
RESEARCH ARTICLE

φ-evo: A program to evolve phenotypic

models of biological networks

Adrien Henry, Mathieu Hemery, Paul François*

Physics Department, McGill University, Montreal, Québec, Canada

* paulf@physics.mcgill.ca

Abstract

Molecular networks are at the core of most cellular decisions, but are often difficult to com-

prehend. Reverse engineering of network architecture from their functions has proved fruit-

ful to classify and predict the structure and function of molecular networks, suggesting new

experimental tests and biological predictions. We present φ-evo, an open-source program

to evolve in silico phenotypic networks performing a given biological function. We include

implementations for evolution of biochemical adaptation, adaptive sorting for immune recog-

nition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution.

We detail the program architecture based on C, Python 3, and a Jupyter interface for

project configuration and network analysis. We illustrate the predictive power of φ-evo by

first recovering the asymmetrical structure of the lac operon regulation from an objective

function with symmetrical constraints. Second, we use the problem of hox-like embryonic

patterning to show how a single effective fitness can emerge from multi-objective (Pareto)

evolution. φ-evo provides an efficient approach and user-friendly interface for the pheno-

typic prediction of networks and the numerical study of evolution itself.

This is a PLOS Computational Biology Software paper.

Introduction

Increasing availability of massive datasets combined to improvement of computational power

have triggered the current boom of machine learning [1]. While methods such as deep learning

are extremely powerful for predictions, they are nevertheless hard to comprehend, and thus

are ill-adapted for the fundamental study of the processes generating those data. This led to the

development of more parsimonious inverse problem approaches: for instance the “automatic

statistician” relies on the combination of predefined kernels [2] to generate explicit models

of data. Despite their potential for the understanding of biological mechanisms, few similar

methods are currently available or tailored for quantitative biology. Bayesian criteria have

been used to generate non-linear models with few parameters [3] but applications to biological

problems are still in their early days. Enumeration of all possible networks compatible with a

phenotype [4] are naturally limited in scope by the combinatorial explosions of interactions.

This is not a problem for evolutionary algorithms that can generate solutions of arbitrary

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Henry A, Hemery M, François P (2018) φ-

evo: A program to evolve phenotypic models of

biological networks. PLoS Comput Biol 14(6):

e1006244. https://doi.org/10.1371/journal.

pcbi.1006244

Editor: Dina Schneidman, Hebrew University of

Jerusalem, ISRAEL

Received: December 7, 2017

Accepted: May 30, 2018

Published: June 11, 2018

Copyright: © 2018 Henry et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work has been supported by a

Simons Investigator MMLS award to Paul

François. http://simonsfoundation.org/. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006244
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006244&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006244&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006244&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006244&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006244&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006244&domain=pdf&date_stamp=2018-06-21
https://doi.org/10.1371/journal.pcbi.1006244
https://doi.org/10.1371/journal.pcbi.1006244
http://creativecommons.org/licenses/by/4.0/
http://simonsfoundation.org/

complexity with an increase in genome size [5, 6]. Such approaches further allow to focus on

biologically relevant questions such as development [7–10], allostery [11, 12] or more general

issues such as the impact of biochemical constraints on biological functions [13].

In this report, we describe φ-evo, an evolutionary program that evolves phenotypic models

of cellular processes. Given a fitness function encoding coarse-grained phenotypes, φ-evo ran-

domly combines and optimizes biologically inspired kernels using a genetic algorithm, Fig 1A.

φ-evo can be applied to problems of different nature thanks to flexible kernel definitions,

modeling processes like transcription, ligand receptor/ protein-protein interactions, kinetic

proofreading or phosphorylations, allowing to generate (validated) predictions in individual

cells or in multicellular contexts. φ-evo is open-source, relies on commonly used tools

(Python 3, gcc) and results can be visualized via a Jupyter interface Fig 1B.

The code repository includes all tools allowing for evolution of single cell and multicellular/

developmental problems, and several examples are included (see details below). Jupyter
notebook templates are also included to configure a new project and visualize results. Here we

further illustrate the power of φ-evo on two simple problems: first we reproduce the lac operon

asymmetrical architecture using a simple symmetrical objective function, second we show on

a developmental example how a well-defined effective fitness function emerges from multi

objective Pareto evolution.

Design and implementation

Algorithm overview

φ-evo relies on an evolutionary algorithm acting on a population of networks, to explore the

space of possible biochemical networks implementing a particular function of interest [14].

