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INTRODUCTION 
 

Single cell gene expression changes are critical to fully 

understand neurological disease due to the significant 

cellular heterogeneity within the brain. However, the 

generation of such data requires very labor- and cost-

intensive approaches (like laser capture microdissection, 

LCM, or single-cell RNA sequencing, scRNA-Seq) 

typically to the detriment of overall sample size and  

 

statistical power. For these reasons, most of the gene 

expression profiling studies on post-mortem brains from 

Alzheimer’s disease (AD) patients have been conducted 

on tissue homogenates. However, several LCM studies 

on AD have been undertaken on microglia [1, 2], 

astrocytes [3] and neurons [4], but not in endothelial 

cells, oligodendrocytes, or any other cell type in the 

brain. Unsurprisingly, these LCM studies are relatively 

limited in their sample sizes (with all of them including 
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ABSTRACT 
 

Objective: We describe herein a bioinformatics approach that leverages gene expression data from brain 
homogenates to derive cell-type specific differential expression results.  
Results: We found that differentially expressed (DE) cell-specific genes were mostly identified as neuronal, 
microglial, or endothelial in origin. However, a large proportion (75.7%) was not attributable to specific cells due 
to the heterogeneity in expression among brain cell types. Neuronal DE genes were consistently downregulated 
and associated with synaptic and neuronal processes as described previously in the field thereby validating this 
approach. We detected several DE genes related to angiogenesis (endothelial cells) and proteoglycans 
(oligodendrocytes).   
Conclusions: We present a cost- and time-effective method exploiting brain homogenate DE data to obtain 
insights about cell-specific expression. Using this approach we identify novel findings in AD in endothelial cells and 
oligodendrocytes that were previously not reported. 
Methods: We derived an enrichment score for each gene using a publicly available RNA profiling database 
generated from seven different cell types isolated from mouse cerebral cortex. We then classified the differential 
expression results from 3 publicly accessible Late-Onset Alzheimer’s disease (AD) studies including seven different 
brain regions.  
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less than 48 total samples). A study conducted using 

scRNA-seq on brain cell nuclei in AD cases and controls 

was recently published [5]. The authors successfully 

sequenced individual nuclear RNA of 48 individuals (24 

with AD pathology, and 24 without pathology) from 6 

brain cell types (including oligodendrocytes), but 

excluding pericytes and endothelial cells due to the low 

cell counts in their resulting data. 

 

The study of more extensive sized sample collections is 

of great importance in AD due to the neuropathological 

(e.g., Braak and Consortium to Establish a Registry for 

Alzheimer's Disease - CERAD scoring), genetic (e.g., 

APOE carriers vs. non-carriers), and demographic (e.g., 

age-at-onset, race, ethnicity, and sex) variability 

observed across patients with the disease. Therefore, 

while LCM and scRNA-Seq studies directly address the 

cellular heterogeneity in brain tissue, their typical small 

sample sizes result in a general inability to explore 

some of the other variables of interest in AD due to 

power concerns. Ultimately, the overall goal of gene 

expression profiling in AD is to understand the 

transcriptome changes in all major cell types of the 

brain in a well-powered approach that would facilitate 

the exploration of all the variables mentioned above. 

 

Microglia are of interest due to their association with 

neuroinflammation in AD which has been shown to 

influence cognition [6]. Astrocytes are involved in brain 

homeostasis, and in AD they are linked to the 

production, degradation, and removal of Amyloid-β 

(Aβ). Astrocytes may also be included in the oxidative 

stress, and inflammatory changes noted in AD [7]. 

Neurons in the AD brain are characterized by synaptic 

loss, but also by defective neurogenesis, presumably 

caused by the abnormal accumulation of Aβ oligomers 

[8].  Endothelial cell dysfunction is also noted during 

the pathogenesis of AD. For instance, Amyloid plaque 

deposition and neurofibrillary tangle production may in 

part be due to the result of hypoxia due to the 

inadequate blood supply to the brain in AD [9]. The 

“vascular hypothesis” for AD argues that the cerebral 

hypoperfusion, resulting from vascular disease and 

aging, leads to the neuronal death and cognitive 

dysfunction in AD [10, 11]. Finally, oligodendrocytes 

may play a role in neurodegeneration due to the lower 

rate of re-myelination during aging, possibly due to age-

related DNA damage in these cells which seem to be 

more vulnerable than others to oxidative stress [12]. 

 

In addition to previously published approaches [13, 14], 

we describe herein a bioinformatics approach that can 

leverage expression profiling data from brain 

homogenate (or “bulk”) tissue to derive cell type-

specific differential expression and pathway analysis 

results. We applied our approach to different gene 

expression datasets derived from brain homogenate 

profiling from AD patients and Non-Demented controls 

(ND) from 7 different brain regions. We demonstrate 

the ability of this approach to highlight known 

neuronal-specific changes in the AD brain and utilize it 

to identify novel changes in endothelial cells and 

oligodendrocytes, two cell types not easily examined in 

the brain and for which only minimal gene expression 

knowledge exists in AD. 

 

RESULTS 
 

Proportion of cell-specific genes in the database 

 

The proportions for “mixed” and cell-specific genes in the 

public database from mouse cerebral cortex we utilized to 

define the ESHRD (Enrichment Score Homogenate RNA 

Deconvolution) are reported in Supplementary Figure 1. 

