
Received: 26 September 2020 Revised: 9 December 2020 Accepted: 11 December 2020 Published on: 8 January 2021

DOI: 10.1002/sam.11495

R E S E A R C H A R T I C L E

A framework for stability-based module detection in
correlation graphs

Mingmei Tian1 Rachael Hageman Blair1 Lina Mu2 Matthew Bonner2

Richard Browne3 Han Yu4

1Department of Biostatistics, State
University of New York at Buffalo,
Buffalo, New York, USA
2Department of Epidemiology and
Environmental Health, State University of
New York at Buffalo, Buffalo, New York,
USA
3Department of Biotechnical and Clinical
Laboratory Sciences, State University of
New York at Buffalo, Buffalo, New York,
USA
4Department of Biostatistics and
Bioinformatics, Roswell Park
Comprehensive Cancer Center, Buffalo,
New York, USA

Correspondence
Han Yu, Elm & Carlton Streets, Buffalo,
NY 14263, USA.
Email: han.yu@roswellpark.org

Funding information
National Cancer Institute, Grant/Award
Numbers: P30CA016056, U24CA232979;
National Institute of Environmental
Health Sciences, Grant/Award Numbers:
R01ES018846, R21ES026429

Abstract
Graphs can be used to represent the direct and indirect relationships between
variables, and elucidate complex relationships and interdependencies. Detect-
ing structure within a graph is a challenging problem. This problem is studied
over a range of fields and is sometimes termed community detection, module
detection, or graph partitioning. A popular class of algorithms for module detec-
tion relies on optimizing a function of modularity to identify the structure. In
practice, graphs are often learned from the data, and thus prone to uncertainty.
In these settings, the uncertainty of the network structure can become exagger-
ated by giving unreliable estimates of the module structure. In this work, we
begin to address this challenge through the use of a nonparametric bootstrap
approach to assessing the stability of module detection in a graph. Estimates of
stability are presented at the level of the individual node, the inferred modules,
and as an overall measure of performance for module detection in a given graph.
Furthermore, bootstrap stability estimates are derived for complexity parame-
ter selection that ultimately defines a graph from data in a way that optimizes
stability. This approach is utilized in connection with correlation graphs but is
generalizable to other graphs that are defined through the use of dissimilarity
measures. We demonstrate our approach using a broad range of simulations and
on a metabolomics dataset from the Beijing Olympics Air Pollution study. These
approaches are implemented using bootcluster package that is available in
the R programming language.
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1 INTRODUCTION
Networks have been used widely to graphically depict
complex relationships between entities in biological and
social systems. Modules in a network arise naturally

when nodes exhibit a high degree of connectivity to each
other, and a lower degree of connectivity to others [11,
29]. Network structure of this type is referred to slightly
differently across the various fields that utilize it, for
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example, sub-group, community, and module. Over the
past 50 years, several module detection algorithms have
been proposed [7, 16]. A unifying underlying assumption
to module detection approaches is that the network struc-
ture, which is represented by a binary adjacency matrix,
is known exactly. However, in many applications, the net-
work structure is learned from data and thus prone to
uncertainty. This uncertainty can propagate and give rise
to unreliable estimations of module structure.

Module detection shares many of the same fundamen-
tal challenges as the more general clustering problem, as
they both aim to identify groups (i.e., clusters or mod-
ules) of similar items from data. In fact, the problem of
module detection in a graph is often referred to as graph
partitioning or graph clustering. The unsupervised nature
of these problems poses challenges for the assessment of
the performance of a method, the estimation of repro-
ducibility or quality of individual groups, and also for the
selection of the number of groups. In lieu of a gold stan-
dard, different forms of cluster stability have been used
as a surrogate to assess performance. Stability estimates
capture how stable the clusterings are over several differ-
ent representations of the data, which are derived through
subsetting, cross-validation, data noising or re-sampling,
among others [4, 12, 14, 15, 20, 22, 26, 36–38].

Meinshausen and Bühlmann [27] developed an
approach to estimating stability in a graph. The primary
objective centered on utilizing a form of stability param-
eter estimation that controls the graph structure, as it
applies to structural learning of a graphical model. This
approach to stability leverages sub-sampling in connec-
tion with a high-dimensional selection algorithm (lasso),
to identify a parameter that gives rise to a stable graph.
This method was later extended to Gaussian graphical
models for the purpose of selection and improvement
of gene expression signatures’ stability [10, 18]. Notably,
these approaches are restricted to the identification of
stable graphs.

Recently, Yu et al. [38] developed an approach to
cluster stability estimation. As with other bootstrap
approaches to stability, an overall estimation of stabil-
ity can provide an assessment of cluster quality [12, 14].
A distinguishing feature of this method is that stability
can be assessed at the level of the item being clustered,
the clusters themselves, and can also be used for cluster
parameter selection. The interpretation of stability in these
contexts facilitates improved interpretation of the cluster-
ing results, thereby allowing us to quantify uncertainty
across these levels.