There are two levels in the algorithm: the individual level (white box on Fig 1C) where geno-

type, phenotype and evolutionary fitness of individuals are defined and computed, and the

population level (green boxes on Fig 1C), where the evolutionary process is actually performed.

All objects (biochemical interactions, networks, populations) are defined using customized

Python classes, and explicit numerical calculations are compiled on the fly and performed in

C for faster performance. A complete documentation for all Python classes enriched with

examples is included and can be automatically (re)generated.

Individual level

Individual networks in a population are represented as Python objects called Mutable_
Network. This class encodes the topology of the network considered, the different parameters

corresponding to biochemical species and their interactions, and all the methods that will be

used at the individual level, including fitness computation and mutations of the network.

Network representation. Each biochemical network is encoded with a graph where

nodes represent either the biochemical species or the interactions between them.

Species nodes usually correspond to proteins. They are described through a list of tags (a

complete list of tags is given in Supplement), each one indicating a biochemical property (e.g.

only 'Degradable' species are susceptible to be degraded), and associated parameters if

needed (e.g. the degradation rate). A second type of node, TModule allows to model DNA

transcriptional modules (or enhancers).

The Interaction objects correspond to the various chemical reactions allowed

between Species or TModule, and play similar roles to kernels in other machine learning

approaches such as [2]. Derived classes are defined for each possible biochemical interaction.

We include by default generic interactions such as transcription (CorePromoter), tran-

scriptional regulations (TFHill), protein-protein interactions (PPI) and phosphorylations

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 2 / 12

https://doi.org/10.1371/journal.pcbi.1006244

Fig 1. Program structure. (A) A schematic representation for the core loop of a typical evolutionary algorithm. By analogy with Darwinian evolution,

each loop is called a generation and implements reproduction, selection and mutation. (B) We provide a Jupyternotebook template for the analysis

of the φ-evo results. (C) A schematic representation of the program structure. The algorithm is called through the run_evolution.py script that

reads an initialization.py file to set up the various parameters for the current project (fitness and input files, mutation rates, etc. . .). It relies on

the evolution_gillespiemodule that implements the population class and the various method used for the evolutionary procedure. Each

individual in the population being a mutable_network as described in the mutation and classes_eds2modules. The various possible

interactions are implemented in separate modules (CorePromoter, PPI, etc.) while the integration of the set of differential equations corresponding

to each network relies on the deriv2module and the associated C code files.

https://doi.org/10.1371/journal.pcbi.1006244.g001

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 3 / 12

https://doi.org/10.1371/journal.pcbi.1006244.g001
https://doi.org/10.1371/journal.pcbi.1006244

(Phospho). We also include an extension where problem-specific interactions are defined

such as phosphorylation cascades of immune receptors [15].

Species and Interaction form a bipartite graph that is encoded using the net-
workX package [16]. The Networks/ directory gathers files for the Mutable_Network
definition; the most important ones being the basic network structures in classes_eds2.
py and the mutation methods in mutation.py.

Computing a network phenotype. A Mutable_Network is translated into a set of dif-

ferential equations. By default, we use classical biochemical kinetics to account for the various

interactions, e.g. mass-action laws for protein-protein interactions, or Hill functions for tran-

scriptional interactions [17]. We also assume transcription by multiple activators acts akin to

an “OR” gate. Those specific modelling choices can be easily changed by the addition of cus-

tomized Interaction classes. As mutations add or remove new nodes in the network, the

corresponding equations are generated and integrated on the fly. This is performed by the

deriv2.pymodule that takes a single network, generates, compiles and runs a network-spe-

cific C program to compute its fitness.

Practically, various C headers are pre-encoded, imposing initial conditions of the simula-

tions, geometry of the problem (for multicellular problems), and numerical integrator used

(default tools for single cell problems and embryo modeled as a line of cells are included). The

C headers are shared by all networks of a population in a given set of simulation. Within one

evolutionary simulation, the only difference between networks is at the level of differential

equations encoded, in the specific C function corresponding to time derivatives. Simulations

presented here are run in a deterministic mode, and both Euler and a Runge-Kutta integrators

are available in the program. An option to run equations in a stochastic mode using τ-leaping

algorithm (a biochemical numerical generalization of the Langevin equation [18]) is also

included.

The fitness function used for selection is problem-specific and needs to be predefined by

the user in corresponding C functions. Defining a “good” fitness is not a trivial problem: a

too strict fitness could give rise to very rugged evolutionary landscape with many isolated

local minima. An efficient fitness should orient evolution towards working solutions

even when the networks are still far from the optimum behaviour. Different examples in

the package use coarse-grained fitnesses allowing for fast convergence of the evolutionary

simulations.