Differentially Expressed Genes (DEGs) we labeled as 

“mixed” represent the most prevalent class (73.4%), 

followed by DEGs labeled as microglia (6.6%), neuron 

(5.9%) and endothelial (5.7%). Astrocyte and 

oligodendrocyte labeled DEGs have a frequency of 3.6% 

and 3.1%, respectively.  

 

Method validation 

 

We used a dataset of Multiple System Atrophy (MSA) 

patients (n = 4) and controls (n = 5) to validate our 

ESHRD method. We conducted RNA expression 

profiling from both brain homogenates and 

oligodendrocytes obtained by LCM from the same 

donor brains and then calculated differential expression. 

We compared the concordance rate of the log2 Fold 

Change (FC) between the two analyses, filtering for 

different cutoffs (from False Discovery Rate - FDR < 

0.05 to FDR = 1.00 with a 0.001 step-wise increase), 

and selecting the overlapping oligodendrocyte specific 

genes. We observed a 100% concordance rate for all of 

the FDR cut-offs ≤ 0.280, and > 80% for FDR < 0.511. 

The concordance rate decreases to 60.6% when we do 

not apply any FDR filtering. The ρ Spearman’s 

correlation coefficient was variable when we compared 

less than 20 genes, and ranged from 0.227 to 0.400 for 

larger sets of compared genes, becoming statistically 

significant at FDR < 0.579 (n = 37 genes) 

(Supplementary Figure 2). 

 

Furthermore, we compare our results with the snRNA-

seq study from Mathys et al. [5]. We downloaded the 

complete differential expression results (comparison: 

pathology vs no-pathology), using the log2 fold change 

(FC) of the cell-level analysis including only genes with 

different log2 FC cutoffs  (log2 FC = 0, 0.25, 0.50, and 

1.00) without filtering for p-value aiming to include a 

larger number of genes. We considered only microglia 
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and astrocytes for a direct comparison with our data. In 

the snRNA-seq study there were two classes of neuronal 

genes (excitatory and inhibitory) and two classes of 

oligodendrocytes which was not possible to characterize 

using our classification approach. Therefore, neurons 

and oligodendrocytes were excluded from this 

comparison. We compared these lists with the DEGs 

obtained from the 7 brain regions we classified as cell 

specific genes for microglia (n = 487) and astrocytes (n 

= 318), and we evaluated the log2 FC concordance. 

Excluding the brain regions and cells for which we 

obtained little overlap (less than 10 overlapping genes), 

we observed a concordance rate ranging from 58.9% 

(parahippocampal gyrus: PHG) to 87.5% (dorsolateral 

prefrontal cortex: DLPFC) for astrocytes, and from 

57.5% (cerebellum: CBE) to 84.6% (superior temporal 

gyrus: STG) for microglia (Supplementary Table 1).  

 

Prevalence of DEGs among cell types and regions in 

Alzheimer’s disease brains 

 

The number of DEGs in the Alzheimer’s disease 

datasets ranged from 175 (in the inferior frontal gyrus: 

IFG) to 7,030 (temporal cortex: TCX) (Supplementary 

Figure 3). Using ESHRD, we classified all of the DEGs 

for a total of 15,806 genes, with 8,969 unique gene 

symbol (several genes were differentially expressed in 

multiple regions). We detected 32 different classes of 

genes based on their cell type specificity. Besides the 

“mixed” gene class, and the five cell-specific classes, 

we detected 26 classes where the expression was 

relevant in more than one cell type (Supplementary 

Table 2). When considering all of the DEGs across the 

brain regions represented in the selected AD studies, the 

“mixed” gene class were the most represented (n = 

11,964; 75.7%), followed by neuron (n = 916; 5.8%), 

microglia (n = 885; 5.6%), endothelial (n = 830; 5.3%), 

astrocyte (n = 581; 3.7%) and oligodendrocyte classes 

(n = 375; 2.4%). The prevalence of genes expressed in 

single cell types show a mostly consistent pattern across 

the brain regions. Of note, neuronal genes are the most 

represented class of DEGs in 5 brain regions, but not in 

TCX and CBE, where the most represented DEGs 

classes are endothelial and microglia, respectively 

(Figure 1). 

 

Log2 FC distribution of gene classes 

 

We report the log2 FC distribution of the genes 

represented in the single cell classes in each brain 

region (Table 1), representing the results as a heatmap 

(Figure 2). 

 

Neuronal class DEGs are consistently downregulated 

in all of the brain regions except frontal pole (FP) 

(where 56.3% of Neuron DEGs are upregulated) and 

CBE (51.6% are upregulated). The result for FP was 

confirmed when we used less conservative FDR 

cutoffs to include a larger number of genes 

(Supplementary Figure 4). Microglia class DEGs are 

upregulated in all regions except FP (where only 

42.9% of microglia DEGs are upregulated). 

Endothelial cell-specific DEGs are upregulated in all 

regions, except FP (22.2% are upregulated) and IFG 

(25.0% are upregulated). The astrocyte-specific DEG 

class is upregulated in TCX, STG, inferior frontal 

gyrus (IFG), and PHG, but demonstrates a 

downregulation in other regions, especially in CBE. 

Finally, we observed the oligodendrocyte DEG class 

as upregulated in all of the regions (especially in 

DLPFC and FP) except STG and CBE. 

