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ABSTRACT Bacterial biodegradation is a significant contributor to remineralization of
polycyclic aromatic hydrocarbons (PAHs)—toxic and recalcitrant components of crude
oil as well as by-products of partial combustion chronically introduced into seawater
via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed
at which a seed PAH-degrading community maintained by chronic inputs responds to
acute pollution. We investigated the diversity and functional potential of a similar
seed community in the chronically polluted Port of Los Angeles (POLA), using stable
isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incor-
poration rate measurements at the port and in two sites in the San Pedro Channel.
We demonstrate the ability of the community of degraders at the POLA to incorporate
carbon from naphthalene, leading to a quick shift in microbial community composi-
tion to be dominated by the normally rare Colwellia and Cycloclasticus. We show that
metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders
by matching their 16S-rRNA gene with experimental stable isotope probing data.
Surprisingly, we did not find a full PAH degradation pathway in those genomes, even
when combining genes from the entire microbial community, leading us to hypothe-
size that promiscuous dehydrogenases replace canonical naphthalene degradation
enzymes in this site. We compared metabolic pathways identified in 29 genomes
whose abundance increased in the presence of naphthalene to generate genomic-
based recommendations for future optimization of PAH bioremediation at the POLA,
e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and
polar amino acids.

IMPORTANCE Oil spills in the marine environment have a devastating effect on ma-
rine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons
and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria
occur naturally in the ocean, especially where they are supported by chronic inputs
of oil or other organic carbon sources, and have a significant role in degradation of
oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic compo-
nent of crude oil. Therefore, the bacteria that can break those molecules down are
of particular importance. We identified such bacteria at the Port of Los Angeles
(POLA), one of the busiest ports worldwide, and characterized their metabolic capa-
bilities. We propose chemical targets based on those analyses to stimulate the activ-
ity of these bacteria in case of an oil spill in the Port POLA.

KEYWORDS metagenomics, aromatic hydrocarbons, bioremediation, marine
microbiology, microbial ecology, stable isotope probing

Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant, mutagenic, and carcino-
genic components of fossil fuel as well as by-products of incomplete combustion

but are also part of cosmic dust, hydrothermal vent plumes, and algae (1, 2). Microbial
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biodegradation has an important role in PAH remediation alongside physical weather-
ing processes (3). Biodegradation of PAHs captured much scientific attention after the
Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in 2010. Several studies meas-
ured PAH degradation rates (4, 5) and showed enrichment of known PAH-degrading
bacteria in beaches, surface water, the deep-sea plume, and sediments even months
after the spill began (6–11). Bacteria known to have the ability to utilize PAHs as a car-
bon source include strains of Cycloclasticus, Colwellia, Pseudomonas, Alteromonas, and
others (7, 12–14). Many coastal sites worldwide experience chronic input of PAHs,
mainly from atmospheric deposition and natural oil seeps. Recent studies show that
chronic pollution supports a consistent “seed” of PAH-degrading bacteria which can
respond quickly to acute pollution such as an oil spill (7, 12–18). However, seed com-
munities of PAH-degrading bacteria are ubiquitous in the world’s oceans and are
thought to be supported by biogenic, geological, and extraterrestrial PAH sources (2).

Stable isotope probing (SIP) is a well-established method for the identification of
environmental bacteria utilizing targeted substrates, in this case PAHs (19, 20). 13C-la-
beled PAHs are added to samples and incorporated into the DNA of PAH-utilizers,
causing its density to increase. Heavier DNA can then be physically separated in a den-
sity gradient. A large-scale SIP study was performed on DWH surface and deep-plume
water, revealing local strains of PAH-degrading bacteria that responded to the input of
hydrocarbons (7). Some genomes of those bacteria were assembled from mesocosm
metagenomes in order to further explore their PAH metabolism (21). The studies men-
tioned above, like many others, focus only on the high-density (i.e., most heavily 13C-la-
beled) fractions under the assumption that the most heavily labeled organisms, and
thus the main targets, will be found there. However, this strategy may lead to overlook-
ing degraders with low-GC (i.e., naturally lower DNA density) genomes, whose DNA
may not appear in the heaviest fractions even if they include moderate amounts of 13C
(22, 23). Tag-SIP is a powerful and particularly sensitive extension of the standard SIP
approach, in which DNA from both labeled samples and parallel unlabeled controls are
separated into density fractions, and the 16S-rRNA gene is amplified from all density
fractions of both samples for comparison. This approach, circumventing GC-based bias,
allows us to track substrate incorporation by each single taxon demonstrated by an
increase (shift) in its DNA density in the labeled samples compared to controls (24, 25).