Mutating a network. The module Networks/mutation.py encodes the main evolu-

tionary methods to mutate, integrate, compute the fitness and copy the individual. There are 3

categories of mutations:

• modification of parameters of existing interactions or species

• removal of interactions or species

• addition of new interactions or new species

Those three operators are interaction specific and are thus defined and implemented in the

corresponding Python classes. Relative mutation rates are fixed by the user. By default, modi-

fications of parameters consist in simple uniform draw within a predefined range of kinetics,

but more involved choices are possible. Removal and addition of interactions change the net-

work topology, and are chosen randomly among possible interactions. Adding or removing

species is done jointly with associated TModule and CorePromoter (see Networks/
CorePromoter.py), encoding default transcriptional dynamics. We also include some

tools to duplicate transcriptional interactions.

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 4 / 12

https://doi.org/10.1371/journal.pcbi.1006244

Population level

We evolve a population of networks as defined above using a classical evolutionary algorithm.

By default, rounds of selection, expansion and mutation are performed as depicted in Fig 1A.

At each generation, we compute the fitness of each network, and impose a strict elitist selec-

tion [19] where the worst half of the population is discarded, and the best half is selected and

duplicated. Mutation operators act on every individual in the duplicated half population.

Mutation rates are predefined by the user, and by default are rescaled at each generation to

maintain on average a fixed number of mutations per network per generation (typically one

or two). This prevents uncontrolled mutations due to combinatorial explosion, and fits the

phenomenological Drake’s rule (a scaling relation of mutation rates with genome size)

observed in real evolution [20].

We also include a Pareto version of our algorithm as proposed in [21]. In summary, Pareto

evolution aims at optimizing simultaneously several constraints to circumvent the problem

of building an ad-hoc fitness combining those. To rank the networks prior to selection, one

sequentially computes so-called Pareto-ranks. The networks of rank 0 are those which are not

dominated by any other network on all constraints. Rank 1 networks are only dominated by

rank 0 networks, and so on. We then perform elitist selection based on ranks of networks. A

fitness sharing option is also available to promote diversity in the population [21].

Since all individual networks can be integrated independently, φ-evo can be easily paralle-

lized, and by default multi-threading is used. We routinely run φ-evo on modern multi-core

machines or small clusters, with population of a few dozens individuals, so that each genera-

tion takes at most a few seconds of computation for examples presented here. Running time of

the algorithm almost directly scales with the size of the problem studied, and in particular is

proportional to the network size and to the number of cells simulated in an embryo. Small net-

works with few nodes such as the ones displayed on Fig 2 can evolve in less than a couple hun-

dreds of generations and thus a successful run can be obtained in less than half an hour on a

modern laptop (not all evolutionary runs are successful, but results presented here are “typical”

in the sense that runs are more often succesful than not). More complex simulations have been

done for embryonic patterning and typically require several thousands of generations to con-

verge and give bigger networks (e.g. 10 to 15 node-networks were routinely obtained in [9]);

this requires running times of several hours to a day.

Running

Evolutionary simulations in φ-evo are run via command line. C files corresponding to a spe-

cific evolutionary simulation (such as fitness, initial conditions, etc. . .) should be provided by

the user. Evolutionary parameters (such as mutation rates, initial network) are encoded in a

file called initialization.py. Those files should be put together in a common directory

(called in the following Simulation) and an evolutionary simulation is started with

A known difficulty in evolutionary simulations is “code-bloat”, where combinatorial explo-

sion and genetic drift can hinder the core structure of a working network. For this reason, we

can also run new evolutionary simulations initialized with an evolved network of interest,

shell

python run_evolution.py -m Simulation

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 5 / 12

https://doi.org/10.1371/journal.pcbi.1006244

while forbidding the addition of new nodes. This isolates the “core” working network, and

allows for a better understanding of network dynamics.

Visualization

We have developed two Jupyter -notebooks to make φ-evo more user-friendly. The

ProjectCreator notebook allows to define all simulation parameters (e.g. mutation

rates) in specific widgets, as well as to define initial topologies for evolution if needed (e.g.

to bias evolution with a specific network architecture). The AnalyzeRunNotebook allows

to visualize results of simulations in a web browser. This is illustrated in Fig 2 with two sim-

ulations reproducing results from [22] and [23]. Users can identify interesting evolved net-

works, check their topology, simulate them on the fly, and do simple changes such as node

removals.