 

In some cases, the prevalence of cell type-specific genes 

among the DEGs was higher than expected by chance. 

We assessed this association by permutation analysis, 

and we report the results in the heatmap in Figure 2. 

The neuron gene class is significantly prevalent in more 

regions (TCX, STG, IFG, and PHG) followed by the 

microglia gene class (enriched in TCX, STG, and IFG). 

 

Cell-specific pathways analysis 

 

Using Gene Ontology (GO), we identified significantly 

enriched processes for each cell type (Supplementary 

Table 3A–3C; Supplementary Figure 5). Genes showing 

the most specific functional classes were neurons 

(synaptic and neuronal), endothelial (vascular and 

angiogenesis), and microglia (immune system). Astrocyte 

genes were enriched in developmental processes and cell-

cell signaling, whereas oligodendrocytes were enriched 

for developmental and neurogenesis processes (Figure 3).  

 

 
 

Figure 1. Prevalence of gene classes expressed in 
different cells across the brain regions analyzed. 
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Table 1. Percentage of upregulation (% of genes with log2 FC > 0 and FDR < 0.05) for each brain region and cell type. 
In brackets, the number of DEGs classified is reported. 

Cell TCX (5,514) STG (594) DLPFC (1,363) FP (282) IFG (119) PHG (4,123) CBE (4,211) 

Mixed 47.4 38.0 54.4 54.8 38.8 44.6 48.8 

N 16.2 4.8 39.3 56.3 5.6 9.3 51.6 

M 83.7 92.6 74.0 42.9 71.4 81.0 74.1 

EC 84.5 79.5 59.2 22.2 25.0 72.2 76.8 

A 80.8 71.4 46.2 50.0 60.0 74.5 39.2 

O 56.1 20.0 75.0 85.7 60.0 57.6 41.4 

Examining only the upregulated genes, we did not 

observe any enrichment for neuronal genes, but we 

confirmed almost all of the processes found in 

microglia, endothelial cells, and astrocytes in the total 

analysis. When using only the downregulated genes, we 

established the enrichment for neuron-specific genes, 

and we observed enrichment for postsynaptic membrane 

classes in oligodendrocytes (Supplementary Figure 5).  

 

When we used the REACTOME database, we 

confirmed the pathways detected with the GO analysis 

(Supplementary Table 4A–4C). Furthermore, we 

identified the “GPCR ligand binding” pathway in 

neuronal cell-specific genes and platelet-related  

 

 
 

Figure 2. Heatmap representing the proportion of up-
regulated AD genes for cell type and brain region in cell-
specific and “mixed” genes. The stars represent a significant 

enrichment of a particular gene type among DEGs. 

pathways in endothelial cells. In microglia, we 

confirmed the immune pathways, with strong 

enrichment for “Neutrophil Degranulation” and several 

classes of Toll-Like receptor cascades. Finally, in 

oligodendrocyte specific upregulated genes we found 

enrichment for glycosaminoglycan pathways including : 

“Chondroitin sulfate/dermatan sulfate metabolism,” 

“Disease of glycosylation”, and “Syndecan interactions” 

(Supplementary Figure 6). 

 

Brain region cell-specific pathway and GSEA 

analysis 

 

Using GO, we were able to detect significantly 

enriched processes in all the regions except DLPFC 

and FP. In all of the remaining regions we detected 

enrichment for microglia upregulated genes for 

immune processes, whereas the neuronal 

downregulated genes were enriched for synaptic 

processes in TCX, STG, and PHG. Endothelial genes 

were enriched for “Angiogenesis” and “Plasma 

membrane” classes in TCX and CBE, whereas in PHG 

the same genes were mostly enriched for “Cell 

signaling” and “Extracellular matrix” processes. 

Astrocytes were enriched for Developmental Processes 

and Neurogenesis in TCX and PHG. Finally, 

oligodendrocytes were enriched for “Extracellular 

matrix” and “Postsynaptic membrane” in TCX 

(Supplementary Table 5; Supplementary Figure 7). 

 

To further explore the brain region-specific 

enrichment, we used Gene Set Enrichment Analysis 

(GSEA). The most relevant findings not detected in 

the previous analysis were for astrocytes, with the 

enrichment of “Innate Immune System” in FP and 

PHG. We also observed several classes related to 

GPCR receptors in the IFG for neuronal genes (also 

detected with REACTOME analysis using the whole 

list of genes). Finally, we confirmed the enrichment 

for the process “Disease of glycosylation” in 

oligodendrocytes in TCX (Supplementary Table 6 and 

Supplementary Figure 8). 
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DISCUSSION 
 

Overview 

 

We propose herein a bioinformatics method termed 

ESHRD to derive cell type-specific differential 

expression and pathway analysis results by leveraging 

expression profiling data from brain homogenates. We 

applied ESHRD to different large RNA profiling 

datasets in AD that included many different brain 

regions. This approach allowed us to identify classes 

of genes expressed in specific cell types, and 

functionally related for processes not identifiable using 

the complete expression information obtained from the 

“bulk” tissue analysis.  