In this work, the cluster stability framework of Yu
et al. [38] is extended to the problem of module detection
in a graph. This approach to stability utilizes the boot-
strap [13] for data re-sampling, construction of a graph,

and subsequent module detection. For each bootstrap
replication, we compare the compositions of the modules
to the original modules detected from the data. This com-
parison is made across node pairs to avoid the need for
module matching between comparisons. The output is an
estimation of stability that is based on a Jaccard index
and computed at the level of the individual node member-
ship to the module, the detected modules, and an overall
measure of the graph clustering performance.

The major contribution of this paper is a novel sta-
bility framework that characterizes modules in a graph.
This flexible framework can be used to quantify stability
at the level of the individual node, the individual modules,
as well as an overall stability assessment of the method
and parameterizations. This approach can also be used to
identify the optimal number of modules, that is, model
selection, in a graph, a longstanding challenge in the com-
munity/module detection field, and more broadly in the
area of data clustering. To the best of authors’ knowl-
edge, this represents the first approach to define mod-
ule stability in a graph and the first use of this measure
for model selection. This novel approach is benchmarked
on several simulations that examine performance as a
function of the number of parameters, sample size, cor-
relation across inputs, and the number of modules. This
framework is also applied to a high-dimensional air pol-
lution exposure metabolomics dataset collected during
the Beijing Olympics [28]. The module stability frame-
work has been implemented in the open-source R package
bootcluster available on CRAN.

2 MATERIALS AND METHODS

In this section, we will first describe a framework for the
estimation of module stability in networks and its utiliza-
tion in selecting the cut-off for constructing the correla-
tion network. In this framework, we defined the stability
(1) at the level of the individual nodes being clustered
into modules, (2) for the modules themselves, (3) as an
overall measure (as a surrogate for performance) of the
module detection, and (4) for model selection. Stability
calculations are obtained through repeated re-sampling
and subsequent network and community detection using
the nonparametric bootstrap [13]. The calculations rely
on the preservation of pairwise memberships of nodes to
a module, between the original data, and bootstrapped
replicates. We will describe the algorithm from the foun-
dation of the correlation graph to the module detec-
tion, the stability estimates, and finally to its applica-
tion to parameter (model) selection for correlation net-
work construction. A schematic depicting the work-flow
for this method is presented in Figure 1. The stability
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F I G U R E 1 A schematic of
the workflow for bootstrapping
module stability. (A) A graph, G0 is
derived from X0 based on
correlation. The observations in
the data, X0, are bootstrapped to
produce {X1, X2, … , XB} and
corresponding graphs {G1, G2, … ,
GB} are formed based on
correlation. (B) A module detection
algorithm is applied to G0 and each
of the graphs derived from the
bootstrap samples. Pairwise
memberships of nodes within
modules are compared between the
modules arising, {M0, M1, … , MB},
from the bootstrapped graphs. The
output is stability estimates at the
level of the individual node, the
module, overall, and a measure of
observed stability. (C) Random
graphs assuming no module
structures were generated by
conserving the degree sequence in
the original graph. Changes in
node memberships between
module sets are quantified via
Jaccard coefficients, and used to
derive the expected null stability,
E[Snull]. These are included in the
output stability profile,
SΔ = Sobs −E[Snull], at the
threshold tk

(A)

(B)

(C)

estimation procedure described below is fully detailed in
Algorithm 1.

Correlation graphs: Let X0 ∈ RN×p denote the data
matrix with N observations and p variables. Without loss
of generality, suppose we want to identify network mod-
ules from an undirected graph, G0, that is defined from
the correlation matrix C0 ∈ Rp×p. Specifically, suppose that
the graph, G0, is represented by a binary adjacency matrix,
with edges between nodes ni and nj exist if and only if ∣C0(i,
j)∣> t, where t is a constant threshold for the absolute cor-
relation. Our method for stability estimation relies B boot-
strap replications of the dataset, X1, X2, … , XB, where the
N observations are re-sampled with replacement. For each
bootstrapped dataset, a corresponding correlation matrix
is formed, C1, C2, … , CB, and a graph, G1, G2, … , GB is
created based on the same threshold, t, that was used on
the original data (Figure 1A).