Results

We include in the φ-evo program several complete examples (from simulation parameters to

actual results) reproducing published results for a variety of problems in single cells (biochemi-

cal adaptation) [22] and developmental contexts (somitogenesis [23], Hox patterning [9]), see

Fig 2. Visualization of the results of φ-evo. (A,B,C) Application of φ-evo on biochemical adaptation, reproducing results of [22]. Panel (A) describes

the fitness, similar to the one in [22]. For ideal adaptation, an output (yellow) should recover its steady state ΔOss! 0 after a change of the input (blue).

To ensure that the input affects the output, one also wants to maximize ΔOmax. (B) presents the behaviour of a network evolved with φ-evo, where the

output is subject to several changes of the input producing a perturbation of its concentration. The return to steady state is quick. Corresponding

network topology is presented in panel (C) and is similar to solutions found in [22] (D,E,F) Application of φ-evo to segment formations, reproducing

results of [23]. Panel (D) sketches mouse somitogenesis, coupled to embryonic elongation. We use input dynamics modeling elongation and a fitness

function counting final number of segments similar to [23]. (E) shows the behaviour of an evolved network, where the system undergoes a bifurcation

from an oscillatory to a bistable system when it exits the tail-bud (modelled as the region of high Input) (E-top). Depending on its state when leaving,

the cell reaches one of two possible steady states. The constant rate of elongation then produces regularly spaced high concentration and low

concentration cells (E-bottom). See [23] for more details. Corresponding network topology is presented in panel (F).

https://doi.org/10.1371/journal.pcbi.1006244.g002

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 6 / 12

https://doi.org/10.1371/journal.pcbi.1006244.g002
https://doi.org/10.1371/journal.pcbi.1006244

Fig 2 for two examples. We also include evolution of “adaptive sorting” in immune recognition

[15] as an example of external add-on for the study of problems requiring the definition of

new interactions. For a given problem, evolutionary computations typically give several net-

works with different topologies, see e.g. [22] for a detailed study in the case of biochemical

adaptation. In the following, we describe two new evolutionary simulations of biological rele-

vance, to illustrate the power of the algorithm to predict networks and the emergence of non

trivial evolutionary dynamics.

lac operon

We first use φ-evo to recover the regulatory logic of the classical lac operon, discovered by

Jacob and Monod [24]. The lac operon allows for regulation of the enzymes digesting lactose

in E. Coli. It is activated when two conditions are realized: presence of lactose and absence of

glucose. The lac Repressor (lacR) represses transcription of the operon while the CAP protein

is responsible for its activation. When present, lactose is translocated by permease inside the

cell and binds to lacR, which relieves the repression. In the absence of glucose, cAMP is pro-

duced in burst, then binds to CAP turning it into an activator. This regulatory mechanism is

presented in Fig 3A.

The lac operon can be envisioned as a logical binary gate performing the (symmetric) bool-

ean operation “cAMP AND lactose” between those two metabolites. To evolve this function,

we initialize a network with an input corresponding to the lactose outside of the cell (denoted

I0), a permease-like enzyme translocating it into the cell, the cAMP species (I1) and one output

coarse-graining all transcriptional targets (O). (Bold contours for nodes in Fig 3B). Both inputs

are boolean variables that can be be present (Ij = 1 in rescaled units) or absent (Ij = 0), and fol-

low a random dynamics. Importantly we fix the function of the Inputs to be metabolites that

cannot activate of repress transcription by themselves, and thus need to act through allosteric

binding with other species.

Fig 3. A Scheme of the known regulatory network for the lac operon. The lac Repressor is inactivated by the presence of lactose which derepress the

operon. The cAMP metabolite binds to the CAP protein to activate the operon. B Final network found by φ-evo after pruning of unnecessary reactions.

The similarities with the network A are evident. The species with a bold contour are imposed by the definition of our initial network, all other nodes

have evolved. C Time course of the network presented in B, the presence of both Inputs is indicated with the colored bars in the bottom. On the main

figure, the output concentration is plotted against time while the desired output is indicated with a black line.

https://doi.org/10.1371/journal.pcbi.1006244.g003

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 7 / 12

https://doi.org/10.1371/journal.pcbi.1006244.g003
https://doi.org/10.1371/journal.pcbi.1006244

To define the fitness function, we call Ton the total time when the output should be ‘on’ (i.e.

when both inputs are present) and Toff the remainder where it should be off (i.e. at most one

input is present). If we suppose that the output gives a benefit β during Ton and a cost γ other-

wise, we compute the fitness:

φ ¼ � b

Z

Ton

dtmin ðOðtÞ; 1:0Þ þ g

Z

Toff

dtmin ðOðtÞ; 1:0Þ; ð1Þ

and assume this function should be minimized. The min operator ensures that the output sim-

ply has to be higher than an arbitrary concentration rescaled to 1 to perform the computation.