Homogenate, LCM and snRNA sequencing 

comparison using ESHRD 

 

To examine the ability of the ESHRD approach to 

estimate cell type-specific gene expression results we 

compared the data obtained from brain homogenates 

and oligodendrocytes obtained by LCM from MSA 

cases and controls. We demonstrated that by using brain 

homogenates and ESHRD, we could detect 85.1% (n = 

109) of oligodendrocyte genes found in the laser-

captured oligodendrocytes. Furthermore, the log2 FC 

concordance between differential analyses was always 

larger than 60% regardless the FDR cutoff, with values 

ranging from 80% to 100% for FDR < 0.511, 

demonstrating that the DEG results we calculated in 

 

 
 

Figure 3. Top 15 significant GO classes identified in the different cell types combining the results for the seven brain regions 
analyzed. The color scale indicates the significance (blue to red as the significance increases), whereas the size shows the number of genes 

in that specific enriched class in AD. 
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homogenates using ESHRD are in high concordance 

with what we observe after LCM. Additionally, the 

comparison of the DEGs classified as microglia or 

astrocytes from AD data from a recent snRNA-seq 

study [5] yielded a concordance rate from 58.8% (CBE, 

microglia) to 88.9% (STG, astrocytes). 

 

Neuronal, endothelial cells, and microglia are the 

most represented “cell-specific” gene classes in AD 

brain 

 

The “Mixed” genes, those not attributable to specific 

cells, were the most represented among DEGs (75.7%). 

This finding isn’t surprising as one may expect a high 

majority of genes to be shared in expression across cell 

types as they presumably encode proteins that perform 

core functions for all cells such as metabolism. The 

most “cell-specific” gene classes represented were 

neurons (5.8%), microglia (5.6%), and endothelial cells 

(5.3%). These same three types of cell-specific genes 

are the most represented across all of the brain regions 

we examined. The least designated class was 

oligodendrocytes (Total: 2.4%). The neuron-specific 

DEG class was the most prevalent class in all of the 

examined brain regions except STG and CBE. In those 

two regions, the most represented class of DEGs were 

microglia specific genes. Neurons were significantly 

overrepresented among the DEGs in 4 regions (TCX, 

STG, IFG, and PHG).  

 

The proportion of cells types, and especially the 

overrepresentation of the neuronal cell-specific class, is 

probably correlated to the differential cellular 

susceptibility to AD. The neuron/glia ratio estimates for 

the whole brain range from 1:10 [15–17] to 1:1 [18]. 

The prevalence of gene classes we detected may reflect 

the main processes present in AD: neurodegeneration 

[19] (neurons), neuroinflammation [20] (microglia) and 

brain vascular changes [21] (endothelial cells). 

 

Neuronal specific genes are downregulated and 

enriched for synaptic processes in AD 

 

The neuronal DEGs are consistently significantly 

downregulated in all of the brain regions of AD 

patients, except FP (56.3% are upregulated) and CBE 

(51.6% are upregulated). The result found for FP might 

be biased by the small number of neuronal genes 

detected (n = 16), a consequence of the overall low 

number of DEGs observed in this brain region. 

However, the same result was confirmed and 

strengthened when we used less conservative cutoffs 

aiming to include a larger number of neuronal genes. 

Hyperexcitability of neurons was observed to be 

promoted by amyloid-β1–42 [22, 23]. Busche et al. 

observed an increased number of hyperactive neurons in 

the hippocampal CA1 subregion of young APP/PS1 

transgenic mice suggesting that soluble Aβ oligomers 

may directly induce neuronal hyperactivity [24], 

contributing to malfunction of hippocampal circuitry 

and causing memory impairment [25, 26]. Finally, 

Ciccone et al. found a key role of Nav1.6 channels as 

determinant for hippocampal neuronal hyperexcitability 

[27]. Perhaps these mechanisms are at play in the FP 

and may be resulting in the neuron-specific gene 

upregulations. 

 

Our results are in agreement with a recent  snRNA-

seq study from the prefrontal cortex [5], in which the 

two types of neurons investigated (inhibitory and 

excitatory) show dysregulation in AD (75% in 

inhibitory and 95% in excitatory neurons). This result 

demonstrates how the disease may potentially affect 

the neuronal cells across many brain regions, and this 

is especially true in the temporal lobe and the 

hippocampus – areas affected earlier in the 

pathological progression of the disease in comparison 

to the other regions we analyzed [28]. In the brain 

regions where we observed a sharply decreased 

expression of neuron-specific genes we also detected 

a significant enrichment for those genes to reside in 

neuronal and synaptic process defined pathways. We 

also found a strong downregulation of neuron-specific 

genes in the IFG. Of note, the IFG is generally 

considered to be a brain region affected relatively late 

in AD [28]. Interestingly, the set of neuron-specific 

genes downregulated in the IFG are different 

compared to the other regions and are more closely 

enriched for “GPCR signaling” (G protein-coupled 

receptors) based on GSEA. GPCRs are implicated in 

AD and the processing of APP [29].  

 

Microglia show different patterns of expression 

across brain regions 

 

Microglia specific genes demonstrate a consistent 

increased gene expression pattern across the brain 

regions we examined, except the FP. The discordant 

results observed for FP might be a consequence of the 

low number of microglia genes analyzed (n = 7). Our 

findings are concordant with the snRNA-Seq study 

describing upregulation of microglia genes [5]. 