One of the main motivations to study PAH-degrading organisms is to characterize
their metabolic requirements. An understanding of the suite of nutrients and cofac-
tors those organisms require could potentially be applied toward bioremediation
and biostimulation (26). The combination of SIP with metagenomics can help reveal
metabolic dependencies within assembled genomes of PAH-degraders (3, 17, 21, 26).
Several microorganisms have been demonstrated to degrade PAHs in axenic culture
(27–29), and degradation pathways have been identified based on their genomes.
Culture-defined naphthalene degradation begins with hydroxylation of one of the
rings by naphthalene-1,2-dioxygenase, which is considered the rate-limiting step.
Further oxidation steps lead to generation of catechol, gentisate, homogentisate, or
protocatechuate, by-products into which many aromatic degradation pathways are
funneled (30). These by-products are degraded, and their products are incorporated
into cellular metabolism. While single organisms can degrade PAHs, it has also been
proposed that PAH biodegradation in the environment could be a community pro-
cess (21), likely influenced by interactions such as competition, predation, and effects
of abiotic factors absent from culture studies. Thus, it is important to identify not
only the degradation enzymes and nutrient requirements present in primary
degraders, but also those in other members of the community which could have a
more minor role in PAH degradation.

Here, we hypothesized that rare microbial taxa (,0.001% of the community) would
be major incorporators of 13C-from PAHs. Naphthalene was used as a model substrate
to select for communities involved in catabolism of PAHs (31). We then assembled and
mined information from genomes of primary and potential secondary degraders on
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their metabolic requirements and proposed targets for biostimulation experiments in
this system.

RESULTS
Naphthalene uptake rates across the San Pedro Channel. Our main hypothesis

was that at the Port of Los Angeles (POLA) there would be a community of PAH-degrad-
ing bacteria likely sustained by chronic inputs and eutrophication. One indication of the
existence of such a community would be measurable uptake of naphthalene-derived
carbon upon amendment with PAHs, in this case naphthalene. We also wanted to test
whether this degradation potential extended out into the San Pedro Channel at the San
Pedro Ocean Time-series (SPOT) and Two Harbors (CAT) (Fig. 1). Isotopic enrichment
measurements at POLA indicated a mean naphthalene uptake rate of 35nM/day (stand-
ard deviation, 19.53 nM/day) given a high input of 400nM naphthalene. However, naph-
thalene incorporation rates at SPOT and CAT were below detection.

PAH-degrading taxa at POLA identified by SIP. The 13C-naphthalene-enrichment
of POLA seawater led to significant incorporation of labeled carbon (.0.005 g · ml21

buoyant density increase corresponding to 9 atom percent excess) by 34 out of 180 opera-
tional taxonomic units (OTUs) (Data set S2). After 88h of incubation Colwellia spp. and
Cycloclasticus spp. (Gammaproteobacteria) made up 40% of the planktonic (0.2 to 1m) mi-
crobial community. These OTUs were enriched at 53 (Colwellia) and 47 (Cycloclasticus)
atom percent excess (32) (Fig. 2A and B). These main naphthalene degraders were rare
(,0.2% cumulative relative abundance of all OTUs classified as Colwellia or Cycloclasticus)
to nondetectable prior to enrichment (t0) at all sites on all dates. While both taxa were rep-
resented by multiple OTUs, there was always a dominant OTU which matched the 16S-
rRNA genes from the metagenome-assembled genomes (MAGs; see below). The most
abundant OTU accounted for 95% and 99% of the Colwellia and Cycloclasticus amplicons,

CAT

SPOT

POLA

FIG 1 Map of the sampling sites across the San Pedro Channel; the Port of Los Angeles (POLA), the San Pedro Ocean Time-series (SPOT), and Santa
Catalina Island (CAT). The sites are within a range of 40 km. This map was created using leafletR (99).
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FIG 2 Density shifts demonstrating which taxa took up 13C naphthalene. (A to F) Distribution of labeled (13C, red) and
control (12C, blue) normalized relative abundance as a function of buoyant density of (A) Colwellia, (B) Cycloclasticus,
(C) Neptuniibacter, (D) Owenweeksia, (E) Tenacibaculum, and (F) Marine group A. Vertical lines represent the weighted
mean of the distribution. The difference between the weighted mean density (WM) of the labeled (13C) and control
(12C) (delWM) is noted on each plot. OTUs are based on 16S-rRNA community analysis performed on each fraction
normalized by the amount of DNA per fraction.
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respectively. Additional significantly enriched OTUs included Gammaproteobacteria
(Marinomonas, Neptuniibacter, Porticoccus, Pseudoalteromonas, SAR86, and Vibrio),
Flavobacteriales (Tenacibaculum, Fluviicola, Polaribacter, NS7 Marine group, and
Owenweeksia), Sphingobacteriales, Deferribacterales (Marine group A), and Rhodospirillales
(Fig. 2C to F).

Metagenome-assembled genomes (MAGs) from naphthalene-amended water.
We assembled and binned 43 dereplicated MAGs that were more than 50% complete
(mean, 88%; standard deviation [SD], 11%) and less than 10% redundant (mean, 4.6%;
SD, 2.6%) from naphthalene-amended POLA water. We then mapped reads from naphtha-
lene-amended and unamended (t0) metagenomes to those MAGs in order to pinpoint
potential degraders, under the assumption that potential degraders would be more abun-
dant in amended metagenomes than in t0 metagenomes (Fig. 3). Interestingly, seven bins
were enriched in the presence of naphthalene at SPOT and CAT—POLA0515-13_bin_43,
POLA0515-13_bin_23, Bin_4_4, Bin_47_1, Bin_46_1, Bin_20_1_1, and Bin_1_2_1 (Fig. S3).
Eight bins significantly increased in abundance only in naphthalene-amended POLA water
(mean coverage,,1 in all CAT and SPOT samples) (Table 1).