We also rescale φ by setting β = 1.

For convergence of the evolutionary process γ can not be arbitrary (see details in Supple-

ment). Intuitively, if γ is big, it is very costly to get an intermediate step where one input alone

controls the Output, which would impinge evolution. Conversely, if γ is small, there is no

strong incentive to evolve a correct operon because turning the Output on all the time is not

costly. We chose g ¼ 3

4
, and checked that the precise value does not change significantly the

networks obtained when we vary it.

A representative result of a network found by φ-evo is shown in Fig 3B and the behaviour

of the network is shown in panel C. We display the core network obtained after pruning

unnecessary interactions as described in the Implementation section (See Supplements for

more details). We can see by direct comparison that the final network of the algorithm appears

very close to the structure of the real lac operon displayed in Fig 3A.

While this example might appear simplistic, it shows how even simple simulations can pro-

vide insights into the biochemical constraints on evolution. While the objective function puts

the two Inputs on equal foot, the evolved network is not symmetrical, presenting regulations

via one activation and one repression. This asymmetry actually originates from the default tran-

scriptional grammar implemented: since multiple activators act via an effective “OR” gate, our

algorithm can not directly build a transcriptional“AND” gate. The simplest solution is to have

activation on one side and titration of the repressor on the other one, which is found by φ-evo.

Emergence of fitness in Pareto optimization

As a second example, we use φ-evo for Pareto evolution of embryonic patterning (Fig 4A). In

[9], the computational evolution of hox-like patterning was addressed. A single combined fit-

ness aimed at optimizing two terms: a global entropy term, maximizing the number of genes

expressed within the embryo (F1) and a local entropy term, minimizing the number of genes

expressed in a given cell to define local identity (F2), 4 B. The fitness F2 − F1, corresponding

to mutual information between cell position and gene expression, was initially minimized,

leading to the evolution of networks presenting several characteristic of hox-like patterning,

including posterior dominance [9].

Here we revisit this problem using multi-objective/Pareto evolution to minimize at the

same time −F1 and F2. Typical results of these simulations are presented in Fig 4C, where

Pareto fronts for different generations are plotted.

The networks we obtain are qualitatively similar to the ones first evolved in [9] (see Supple-

ment). Remarkably, it appears that the Pareto fronts observed during the course of evolution

are slopes of constant F2 − F1, corresponding to the exact mutual information fitness used in

[9]. During evolution the Pareto front clearly evolves towards increasing values of mutual

information (corresponding to an increase of the number hox-like domains in an embryo [9]).

The choice of fitness function in [9] was in part motivated by the fact that gene duplications,

presumably an important driver for evolution, were neutral moves for the chosen mutual

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 8 / 12

https://doi.org/10.1371/journal.pcbi.1006244

information fitness (see Supplement of [9]). Here the logic appears inverted: during evolution,

most mutations are (at best) expected to move networks on the Pareto front. This is illustrated

in Fig 4D where the relative changes of fitness are displayed for a population of networks fol-

lowing random mutations. We clearly see that many of the mutated networks localize on the

slope ΔF1−ΔF2 = 0 (in Supplement we generalize a calculation from [9] to explain this effect).

This defines the equivalent of a neutral space, but for Pareto evolution: networks moving on

the front are not Pareto-dominated by any other network by definition.

Fig 4. Pareto evolution of embryonic patterning (A) Schematic representation of the problem: we model embryonic patterning as an antero posterior

sequence of genes at different positions (B) Fitness definition, where p(i; x) represents the relative fraction of gene i expressed at position x. F1 increases

with the number of genes expressed within the embryo, while F2 increases with the number of genes expressed locally at x. See [9] for more details on

the two fitnesses (C) Pareto fronts for a single evolutionary simulation at different generations (warmer colours correspond to later generations) aiming

at maximizing F1 and minimizing F2 simultaneously. Inset corresponds to the evolutionary trajectory studied in panel E (D) Changes of functions F1

and F2 for random mutations within a network population (E) An evolutionary trajectory leading to the definition of a new Pareto front, from 3 to 4

domains. Only the local probability profiles for the steady states of the networks are displayed.