Enrichment analysis demonstrated a prevalence of 

transcripts related to immune system processes across 

all of the regions, excluding FP and DLPFC. Among the 

specific immune processes detected in microglia 

specific genes, we observed “Neutrophil degranulation” 

and several classes of Toll-Like Receptor (TLR) 

signaling cascades. These results confirm the known 

involvement of microglia in the brain immune processes 

[30] and the association with neuroinflammation 

observed in AD [6]. Multiple lines of evidence suggest 
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that AD is promoted by innate immune mechanisms in 

the central nervous system [31, 32] 

 

The role of neutrophils in AD has been reported in both 

animal models and humans. For example, it was 

observed in two transgenic models of AD (5xFAD and 

3xTg-AD mice) that neutrophils infiltrate and 

accumulate in the CNS during all stages of AD and may 

play a role in microglia activation, synaptic dysfunction, 

and the accumulation of abnormal Aβ and tau [33]. 

Interestingly, astrocytes can differentially regulate 

neutrophil function, including degranulation [34], as 

well as produce neutrophil attractant chemokines [35]. 

This mechanism has not been described in microglia. 

However, both microglia and astrocytes in AD secrete 

pro-inflammatory cytokines into the surrounding brain 

tissue rich in Aβ deposits, potentially contributing to the 

intraparenchymal NET formation and generating 

crosstalk with intraparenchymal neutrophils [36] 

 

Endothelial genes are upregulated in AD and 

enriched for angiogenesis and vascular functional 

processes 

 

Endothelial cell-specific transcripts were upregulated 

across all studied regions, with the exclusion of FP and 

IFG, the regions with the lowest number of DEGs. We 

observed a general enrichment of pathways related to 

vascular development and angiogenesis in the significant 

endothelial cell DEGs, especially in the TCX and CBE, 

but not in other regions. Vascular abnormalities are 

considered an essential hallmark of AD, and according to 

the “Vascular Hypothesis,” cerebral hypoperfusion may 

be a major contributor to AD pathogenesis [21]. Our 

results are also concordant with a recent study conducted 

in the Tg4510 tauopathy rodent model, where the authors 

observed increased brain vascularization, and an 

upregulation of vascular remodeling genes in endothelial 

cells of the transgenic animal [37]. Another study 

described the presence of upregulation of an angiogenic 

transcription factor (Ets-1) as well as its co-localization 

with VEGF in the AD brain [38].  

 

Astrocytes are enriched in SLC transport and 

immune processes in AD 

 

Astrocyte genes were upregulated in 4 regions, in 

agreement with the snRNA-Seq study [5]. We were not 

able to detect many specific processes related to 

astrocytes in this study. Most of the genes were 

included in the non-specific “Developmental processes” 

category. Using REACTOME, we found enrichment for 

“SLC-mediated transmembrane transport” whereas 

using GSEA we detected enrichment in “Immune 

system” functional classes in FP and PHG, but they 

only included four and five genes, respectively. 

However, this last result would confirm a previous 

study conducted on astrocytes isolated by LCM from 

human AD brains [3]. 

 

Oligodendrocytes are enriched for the Glycoprotein 

metabolism in Alzheimer’s disease 

 

Oligodendrocytes were upregulated in almost all of the 

brain regions, as described in the snRNA-seq study [5], 

except for STG and CBE. We detected an enrichment of 

upregulated genes associated with post-synaptic 

membranes and proteoglycan metabolism. Proteoglycans, 

specifically glycosaminoglycans, play several roles in 

amyloid formation including promoting the aggregation 

of Aβ into insoluble amyloid fibrils, which contributes to 

the increased neurotoxicity of Aβ [39]. 

 

The role of oligodendrocytes in AD became relevant in 

recent years due to neuroimaging studies that 

highlighted the micro- and macro-structural 

abnormalities in white matter associated with disease 

progression [40]. The anomalies were primarily 

observed in areas with physiologically low perfusion 

levels and where white matter density is known to 

decrease in healthy aging and AD [41]. Interestingly, 

some studies reported that white matter pathology might 

emerge before the appearance of cortical plaques and 

tangles [42, 43], suggesting that white matter 

abnormalities, as well as impaired myelination and 

oligodendrocyte function,  could promote cognitive 

impairment and AD pathology [40]. 

 

Comparison with previous studies 

 

Itoh et al. [13] conducted a study using public datasets 

from Parkinson’s Disease, Multiple Sclerosis and AD, 

classifying the genes using sorted cell data from the 

same database we used [44]. However, they did not 

define any specific cutoff to attribute the single cell 

expression, simply including the top 500 genes for each 

cell class. Additionally, they analyzed a small AD 

dataset (AD = 21; non-demented: ND = 22) from STG 

characterized with microarray technology, compared to 

our dataset which was characterized with RNA 

sequencing including 1,019 samples from 7 distinct 

brain regions. The results differ since they were not able 

to detect upregulation of endothelial and astrocytes 

genes in AD. Wang et al. [14] classified the DEGs 

obtained in their AD study across 19 brain regions using 

a method based on Bayesian negative binomial 

regression. Despite the large number of brain regions 

the sample size was limited (averaging 55 donors for 

each brain region). They found downregulation of 

neuronal genes across multiple regions, upregulation of 

neuronal genes in Inferior Frontal Gyrus (IFG), and 

upregulation of astrocyte and oligodendrocyte genes 
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across a few regions. However, they were not able to 

find specific patterns for endothelial cells and they did 

not investigate cell-specific biological processes or 

pathways. 