Module detection: The module detection that is imple-
mented in this work relies on a fast greedy algorithm that
utilizes a form of greedy optimization of modularity [30].
Briefly, we describe the approach and refer the reader to
[30] for additional details. Without loss of generality, sup-
pose that there are U modules in a particular network. In
mathematical terms, we define E ∈ RU×U to be a symmet-
ric matrix, with eij defined as the proportion of edges in the
network that connects nodes in module i to those in mod-
ule j. The fraction of edges in the network that connects
the nodes in the same module is given by the trace of this
matrix, Tr(E) =

∑
ieii. The fraction of edges that connect to

nodes in module i can be defined as the row (or column)
sums, si =

∑
jeij. Notably, the relationship eij = si ⋅ sj would

hold in a network that contains random edges between
nodes in the network, without any regard for module struc-
ture. The modularity function that is maximized in the fast
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greedy algorithm is defined as the difference between the
proportion of edges within a module, and those that are
expected to occur at random without the consideration of
community structure:

Q =
∑

i
(eii − s2

i ). (1)

Note that the interpretation of Q≤ 0 suggests no structure
or as much structure as would be expected by chance. On
the other hand, Q> 0 (in practice, Q> 0.3) suggests strong
structure [30]. The optimization of modularity is per-
formed using an agglomerative clustering approach that
produces a dendrogram containing nodes in the network.
The dendrogram is then cut to produce modules that
maximize Equation (1). Clauset et al. [6] improved the
runtime for this optimization problem, making it scalable
to very large networks (e.g., 400,000 nodes and 2 million
edges) [30]. This approach is implemented in the igraph
package [8].

Bootstrap procedure: Stability estimation utilizes boot-
strapping to estimate the stability of clusterings [38].
However, in our setting, the nodes in a network are vari-
ables instead of subjects, therefore are typically fixed
during the sampling process. The randomness of the sam-
pling process comes from the random subjects drawn
from the population, and is reflected by the sampling dis-
tribution of the correlation coefficients between each pair
of variables, or the overall correlation matrix. Therefore,
the correct resampling scheme is to randomly draw N
subjects with replacement, which is a key difference from
Yu et al. [38]. This resampling will be repeated B times
such that we will have B resampled graphs G1, … , GB.
We define, 0, as the set of modules corresponding to
the reference graph, G0, and 1, … , B as the sets of
modules corresponding to B graphs from the bootstrapped
data (Figure 1B). Note that the numbers of modules in the
reference graph and bootstrapped graphs do not need to be
the same.

Stability estimates: The approach to stability estima-
tion is to compare the module composition of the refer-
ence correlation graph to the various bootstrapped cor-
relation graphs, and to assess the stability at the (1)
node-level, (2) module-level, and (3) overall. Following
Yu et al. [38], we define stability at these three levels.
The approach relies on the use of Jaccard coefficient to
quantify changes in pairwise co-membership of nodes
between two sets of modules 0 and b. Specifically,
the similarity of two modules with respect to a node ni is
defined as:

A(ni,
0,b) ≔ Jaccard(0(ni),b(ni)),

where0(ni) andb(ni) are the modules containing ni in
0(ni) and b(ni), respectively. This definition is based
on an approximation of the Hamming distance between
partitions and its decomposition into observation-wise
quantities, see [38] for details. The overall similarity is
defined as the expectation of observation-wise similarity,
thus the sample overall similarity can be obtained as:

A(0,b) = 1
p

p∑
i=1

A(ni,
0,b). (2)

Let {0,1, … ,B} be the sets of modules detected
from original graph, G0, and the graphs from the B
re-sampled datasets, {G1, … , GB}. The node and module
stability are defined as follows:

Snode(nk ∣ 0,G0) = 1
B

B∑
j=1

A(nk,
0,j), (3)

Smodule(M0
i ∣ 0,G0) = 1

|M0
i |

∑
nk∈M0

i

B∑
j=1

A(nk,
0,j)

= 1
|M0

i |
∑

nk∈M0
i

Snode(nk,
0). (4)

The overall stability estimate is defined as:

Sover(0|G0) = 1
B

B∑
j=1

A(0,j). (5)

Note that the estimate of stability in Equation (5) is con-
ditional on the modules, 0, detected from the original
data, X0, and graph, G0.

Threshold selection: The binary adjacency matrix for
a graph is constructed from a correlation matrix based
on a predetermined threshold t. This approach of mod-
ule stability estimation can be extended to the problem of
the selection of an optimal threshold, topt, that produces
the most stable graph and subsequent modules. The key
assumption is that the nodes in the underlying correlation
network are organized in module structures, so we seek
to estimate the true threshold t so as to yield a network
with the most stable module memberships for the nodes.
However, it is notable that the stability is not directly com-
parable among networks with different edge densities. An
extreme case is a fully connected network t = 0, which
will be perfectly stable since all nodes will always be in
the same module that covers the entire network. The other
extreme is an edgeless graph t > 1, where all nodes will
always be their own module, thus will also be stable. With
such difference untended, we will always select the trivial
solutions based on maximum stability.
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Algorithm 1. Bootstrapping module stability in a corre-
lation network

Initialize using the full data:
Input: X0 ∈ RN×p, t = {t1, … , tk}∈Rk, C0 ∈ Rp×p

for l = 1 to k do
1. Construct G0 ∈ Rp×p with edges G0(i, j) = 1 if |c0

i,j| >
tl.