https://doi.org/10.1371/journal.pcbi.1006244.g004

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 9 / 12

https://doi.org/10.1371/journal.pcbi.1006244.g004
https://doi.org/10.1371/journal.pcbi.1006244

If most mutations are on the Pareto front, this raises the question of how a new Pareto front

is reached during evolution. Such a (rare) event is presented in Fig 4E, where we have tracked

back the ancestors of a network to build its evolutionary trajectory between two Pareto fronts

(inset of Fig 4C). One clearly sees how this network incrementally evolves from 3 to 4 hox-line

domains, by addition of an internal domain in the right most one, and refinement/shrinkage

of all domains. Interestingly this evolution does not occur in a direction orthogonal to the

Pareto front, rather the trajectory zigzags with an overall direction corresponding to a small

variation in −F1 (i.e keeping the global entropy constant) while significantly improving F2 (the

local entropy). This fits the idea that evolution here is driven by similar genes expressed in the

same domain, then later specializing to define new domains. However, it is also clear that on

the short evolutionary time-scale, evolution is not a straight line in a well-defined direction.

We see rather complex stochastic dynamics with the interplay of the two constraints, as can

be also gathered from the intermingled structure of Pareto fronts at different generations in

Fig 4C.

This example thus illustrates how φ-evo can be used to study the dynamics of evolution of

complex features, and how an effective fitness function can emerge from the simultaneous

optimization of several constraints (the latter presumably being more generic in biology than

the former [25]). Indeed the fitness rationalized a priori in [9] is discovered here a posteriori by

φ-evo. We could imagine situations where the geometry of Pareto fronts varies during genera-

tions, so that the shape of the Pareto fronts and the corresponding effective fitnesses would

vary as well during evolution. If the geometry of Pareto fronts is very different in different

regions in terms of constraints optimized, we could even imagine local populations evolving in

very different ways, potentially leading to numerical speciations.

Summary

φ-evo evolves phenotypic networks performing non trivial biological functions. It can be used

to uncover functional features of existing biological networks, as well as to study the dynamics

of evolution of gene networks e.g. in the case of Pareto optimization. It represents a useful

alternative to black-box modeling approaches for the understanding of biological networks

and their evolution.

Availability and future directions

φ-evo is available as a Python package hosted on github at the following link: https://github.

com/phievo/phievo

The program documentation is hosted on readthedocs: http://phievo.readthedocs.io/en/

latest/

A tutorial video is available here (clickable link) to illustrate how to run φ-evo on the exam-

ple of vertebrate segmentation similar to [23]. We include two other tutorial videos illustrating

how to use the ProjectCreator Notebook to initialize and bias an evolutionary simula-

tion here (clickable link), and other features such as node removal here (clickable link).

The algorithm was first developed using Python 2 and the current version runs under

Python 3. It can be installed locally using pip. It requires only a C compiler such as gcc as

an extra dependency. The algorithm has been developed and optimized in a Unix/Linux envi-

ronment and has been tested on both Mac OS X and Windows. More details on the implemen-

tation and on the examples are given in the Supplement.

Future directions will include automatic model reduction using Fitness Based Asymptotic

Parameter reduction (�� [26]), implementation of practical problems such as data fitting, and

of networks transitory forms similar to [27].

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 10 / 12

https://github.com/phievo/phievo
https://github.com/phievo/phievo
http://phievo.readthedocs.io/en/latest/
http://phievo.readthedocs.io/en/latest/
https://youtu.be/FRPc_hWm_JI
https://www.youtube.com/watch?v=G3UmxZhyFfg
https://www.youtube.com/watch?v=LPu-E7waUDg
https://doi.org/10.1371/journal.pcbi.1006244

Supporting information

S1 Text. This text gives more details on the algorithm and on the simulations described in

the main paper.

(PDF)

Acknowledgments

We thank Eric Siggia, Aryeh Warmflash and Jean-Benoı̂t Lalanne for discussions and contri-

butions to earlier versions of the algorithm.

Author Contributions

Conceptualization: Paul François.

Formal analysis: Adrien Henry, Mathieu Hemery, Paul François.

Funding acquisition: Paul François.

Investigation: Adrien Henry, Mathieu Hemery, Paul François.

Methodology: Paul François.

Project administration: Paul François.

Software: Adrien Henry, Mathieu Hemery, Paul François.

Supervision: Paul François.

Validation: Adrien Henry, Mathieu Hemery, Paul François.