 

CONCLUSIONS 
 

In this manuscript, we describe a bioinformatics 

approach, termed ESHRD, that can leverage existing or 

new homogenate-based (“bulk”) RNA sequencing data 

to deconvolute and quantitate cell-specific transcripts 

from brain tissue. ESHRD can reliably detect cell-

specific changes based on our LCM study of 

oligodendrocyte gene changes in multiple system 

atrophy patients. The ESHRD approach replicates 

previously published findings in neurons from AD 

patient brain specimens, and we extended our work to 

characterize novel AD-related changes in relatively 

unexplored cell types in AD, oligodendrocytes and 

endothelial cells.  

 

The use of a simple bioinformatics-based approach to 

perform cell-specific analyses from homogenate data is 

not without limitations. The majority of transcripts in 

brain tissue is not cell-type specific and therefore cannot 

be assigned using ESHRD. Also, the alteration of a 

multi cell-specific transcript in only one particular cell 

type will not be identified by using our approach. For 

example, if a specific gene is part of basal cellular 

metabolism and was therefore classified as a “mixed” 

gene due to its expression in many cell types in the 

brain, if the presence of disease induces a change in this 

gene but only in one cell type ESHRD will not be able 

to assign that change appropriately. Additionally, our 

approach cannot identify a transcriptional effect 

whereby a microglial cell is influenced by the disease to 

begin transcribing a neuronal specific gene. In that case, 

ESHRD would assign the changes in the neuronal gene 

transcription to neurons and not to microglia where in 

reality the underlying transcriptional changes are 

occurring. 

 

Despite these limitations, we propose that the approach 

described herein is an extremely beneficial way to 

leverage existing bulk RNA-Seq data and may constitute 

a “first step” toward cell-specific investigations by many 

who are not able to perform LCM or scRNA-Seq on their 

samples. Large-sized studies are essential to capture 

information about human variation in disease and while 

cell-specific transcriptional analyses are possible via LCM 

or scRNA-Seq their associated time and cost restraints 

typically force the execution of a study design that 

consists of a smaller collection of cases and controls. We 

estimate that the costs associated with LCM or scRNA-

Seq are approximately 5X that of a bulk tissue sequencing 

study, therefore, for the same cost one may conduct a cell-

type specific experiment that is dramatically 

underpowered compared to a bulk tissue study. 

Additionally, using the ESHRD deconvolution approach 

one can garner information on many cell types at once; 

however, with LCM, this goal would be a multiplier of 

effort and costs. The use of scRNA-Seq is revolutionizing 

how transcriptional profiling is performed. However, one 

of the major constraints on the scRNA-Seq workflow is 

the creation of reproducible single cell suspensions from 

brain tissue and in fact most studies in humans utilize 

single nuclei sequencing as a single cell suspension of 

intact whole cells is difficult to obtain from frozen tissue. 

While scRNA-Seq can indeed provide an unbiased profile 

of all cell types in the sample that is only true if the 

complications associated with the creation of the uniform 

single cell or nuclei suspension can be avoided. There are 

no such concerns with homogenate-based RNA 

sequencing since the RNA is isolated in bulk from a piece 

of dissected brain tissue. In short, we provide an analytical 

approach that we demonstrate is informative and cost/time 

effective for extracting cell-type specific information from 

brain homogenate RNA profiling data. 

 

MATERIALS AND METHODS 
 

ESHRD score and gene classification 

 

We downloaded the data from Zhang et al. [44], 

including the cell-specific expression values determined 

by RNA sequencing from mouse cerebral cortex, 

(http://web.stanford.edu/group/barres_lab/brain_rnaseq.ht

ml). The dataset consists of expression values in 

Fragments Per Kilobase transcript per Million mapped 

reads (fpkm) for 22,458 genes in: neurons (N), astrocytes 

(A), microglia (M), myelinating oligodendrocytes (MO), 

newly formed oligodendrocytes (NFO), oligodendrocyte 

precursor cells (OPC), and endothelial cells (EC). The 

original authors noted that the OPC fraction is 

contaminated with 5% of microglia [44]. We removed 

genes with fpkm = 0.1 in all of the cell types (n = 6,157 

genes removed) because this level of expression is 

deficient and may contribute false positive noise to the 

assessment of cell-specific transcripts. Therefore, the 

final dataset used for our classification approach included 

16,301 genes. After the conversion of the mouse gene 

symbols to known human genes, the definitive database 

used for classification contained 13,384 unique H. 

sapiens Ensembl IDs. 