2. Apply module detection algorithm to G0 obtain 0.
3. Generate random graphs, G0

1, … ,G0
m, from G0.

Output for each threshold: G0, 0, G0
1, … ,G0

m
end for
Bootstrap stability estimation:
Input: tl, X0, G0, 0, G0

1, … ,G0
m

for b = 1 to B do
1. Generate a bootstrap sample Xb ∈ RN×p

2. Calculate correlation matrix for Cb ∈ Rp×p

3. Create graphs, Gb, with edges Gb(i, j) = 1 between
nodes if |cb

i,j| > tl

4. Apply module detection algorithm to Gb to obtain
b

5. Calculate A(0,b) = 1
p

∑p
i=1 A(ni,

0,b)
end for
Output:
Calculate Snode(nk|0, G0) using Equation (3)
Calculate Smodule(M0

i |0,G0) for all M0
i ∈ 0 using

Equation (4)
Calculate Sover(0|G0) using Equation (5)
Calculate the stability profile using Equation (7) for all

values of t.
Select t so as to maximize SΔ.

Therefore, in an effort to assess the quality of the mod-
ule structure, we take an approach that is similar to the
spirit of the gap statistic for the selection of the number
of clusters [35]. For each threshold, t, that is considered,
we standardize the observed stability Sobs, named as SΔ, by
comparing it against the expectation under a null reference
graph that contains no module structure that is, E[Snull].
We also define an unconditional estimate of the stability,
which compares in a pair-wise manner, the sets of modules
estimated between all of the bootstrap replications:

Sobs = 1
B(B + 1)

B∑
i=0

B∑
j=0,j≠i

A(i,j) = 1
B + 1

B∑
i=0

Sover(i).

(6)
Note that this definition of unconditional stability cannot
be defined at the module or node levels. Therefore, it is not
particularly useful in the context of the overall interpreta-
tion of the individual node and module stabilities. Rather,

Equation (6) can be utilized for the selection of an optimal
threshold, t, as it provides a measure of overall stability of
the data and method.

Finally, we define the overall Jaccard stability as:

SΔ(t) = Sobs(t) − E[Snull(t)], (7)

where the unconditional observed stability Sobs is esti-
mated as in Equation (6). The expected stability is derived
from a simulated ensemble of reference graphs, denoted as
G0

1, … ,G0
m. The random graphs preserve the degree and

node ordering of the reference graph, G0, but no module
structures are assumed to be present [9]. The expected sta-
bility under the null is estimated by the overall stability
among the random graphs. The modules detected in each
of the B bootstrap replications are compared to the esti-
mated stability under the null. Specifically, comparisons
are made between modules,0

1, … ,0
m, from the full set

of random graphs, G0
1, … ,G0

m. We define the expectation
as:

Ê[Snull(t)] =
1

m(m − 1)

m∑
i=1

m∑
i≠j

Ar(0
i ,

0
j ), (8)

where Ar(0
i ,

0
j ) is the agreement between two module

partitions 0
i and 0

j calculated using Equation (2). This
process is depicted in Figure 1C.

2.1 Simulations

The first set of simulations were performed for a broad
range of scenarios using a block diagonal correlation
graph. This structure enabled us to investigate the perfor-
mance of the stability approach under different strengths,
varying sample sizes, and graph sizes. The second set of
simulations were carried out to examine performance on
an immunoglobulin interaction network [17]. The two
simulation frameworks are detailed below.

Simulation 1: Block diagonal model: Module structure
can be represented as a binary block diagonal matrix,
where the number of the main-diagonal blocks is equal
to the number of modules in the graph. The basis of our
simulations relies on a correlation graph that is gener-
ated from a given block diagonal matrix. A value of 1
is assigned to the diagonal elements, and we define the
constants 𝛼 and 𝛽 that are assigned to the main-diagonal
blocks and off-diagonal blocks, respectively. We also define
a threshold value t, such that 𝛽 ≤ t <𝛼, which enables us to
transform a correlation matrix to an adjacency matrix, and
subsequent graph.

This framework enables us to obtain the true mod-
ules based on this predetermined adjacency matrix, which
will be used to assess performance in model selection
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for the optimal threshold, topt. The adjusted rand index
(ARI) was calculated between the detected modules with
the selected threshold and the true modules. Our method
was compared against a traditional approach that utilizes
p-values from the pairwise correlation to construct the
graph. The psych package was used to perform the cor-
relation analysis, which conveniently calculates the cor-
relation coefficients and the corresponding p-values. A
Bonferroni adjustment was made to account for multiple
testing. An edge was placed between nodes if the adjusted
p-value was less than 0.05 [2, 34].

