few unavoidable limita
tions. First, the US provides vaccinations to all individuals living 
in the country, regardless of citizenship status or permanent 
residency. Thus, temporary residents such as students also 
expected vaccinations. As these data were not available, adjust
ment based on the US population was made according to the 
Migration Policy Institute;38 foreign nationals on temporary 
visas comprise around 7.1% of the total population, including 
citizens and permanent residents. Second, there was a slight 
error in the collected web data. As the relative interests of 
a few variables for a few days were too small to be illustrated, 
they were censored as “<1.” To fix this, we simply adjusted them 
to 0.5, owing to the assumption of probability distribution. 
However, this adjustment should not have significantly 
impacted the forecasts, as the relative interests were very small 
and only affected a few days.

Despite unavoidable errors of no consequence, the forecasts 
in this study should help public-health practitioners and policy
makers better foresee vaccine uptake behaviors and therefore 
develop more appropriate policies. Specifically, many sites such 
as Google currently collect personal information such as age and 
race when their users access the contents. Within the law, public- 
health practitioners and policymakers may predict vaccine 
uptake rate for different age, cultural and other groups more 
accurately with the help of those sensitive data. Further, relevant 
forecast models can also be applied to other countries and 
epidemic events in future settings. In addition, a new potential 
approach to encourage vaccination is appeared in this study: 
censoring negative social media contents. This study is based in 
US, so all contents are visible within the law. In the future, we 
aim to discover the impact of censoring negative social media 
contents through further studies in places where censoring 
negative social media contents exists.
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