 

For each gene and cell type, we computed an 

enrichment score (ES) by dividing the fpkm value in the 

reference cell type by the averaged fpkm values from the 

other cell types. Then, each gene was assigned to one or 

multiple cell classes according to their ES. First, we 

computed the highest ES (EShigh) for each gene. Then, 

comparing the EShigh with the other scores for each cell 
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type, we defined three different classes of genes: a) cell-

specific; b) multiple cell-specific, and c) mixed. Class 

“a” (cell-specific) included genes highly expressed only 

in one cell type, and with demonstrably low or no 

expression in all the other cells. Specifically, the ES in 

the other cells was less than or equal to 25% of the 

EShigh (ES ≤ EShigh x 0.25). Class “b” (multiple cell-

specific) includes genes simultaneously highly 

expressed in more than one cell type. For this gene 

class, ES should be greater than or equal to 75% of the 

EShigh (ES ≥ EShigh x 0.75). Finally, class “c” (mixed) 

includes genes with at least one cell type with ES 

between 25% and 75% of EShigh. For this class of genes, 

it is impossible to assign the gene to only a small set of 

cell types in the brain. Specifically for this class (EShigh 

x 0.75) ≥ ES ≥ (EShigh x 0.25). We also created an 

additional pan-oligodendrocyte class by combining 

across all of the oligodendrocyte sub-types (MO, NFO, 

OPC, MO/NFO, MO/OPC, and NFO/OPC). We term 

this bioinformatics approach Enrichment Score 

Homogenate RNA Deconvolution or “ESHRD” 

(pronounced e-shred).  

 

The enrichment for specific cell types was conducted by 

permutation analysis. In each differential expression 

dataset, and for each cell type, we randomly sampled 

(50,000 times) from the entire list of genes the number 

of genes corresponding to the DEGs detected for that 

specific cell type. For each permutation, we assessed the 

number of genes expressed in that particular cell type, 

and we compared that to the actual number of DEGs 

detected. We considered it to be a statistically 

significant enrichment when the number of observed 

cell-specific DEGs was larger than the number of cell-

specific sampled genes in at least 95% of the 

permutations. 

 

Multiple system atrophy dataset 

 

We used an MSA dataset to conduct a comparative 

analysis between brain homogenates, and LCM’d 

oligodendrocytes from the same donors following 

expression profiling. We performed RNA profiling on 

white matter cerebellum samples from 4 MSA patients 

and five controls, both on tissue homogenates and 

oligodendrocytes isolated by LCM. Samples were from 

the Brain and Body Donation Program (Sun City, AZ) 

[45] and New South Wales (NSW) Brain Bank 

(Sydney, AU). Sex, age, and PMI distribution between 

cases and controls were not significantly different (p > 

0.200). For the brain homogenate profiling, RNA was 

extracted using the Qiagen miRNAeasy kit and was 

DNAse-treated (Qiagen). Quality was assessed by 

Bioanalyzer (Agilent). Sequencing libraries were 

prepared with 250 ng of total RNA using Illumina’s 

Truseq RNA Sample Preparation Kit v2 (Illumina, Inc.) 

following the manufacturer’s protocol. The final library 

was sequenced by 50 bp paired-end sequencing on a 

HiSeq 2500.  

 

For the isolation of oligodendrocytes, a total of 300 

cells per sample were captured using Arcturus CapSure 

Macro LCM Caps (Applied Biosystems). 

Oligodendrocytes were identified using a modified 

H&E staining protocol adapted from Ordway et al. [46]. 

RNA was extracted immediately after cell capture using 

the Arcturus PicoPure RNA Isolation Kit (Applied 

Biosystems). For library preparation, the SMARTer® 

Stranded Total RNA-Seq Kit - Pico Input 

(Clontech/Takara) was used. Samples were sequenced 

(2 x 75 bp paired-end run) on the Illumina HiSeq2500. 

 

Reads were aligned to the Human reference genome 

(GRCh37) using the Spliced Transcripts Alignment to a 

Reference (STAR) software v2.5 [47], then summarized 

as gene-level counts using featureCounts 1.4.4 [48]. 

Outlier and batch effect detection were conducted 

through Principal Component Analysis (PCA), using R 

software v3.3.1 [49]. Gene expression differential 

analyses between MSA cases and controls were 

conducted using the R package DESeq2 v1.14.1 [50] 

including age, gender, PMI and sample source as 

covariates. The p-values were adjusted using the False 

Discovery Rate (FDR) method [51]. 

 

Alzheimer’s disease datasets 

 

We applied our ESHRD method to different human 

RNA sequencing datasets from Late Onset AD patients 

and ND (non-demented) control samples. We 

considered: temporal cortex (TCX), superior temporal 

gyrus (STG), dorsolateral prefrontal cortex (DLPFC), 

frontal pole (FP), inferior frontal gyrus (IFG), 

parahippocampal gyrus (PHG), and cerebellum (CBE). 

TCX and CBE data were from the Mayo Study [52], 

DLPFC data were from ROSMAP study (Religious 

Order Study and Memory and Aging Project) [53], and 

STG, FP, IFG, and PHG were from the Mount Sinai 

study [54] (AD = 633; ND = 383) (Table 2).  

 

Differential expression results were downloaded from the 

AMP-AD portal (#syn14237651) selecting the 

“Diagnosis” model, where the AD and control definitions 

were harmonized across studies by defining cognitive 

scores, Braak staging, and tau pathology. All the details of 

the analysis workflow can be found at https:// 

www.synapse.org/#!Synapse:syn14237651. Briefly, 

library normalization and covariate adjustment were 

conducted for each study separately. Low expressed genes 

showing less than 1 CPM (read Counts Per Million Total 

reads) in at least 50% of samples in each tissue and 

diagnosis category were filtered out. Data were

https://www.synapse.org/#!Synapse:syn14237651
https://www.synapse.org/#!Synapse:syn14237651
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Table 2. Sample size and details of the datasets used in this study 