Data were simulated for a range of different correla-
tion matrices where 𝛽 = 0.1 and 𝛼 ∈ {0.3, 0.4, 0.5, 0.6,
0.7, 0.8}, respectively. Under this block-diagonal model, we
also set out to investigate the stability framework under
different strengths of association (block), numbers of nodes
(p), sample sizes (N), and numbers of modules. Data were
simulated while ranging two of these parameters at a time,
as described below. For each simulated dataset, we cal-
culated the corresponding overall Jaccard stability using
Equation (7) across a range of thresholds from 0.3 to 0.9.

1. Varying the number of observations, N ∈ {30, 50, 100},
and the strength of association (𝛼 = block values),
𝛼 ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, simultaneously. The
number of variables is fixed at 100, and the number of
modules is fixed at 10 for all thresholds, t, considered.

2. Varying the number of nodes (variables), p ∈ {60, 100,
200}, and the block values, 𝛼 ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8},
simultaneously. The number of observations is fixed at
N = 100, and the number of modules is fixed at 10 for
all thresholds, t, considered.

3. Varying the number of modules, modules ∈ {2, 4, 6,
8, 10}, and the number of nodes (variables), p ∈ {60,
100, 200}, simultaneously. The number of observation
is fixed at 100, and the strength of association (block
values) is fixed at 0.5 for all threshold, t, considered.

Simulation 2: Immunoglobulin interaction graph:
Graphs based on an immunoglobulin (immuno) interac-
tion graphs [17] were simulated using the igraphdata
package. Briefly, the immuno graph has 1316 nodes that
represent amino acids. Our simulations were based on a
subgraph that was generated from the detected modules.
As a first step, we identified seven modules in the immuno
data using the fast greedy algorithm [30]. Second, we
captured each modules information in terms of nodes
and then constructed a series of nested subgraphs from
these modules in order to generate the graphical model,
that is, the number of modules ∈ {2, 3, 4, 5, 6, 7}, respec-
tively. Third, the undirected Gaussian graphical Markov
models (GMMs) [1] based on each subgraph was simu-
lated using the R package qpgraph package [5]. Finally,

we generated N = 30, 50, 100 random samples from the
multivariate normal distribution, which is defined by the
class of undirected Gaussian GMMs. Taken together, there
were a total of 18 different nested graphs considered in
this simulation.

2.2 Applications to air pollution
metabolomics data

The approach to bootstrapping stability was also applied
to a high-throughput metabolomics dataset. The data
were collected from 26 participants at three-time points,
which were before, during and after, the 2008 Bei-
jing Olympics [28]. During the Olympics, there were
government-mandated restrictions that aimed to reduce
pollution levels and thus decreased exposure. The data
consists of a total of p = 886 metabolites (nodes) mea-
sured by Metabolon using mass spectrometry, see [28] for
data processing details. Eight metabolites were eliminated
from the analysis based on severe missing data (<50%).
Our objective was to identify significant concerted changes
in metabolites through the use of module detection. In this
application, we applied Algorithm 1 to metabolite correla-
tion networks with a sequence of t from 0.2 to 0.9 at a step
of 0.05.

3 RESULTS

Our approach to estimating module stability has several
objectives: to identify a threshold for defining a correlation
graph that gives rise to stable and reproducible modules,
to characterize the stability of individual modules, and to
characterize the stability of the membership of nodes to a
given module. The building blocks of these different sta-
bility measures are based on the pairwise changes in the
membership of node pairs between modules detected in
the original data, and modules detected from bootstrap
replications of the data.

Our first set of simulations utilized a block diagonal
model to generate the data with varying sample sizes,
number of variables (i.e., network sizes), and the number
and strengths of modules. Within these simulation set-
tings, we compared our approach to a standard approach
that is based on the correlation of p-values to derive
the graph, followed by module detection. Performance
was compared using ARI for different sample sizes and
strengths of association (Figure 2A), different numbers of
nodes (variables) and strengths of association (Figure 2B)
and different numbers of nodes (variables) and modules
(Figure 2C). For the stability profiles, each point repre-
sents the ARI at the selected optimal threshold. Note that
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F I G U R E 2 Adjusted rand index (ARI) for three sets of different simulations in Simulation 1. The bootstrapped stability (red) is shown
to be consistently better than a p-value approach (blue). Simulation settings are as follows. (A) Varying the sample size and block value,
which reflects the strength of association of the modules. (B) Varying the parameters and block values. (C) Varying the number of parameters
and the number of communities
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(A) Threshold = 0.3 (B) Threshold = 0.35 (C) Threshold = 0.40 (D) Threshold = 0.45 (E) Threshold = 0.50
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(K) Threshold = 0.80 (L) Threshold = 0.85 (M) Threshold = 0.90 (N) Module membership for threshold = 0.75
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F I G U R E 3 Each threshold tk in a stability profile represents a graph and subsequent module detection is carried out. Modules are
shown for a range of tk (A–M) corresponding to stability profile for the case with block value 0.8 and N = 30 (Figure 4A), where the optimal
threshold is selected as t = 0.75 (J). In each graph (A–M) the node stability is indicated by color, with yellow representing the most stable
nodes (0.8–1.0). The cluster membership for the optimal tk is shown in (N)

the optimal thresholding corresponds to the red dashed
vertical lines in the simulation stability profiles (Figures
4–6), which is fully detailed later in the Section. For the
p-value method, each point represents the performance

when the graph is thresholded at the adjusted p-value
< 0.05 significance level.