Writing – original draft: Paul François.

Writing – review & editing: Adrien Henry, Mathieu Hemery, Paul François.

References
1. LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature. 2015 May; 521(7553):436–444. https://doi.org/

10.1038/nature14539 PMID: 26017442

2. Duvenaud D, Lloyd JR, Grosse R, Tenenbaum JB, Ghahramani Z. Structure Discovery in Nonparamet-

ric Regression through Compositional Kernel Search. 2013 Feb;.

3. Daniels BC, Nemenman I. Automated adaptive inference of phenomenological dynamical models.

Nature communications. 2015 Aug; 6:8133. https://doi.org/10.1038/ncomms9133 PMID: 26293508

4. Cotterell J, Sharpe J. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for

interpreting morphogen gradients. Molecular Systems Biology. 2010 Nov; 6:425. https://doi.org/10.

1038/msb.2010.74 PMID: 21045819

5. Holland JH. Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to

Biology, Control, and Artificial Intelligence. Bradford Book; 1992.

6. François P, Hakim V. Design of genetic networks with specified functions by evolution in silico. Proc

Natl Acad Sci U S A. 2004 Jan; 101(2):580–585. https://doi.org/10.1073/pnas.0304532101 PMID:

14704282

7. Salazar-Ciudad I, Solé RV, Newman SA. Phenotypic and dynamical transitions in model genetic net-

works. II. Application to the evolution of segmentation mechanisms. Evol Dev. 2001 Feb; 3(2):95–103.

https://doi.org/10.1046/j.1525-142x.2001.003002095.x PMID: 11341678

8. Fujimoto K, Ishihara S, Kaneko K. Network Evolution of Body Plans. PLoS ONE. 2008 Jul; 3(7):e2772.

https://doi.org/10.1371/journal.pone.0002772 PMID: 18648662

9. François P, Siggia ED. Predicting embryonic patterning using mutual entropy fitness and in silico evolu-

tion. Development (Cambridge, England). 2010; 137(14):2385–2395. https://doi.org/10.1242/dev.

048033

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 11 / 12

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006244.s001
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1038/ncomms9133
http://www.ncbi.nlm.nih.gov/pubmed/26293508
https://doi.org/10.1038/msb.2010.74
https://doi.org/10.1038/msb.2010.74
http://www.ncbi.nlm.nih.gov/pubmed/21045819
https://doi.org/10.1073/pnas.0304532101
http://www.ncbi.nlm.nih.gov/pubmed/14704282
https://doi.org/10.1046/j.1525-142x.2001.003002095.x
http://www.ncbi.nlm.nih.gov/pubmed/11341678
https://doi.org/10.1371/journal.pone.0002772
http://www.ncbi.nlm.nih.gov/pubmed/18648662
https://doi.org/10.1242/dev.048033
https://doi.org/10.1242/dev.048033
https://doi.org/10.1371/journal.pcbi.1006244

10. ten Tusscher KH, Hogeweg P. Evolution of Networks for Body Plan Patterning; Interplay of Modularity,

Robustness and Evolvability. PLoS Comput Biol. 2011 Oct; 7(10):e1002208. https://doi.org/10.1371/

journal.pcbi.1002208 PMID: 21998573

11. Ollivier JF, Shahrezaei V, Swain PS. Scalable rule-based modelling of allosteric proteins and biochemi-

cal networks. PLoS Comput Biol. 2010; 6(11):e1000975. https://doi.org/10.1371/journal.pcbi.1000975

PMID: 21079669

12. Feng S, Ollivier JF, Swain PS, Soyer OS. BioJazz: in silico evolution of cellular networks with

unbounded complexity using rule-based modeling. Nucleic Acids Research. 2015 Oct; 43(19):e123–

e123. https://doi.org/10.1093/nar/gkv595 PMID: 26101250

13. Martin OC, Krzywicki A, Zagorski M. Drivers of structural features in gene regulatory networks: From

biophysical constraints to biological function. Physics of Life Reviews. 2016 Jul; 17:124–158. https://

doi.org/10.1016/j.plrev.2016.06.002 PMID: 27365153

14. François P. Evolving phenotypic networks in silico. Seminars in cell & developmental biology. 2014

Nov; 35:90–97. https://doi.org/10.1016/j.semcdb.2014.06.012

15. Lalanne JB, François P. Principles of adaptive sorting revealed by in silico evolution. Physical Review

Letters. 2013 May; 110(21):218102. https://doi.org/10.1103/PhysRevLett.110.218102 PMID:

23745939

16. NetworkX;. Available from: http://networkx.github.io/.

17. Phillips R, Kondev J, Theriot J, Garcia H. Physical Biology of the Cell, Second Edition. Garland Sci-

ence; 2012.