Brain Region AD ND Study 

Temporal Cortex (TCX) 80 71 MAYO 

Superior Temporal Gyrus (STG) 85 37 MOUNT SINAI 

Dorsolateral Prefrontal Cortex (DLPFC) 155 86 ROSMAP 

Frontal Pole (FP) 90 45 MOUNT SINAI 

Inferior Frontal Gyrus (IFG) 79 37 MOUNT SINAI 

Parahippocampal Gyrus (PHG) 65 38 MOUNT SINAI 

Cerebellum (CBE) 79 72 MAYO 

normalized with conditional quantile normalization and 

then using a weighted linear model using voom-limma 

package [55]. Outliers were removed if both identified by 

hierarchical clustering and PCA. Expression values were 

adjusted for covariates associated with top principal 

components explaining more than 1% of variance of 

expression residuals. Differential expression was 

performed as weighted fixed/mixed effect linear models 

using the voom-limma package in R separately for each 

study. For the Mayo and MSMM study, including 

multiple brain regions, donor specific effects were 

explicitly modeled as random effects.  For the ESHRD 

classification, we selected differentially expressed genes 

(DEGs) with FDR < 0.05.  

 

Pathway and enrichment analysis 

 

Enrichment analysis was performed with Gene 

Ontology (GO) [56] and REACTOME [57] databases. 

We also conducted Gene Set Enrichment Analysis 

(GSEA), referencing to the REACTOME database 

using 10,000 permutations. In this case, we used all of 

the genes classified as the input list, regardless of their 

FDR. All of the analyses were conducted using the R 

packages anRichmentMethods and ReactomePA [58]. 

The p-values were adjusted with the Bonferroni method 

and pathways were considered an adj p < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

Supplementary Figure 1. Barplot representing the number of genes for each class in the Single Cell RNA sequencing database 
[10].  
 

 

 

Supplementary Figure 2. Comparison of expression profiling of oligodendrocyte genes between bulk tissue and 
oligodendrocytes isolated by LCM in the same samples. The red line is the percent concordance of the direction of effect between 

bulk RNA-Seq and LCM. The Black and Blue line reflects the Spearman correlation coefficient (multiplied by 100) for the log2 fold-change 
between the two groups – black represents non-significant correlation coefficient results and the blue line is for significant results. The bar 
plot in the background reflects the number of genes included in the analysis. 
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Supplementary Figure 3. Differentially expressed genes classified for the Alzheimer’s Disease dataset. TCX: temporal cortex; 

STG: superior temporal gyrus; DLPFC: dorso-lateral prefrontal cortex; FP: frontal pole; IFG: inferior frontal gyrus; PHG: para-hippocampal 
gyrus; CBE: cerebellum. 

 

 

 

 

Supplementary Figure 4. Pattern of downregulation/upregulation for neuronal specific genes in FP as a function of different 
FDR cutoffs. The red line is the percent of upregulated neuronal genes in FP. The bar plot in the background reflects the number of genes 

included in the analysis depending on the FDR cutoff. 
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Supplementary Figure 5 (3 pages). Top 15 significant GO classes identified in the different cell types combining the results 
for the seven brain regions analyzed. The color scale indicates the significance (blue to red as the significance increases), whereas the 

size indicates the number of genes in that specific enriched class. Page 1: Upregulated and Downregulated genes. Page 2: Upregulated genes. 
Page 3: Downregulated genes. 
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Supplementary Figure 6 (3 pages). Top 15 significant REACTOME pathways identified in the different cell types combining 
the results for the seven brain regions analyzed. The color scale indicates the significance (blue to red as the significance increases), 

whereas the size shows the number of genes in that specific enriched class. Page 1: Upregulated and Downregulated genes (same as Figure 
4). Page 2: Upregulated genes. Page 3: Downregulated genes. 
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Supplementary Figure 7 (13 pages). Top 15 significant GO classes identified in the different cell types in each of the seven 
brain regions analyzed. The color scale indicates the significance (blue to red as the significance increases), whereas the size indicates the 

number of genes in that specific enriched class. 
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Supplementary Figure 8 (6 pages). Most relevant results from the GSEA by brain region.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–6 
 

Supplementary Table 1. Log2 FC concordance between DEGs classified as astrocyte or microglia speciifc, and results 
from snRNA-seq analysis from Mathys et al. (2019). 

 

Supplementary Table 2. Prevalence of gene classes by region. The number of DEGs is reported in brackets. 

 

Supplementary Table 3. Cell specific Gene Ontology analysis. 

(A) all genes; 

(B) upregulated genes; 

(C) downregulated genes. 

 

Supplementary Table 4. Cell specific REACTOME pathway analysis. 

(A) all genes; 

(B) upregulated genes; 

(C) downregulated genes. 

 

Supplementary Table 5. Cell specific GO analysis. 

(A) TCX (All genes); 

(B) TCX (Upregulated genes); 

(C) TCX (Downregulated genes); 

(D) STG (All genes); 

(E) STG (Upregulated genes); 

(F) STG (Downregulated Genes); 

(G) IFG (All genes); 

(H) IFG (Upregulated genes); 

(I) PHG (All genes); 

(J) PHG (Upregulated genes); 

(K) PHG (Downregulated Genes); 

(L) CBE (All genes); 

(M) CBE (Upregulated genes). 

 

Supplementary Table 6. Complete results of the GSEA by brain region. 