Overall, the performance of the bootstrapped stability
is superior to modules detected from graphs derived from
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p-values. Not surprisingly, the differences in performance
are more pronounced for larger N (Figure 2A) and in larger
networks ((Figure 2B). In terms of the strength of associ-
ation, note that since 𝛽 is fixed, the difference, 𝛼 − 𝛽, con-
veys the strength of the association within a module. We
observed that when the absolute difference between 𝛼 and
𝛽 is large (Figure 2A,B), the ARI of our proposed method
is stable and close to 1, suggesting that our method gets a
perfect module detection. This is because when the abso-
lute difference between 𝛼 and 𝛽 is larger, the associations
within modules become larger while the between-module
associations get weaker, thus the modules become easier to
identify. A similar trend can be observed when the sample
size increases. For example, under N = 30, the ARI reaches
1 when 𝛼 = 0.8; if N = 50, the ARI attains 1 after 𝛼 = 0.7;
if N = 100, the ARI is equal to 1 after 𝛼 = 0.6. Figure 2C
shows that the p-value approach deteriorates considerably
in more complex networks with larger number of modules
(Figure 2C). Note that since each point in theses pro-
files represents the ARI at the optimal threshold, we can
also conclude that in more complex networks (Figure 2C),
the selection of a smaller threshold than the optimal car-
ries a negligible consequence in terms of stability. Taken

together, these results suggest that our method performs
better when sample size is large or the within module asso-
ciation is strong. The performance is sustained for more
complex networks with large numbers of modules.

The stability profile plots are summaries of graph
stability across a range of thresholds. Each threshold
corresponds to a correlation matrix, graph, and a set of
modules. As the threshold increases, the edge density nat-
urally decreases, which measures graph complexity. For
example, Figure 3A–M shows the node stability on the
graphs that correspond to a range of thresholds. This result
is from the simulation on a block-diagonal model, 𝛼 = 0.8,
N = 30, p = 100, modules = 10, and the corresponding sta-
bility profile can be seen in the last panel Figure 4A. Not
that the peak in the profile (Figure 4A) corresponds to the
optimal and most stable threshold, which can be observed
in Figure 3J in terms of node stability on the graph, with
the corresponding modules are depicted in Figure 3N.
Note that the optimal threshold selected by our method is
0.75, which is very close to the true threshold 0.8, with a
large group of highly stable nodes. Figure 3N shows a clear
selection of 10 modules, which further indicates that our
method has the ability to pick up optimal threshold.
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Stability profiles were comprehensively examined over
a range of simulated block diagonal models. Figure 4
shows a stability profile across a range of threshold val-
ues with varying strengths of association (block values) in
the modules for different sample sizes. As the sample size
increases from N = 30 (Figure 4A), and N = 50 (Figure 4B),
to N = 100 (Figure 4C), an increase in stability is observed,
which is more pronounced in networks with stronger
module associations (e.g., block ∈ {0.60, 0.70, 0.80}). This
supports our observations in Figure 2, but now over a range
of threshold values that define the stability profile. Com-
paring across columns in Figure 4, when the difference
between 𝛼 and 𝛽 is relatively small, the peak is more pro-
nounced with larger N. On the other hand, the need for
larger sample size is less of an issue when the difference
between 𝛼 and 𝛽 increases. Although we observed a flatted
curve for the large sample size (N = 100, Figure 4C) and
a big difference between 𝛼 and 𝛽, our method may tend
to select a smaller threshold, the consequence is negligible
according to Figure 2A,B. Specifically, the change of graph
structure with different threshold presented in Figure 3
confirms our assumption that a too-small threshold leads

to a dense and overly complex graph, whereas too large of
a threshold results in an overly sparse network, and both
cases contains a lot of nodes with the low stability.

Stability profiles were also examined for varying
strengths of association (block values) in the modules and
with different numbers of variables (nodes) (Figure 5). The
trends in the stability profiles across block values are sim-
ilar to those observed in Figure 4. Specifically, Figure 5
demonstrates a more pronounced peak that is observed
when there are stronger associations within the modules,
which begins to flatten when the associations are at their
highest (block = 0.8). On the other hand, Figure 5 shows
very subtle differences in the shape of the profile when the
number of variables is increased from 60 to 200. However,
although the shape is relatively similar, we do observe a
systematically higher value of stability as the number of
variables increases.