18. Cao Y, Gillespie DT, Petzold LR. Adaptive explicit-implicit tau-leaping method with automatic tau selec-

tion. The Journal of Chemical Physics. 2007 Jun; 126(22):224101. https://doi.org/10.1063/1.2745299

PMID: 17581038

19. Mitchell M. An Introduction to Genetic Algorithms. MIT Press; 1998.

20. Lynch M. The origins of genome architecture. Sinauer Associates Inc; 2007.

21. Warmflash A, François P, Siggia ED. Pareto evolution of gene networks: an algorithm to optimize multi-

ple fitness objectives. Physical Biology. 2012 Oct; 9(5):056001–056001. https://doi.org/10.1088/1478-

3975/9/5/056001 PMID: 22874123

22. François P, Siggia ED. A case study of evolutionary computation of biochemical adaptation. Physical

Biology. 2008; 5(2):26009. https://doi.org/10.1088/1478-3975/5/2/026009

23. François P, Hakim V, Siggia ED. Deriving structure from evolution: metazoan segmentation. Molecular

Systems Biology. 2007 Dec; 3:9.

24. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. Journal of molecular

biology. 1961 Jun; 3(3):318–356. https://doi.org/10.1016/S0022-2836(61)80072-7 PMID: 13718526

25. Szekely P, Korem Y, Moran U, Mayo AE, Alon U. The Mass-Longevity Triangle: Pareto Optimality and

the Geometry of Life-History Trait Space. PLoS Comput Biol. 2015; 11(10). https://doi.org/10.1371/

journal.pcbi.1004524

26. Proulx-Giraldeau F, Rademaker TJ, François P. Untangling the Hairball: Fitness-Based Asymptotic

Reduction of Biological Networks. Biophysical Journal. 2017 Oct; 113(8):1893–1906. https://doi.org/10.

1016/j.bpj.2017.08.036 PMID: 29045882

27. Rothschild JB, Tsimiklis P, Siggia ED, François P. Predicting Ancestral Segmentation Phenotypes from

Drosophila to Anopheles Using In Silico Evolution. PLoS Genetics. 2016 May; 12(5):e1006052–19.

https://doi.org/10.1371/journal.pgen.1006052 PMID: 27227405

φ-evo: A program to evolve phenotypic models of biological networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006244 June 11, 2018 12 / 12

https://doi.org/10.1371/journal.pcbi.1002208
https://doi.org/10.1371/journal.pcbi.1002208
http://www.ncbi.nlm.nih.gov/pubmed/21998573
https://doi.org/10.1371/journal.pcbi.1000975
http://www.ncbi.nlm.nih.gov/pubmed/21079669
https://doi.org/10.1093/nar/gkv595
http://www.ncbi.nlm.nih.gov/pubmed/26101250
https://doi.org/10.1016/j.plrev.2016.06.002
https://doi.org/10.1016/j.plrev.2016.06.002
http://www.ncbi.nlm.nih.gov/pubmed/27365153
https://doi.org/10.1016/j.semcdb.2014.06.012
https://doi.org/10.1103/PhysRevLett.110.218102
http://www.ncbi.nlm.nih.gov/pubmed/23745939
http://networkx.github.io/
https://doi.org/10.1063/1.2745299
http://www.ncbi.nlm.nih.gov/pubmed/17581038
https://doi.org/10.1088/1478-3975/9/5/056001
https://doi.org/10.1088/1478-3975/9/5/056001
http://www.ncbi.nlm.nih.gov/pubmed/22874123
https://doi.org/10.1088/1478-3975/5/2/026009
https://doi.org/10.1016/S0022-2836(61)80072-7
http://www.ncbi.nlm.nih.gov/pubmed/13718526
https://doi.org/10.1371/journal.pcbi.1004524
https://doi.org/10.1371/journal.pcbi.1004524
https://doi.org/10.1016/j.bpj.2017.08.036
https://doi.org/10.1016/j.bpj.2017.08.036
http://www.ncbi.nlm.nih.gov/pubmed/29045882
https://doi.org/10.1371/journal.pgen.1006052
http://www.ncbi.nlm.nih.gov/pubmed/27227405
https://doi.org/10.1371/journal.pcbi.1006244