Figure 6 shows a similar phenomenon. As the num-
ber of variables is varied with the number of modules, we
observed no clear difference in the general trend of the pro-
file across the three columns, although the stability value
itself slightly higher when the variables are increased from
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60 (left column), to 100 (center column), to 200 (right col-
umn). This indicates that the changes in the number of
variables do not have a major effect on stability estima-
tion. This also suggests that in cases when the module
structure is sufficiently complex (Figure 6D,E), larger net-
works are going to be more stable, as they need to support
the complex structure. Smaller networks do not support
more complex structures (Figure 6D,E left), as the modules
are too small and more unstable, regardless of the stabil-
ity value, the similar profiles, and consequently threshold
selection appears to be rather robust to network size. This
observation supports what was observed in both Figure 4,
and also in Figure 2C, where the p-value method exhibits
major sensitivity to graph complexity. Taken together, this
phenomenon suggests that the performance of our method
is very stable when the graph complexity increases.

In the immuno data, we observed similar trends
(Figure 8) when comparing various sample sizes (N),
as we observed in our previous block matrix simula-
tions (Figure 4). The peak of a curve is easier to identify
with the larger number of observations (N), indicating a
possible precise estimation of the threshold. However, the

increase of the network complexity, which is reflected by
the increased number of modules, does not significantly
influence the shape of the curve. This observation is in con-
trast to what was observed in Figure 6. These differences
may be due in part to the construction of the immuno sim-
ulation, which requires the sequential nesting of modules,
and the fact that the more modules we include in the sim-
ulation, the more nodes we have in the graph. Due to this
fixed relationship between the number of variables and
the number of modules, no clear pattern can be observed
in Figure 7. However, this phenomenon is not in conflict
with what we find in the first simulation example (block
diagonal model), if we track the changes of the curve
across the diagonal. Take Figure 5C left, Figure 5D middle,
and Figure 5E right as an example, we observe that there
is no obvious difference between these figures although
the number of modules increases from the top left to the
bottom right. This is due to the fact that the number of
parameters increases at the same time. This is exactly what
is observed in the immuno data. Since the relationship
between nodes and modules are fixed, increasing modules
is actually increasing the number of parameters as well.
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The ARI is calculated to show the performance of the pro-
posed threshold selection method, and compare it with
the p-value based method (Figure 7). A great improve-
ment can be observed along with the increased number of
observations for the proposed method. However, no clear
difference was observed for different numbers of modules.

The air pollution metabolomics dataset was also
examined using Algorithm 1 over a range of thresholds
(Figure 9). The components of the stability profile are
shown in Figure 9A,B. Noticeably, the range of stability
values is considerably lower, when compared to simu-
lation. This is not surprising in real observational data,
which is noisy and has a weaker signal. Note that the sig-
nal and trend, in particular, the departure from the stability
from the null reference data that has no module struc-
ture (Figure 9A,B) is considerable. The difference is at
its maximum at approximately 0.70, suggesting this as an
optimal graph from the point of view of stability and repro-
ducibility. At this threshold, there are 14 modules detected
(Figure 9C). The individual stability of nodes is given
in Figure 9D and the individual module stabilities are
shown in Figure 9E. At the 0.70 threshold, the final graph
and subsequent modules were within our expectations

in terms of size and density. Figure 9E shows the nodes
stability information with shapes still identified modules.
We see that generally, all nodes have relatively high sta-
bility, and the nodes in the same modules usually have a
similar level of stability. This may also be related to the
connectivity patterns.

4 DISCUSSION

In this work, we developed an approach to assess the sta-
bility of modules detected from a graph. This approach
relies on a nonparametric bootstrapping of a dataset to pro-
duce a graph based on association, which is then used for
module detection. The module detection problem can be
viewed as a graph clustering problem. Thus, they share a
common challenge, the lack of a gold standard to assess
quality and performance, and the lack of methods for the
selection of the number of groups (modules/clusters). The
notion of stability has been used extensively in the cluster-
ing literature as a surrogate for performance [4, 12–14, 20,
22, 26, 38]. It is therefore natural to bridge stability esti-
mation for clustering to the module detection problem in
graphs.

The major contribution of this work is the develop-
ment of an approach to assess the stability of module
detection in a graph at the three levels: (1) level of the
node, (2) module, and (3) as a measure for overall perfor-
mance, and (4) as a means to perform model selection.
The latter simultaneously estimates the threshold param-
eter for defining the graph that produces the most stable
and reproducible sets of modules through the compari-
son of a reference null graph. An important distinction
between the work developed in Yu et al. [38] is that we have
extended the definitions of stability to a graphical model.
Pairwise associations are used to derive a graph, and once
identified as significant, these connections are represented
with a binary adjacency matrix. Whereas Yu et al. [38]
work directly with a clustering problem, where the associ-
ations between every pair of variables are used to identify
stable clusters within a dataset. Notably, alternative defi-
nitions of the graph and module detection algorithm can
be substituted within this framework. Once the graph is
identified, we utilize a scalable fast-greedy module detec-
tion algorithm [6], although there are several alternatives
to module detection that could be pursued, see Radicchi
et al. [32] for a review. For example, module detection can
also be carried out on data that is represented as a sparse
weighted graph [33].

Limitations of our approach are shared by cluster-
ing problems in general. In our simulations, we demon-
strated that the bootstrapping approach to module stability
works best when the strength of the association is strong
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(𝛼 − 𝛽 is large). In the graph itself, this translates to
high levels of connectivity within a module, and low
levels of connectivity between modules. Naturally, these
well-defined communities are easily detected and are
hardly influenced by the number of variables or the num-
ber of observations. On the other hand, when the module
structure becomes more obscured, the module detection
algorithm will also suffer in terms of performance. In the
stability framework, this amounts to more variability in the
module detection results across the bootstrap replicates,
and consequently lower stability with a higher variance.
Taken together, this can make the selection of the opti-
mal threshold using a stability profile challenging. Our
approach also works better for larger sample sizes, which
naturally give more reliable estimates of correlation. We
demonstrated that our method is robust in large graphs
with a more complex module structure. However, it is
imperative that the graph is rich enough (large enough) to
support a more complex module structure. This complex-
ity can arise in terms of the number of communities and
the size of the communities.

To the best of authors’ knowledge, this is the first
application of stability to the area of module detec-
tion in a graph. There has been some related work in

Bioinformatics, see Li et al. [25] for a survey. However,
no approach addresses the same problem of stability esti-
mation at the various levels of the node, module, and for
model selection. Beisser et al. [3] developed an approach
to identify the accuracy and variability of functional mod-
ules. They introduce a concept of consensus modules that
are derived from examining nodes and edges across boot-
strap replications. They use a predefined network, while
our method allows the network structure to change during
the resampling, and we are therefore simultaneously esti-
mating the network. The result of this approach is a single
module is then investigated to further define sub-regions,
within this module, that have high-support and functional
biological relationships. We view this approach as funda-
mentally different, as it does not offer the level of gran-
ularity for the specifications of several modules, does not
offer model selection, and requires a second post hoc level
of expertise and interpretation to pull out the sub-regions
that are accurate and functional. Weighted correlation net-
work analysis (WGCNA) [24] is another popular method
for identifying modules from a co-expression network that
is represented as a weighted and fully connected undi-
rected graph. The modules are defined as highly inter-
connected genes (nodes). Within the WGCNA framework,
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one can identify hub genes, and specify fuzzy member-
ships, and module significance is defined as the average
absolute gene significance measure of genes in a module.
Modules from different graphs can be compared for the
purpose of understanding module conservation between
experimental conditions, for example [19], but not as a
means of estimating stability.

The application of the bootstrapping approach to mod-
ule stability to the metabolomics dataset from an air pol-
lution study [28] demonstrates the utility of this approach
for omics data, high-dimensional data, and network analy-
sis in general. Although the stability levels were in the low
range, we were able to determine an appropriate threshold
and modules that resulted in biologically meaningful



142 TIAN et al.

modules. The stability measures directly quantify uncer-
tainty at the metabolite level and the module level enables
an investigator to harness additional insights about results
and prioritize this information in their conclusions and
future hypothesis. Downstream analysis, such as pathway
enrichment, can also be strengthened within this frame-
work. For example, stability estimates may be used as
node-level information that can be directly embedded into
the enrichment analysis [31]. This will be a direction of
future research.

The approach was developed and carried out on cor-
relation graphs. However, this method is generalizable to
other graphs that are derived from association measures.
In other words, correlation-based dissimilarity is simply
one metric to measure association, and as with most clus-
tering problem, the algorithm lends itself to any measure
of dissimilarity that satisfies the metric properties. This
approach can also be extended to the structural learn-
ing problem in Bayesian networks [23] to both assess the
stability of a candidate equivalence class, and when the
structure is learned in a sampling framework, the sta-
bility estimation can be used for Bayesian model averag-
ing [21]. These extensions will be the subject of future
research.

In conclusion, utilizing the notion of stability for mod-
ule detection in a graph enables us to characterize the
uncertainty in the modules at the level of the node,
module, and overall. Moreover, we demonstrate that this
approach can be used to select a threshold parameter from
which we define the graph. Our method is suitable for
high-dimensional data and eases the challenge of module
interpretation. This approach can be implemented in the
bootcluster package in the R programming language.
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