Primary naphthalene degraders. Two MAGs of interest were classified as Colwellia
sp. and Cycloclasticus sp. and contained 16S-rRNA genes that matched at 100% identity
to the most abundant OTUs of PAH-carbon incorporators (Fig. 2A and B).
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The Colwellia MAG had high coverage and breadth (portion of the MAG that has at
least 1� coverage) only in naphthalene-amended POLA water from May 2015 and
October 2014 (Fig. 3). Its closest relative based on a phylogenomic tree of 117 single-
copy genes (33) is Colwellia sp. strain PAMC 20917 isolated from the Mid-Atlantic Ridge
cold, oxic subseafloor aquifer (34) (Fig. S4; Data set S3). It has a 78% average nucleotide
identity (two-way ANI) and 63% average amino acid identity (two-way AAI) with the
Colwellia MAG assembled from the Deepwater Horizon oil spill (21). This MAG con-
tained subunits A and B of the naphthalene dioxygenase enzyme (nahAa, nahAb),
which is the first step in naphthalene degradation, but only parts of the remainder of
the pathway known from pure cultures (e.g., nahD, nahE, salicylate hydroxylase large
and small subunits, protocatechuate dioxygenase alpha, and beta chains) (Fig. 4; Data
set S4 and S5). In addition, the MAG contained near-complete chemotaxis and flagella
assembly, near-complete vitamin B6 and biotin biosynthesis, and a complete riboflavin
biosynthesis pathway (Fig. S2). This organism has transporters for nitrite/nitrate, urea,
phosphate, molybdate, and heme. Finally, it can transport nitrite and potentially
reduce it to ammonium via a dissimilatory pathway (nirBD; Data set S4).

The Cycloclasticus MAG (99% complete; 2.9% redundant, 2.4 Mbp) was detected in
POLA naphthalene-amended metagenomes from May 2015, July 2014, and October
2014 (Fig. 3 B). This MAG was most closely related to Cycloclasticus zancles 78-ME
(Fig. S4; Data set S3). It has a 78% average nucleotide identity (two-way ANI) and 81%
average amino acid identity (two-way AAI) with the Cycloclasticus MAG assembled
from the Deepwater Horizon oil spill (21). While it does not have the first steps of
naphthalene degradation, it contains downstream genes of this pathway coding for
2-hydroxychromene-2-carboxylate isomerase (nahD), trans-o-hydroxybenzylidene-
pyruvate hydratase-aldolase (nahE), and catechol 2,3-dioxygenase (xylE) (Fig. 4; Data
set S6). This MAG contains a near-complete flagellar assembly pathway but not the
chemotaxis pathway. It can incorporate nitrogen from cyanate and biosynthesize ri-
boflavin and biotin. This organism can degrade the aromatic hydrocarbon cymene
and specifically contains the ring-opening enzyme cmtC. Similar to the Colwellia
MAG, this MAG also contains transporters for nitrite/nitrate, urea, and phosphate and
can potentially reduce nitrite to ammonium via nirBD (Data set S4).

Both MAGs contained secondary metabolite clusters of homoserine lactone (hser-
lactone) and lasso protein, which imply quorum sensing and a potential antimicrobial
activity, respectively (35, 36). The Cycloclasticus MAG also contains clusters of bacterio-
cin and nonribosomal peptide synthase (NRPS), which may also point to a potential
antibacterial activity.

Metabolic characterization of MAGs enriched in the presence of naphthalene.
In addition to Colwellia and Cycloclasticus, 27 MAGs were significantly more abundant
in naphthalene-amended samples (Wilcoxon rank test, P value, 0.05). One of these
MAGs, Bin_47_1 (Porticoccus) contained a 16S-rRNA gene that matched at 100% iden-
tity to an OTU that was significantly enriched with naphthalene-derived 13C.

None of these MAGs contained the PAH or BTEX (benzene, toluene, ethylbenzene,

TABLE 1 Taxonomy and genomic parameters of MAGs whose abundance increased at POLA
upon naphthalene addition

MAG ID Taxonomy Completeness (%) Redundancy (%) Size (Mbp)
POLA0515-13_bin_34 Colwellia 91 3.6 3.5
Bin_42_1 Cycloclasticus 99 2.9 2.4
POLA0515-13_bin_16 Flavobacteria 99 3.6 2.7
POLA0515-13_bin_12 Cellvibrionales 89 0.7 2.3
POLA0515-13_bin_27 Pseudohongiela 93 10 2.8
POLA0515-13_bin_4 Pseudohongiela 61 4.3 3.8
Bin_39_1 Rhodospirillaceae 91 5 3.2
Bin_6_2 Rhodospirillaceae 96 4.3 3.8
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xylene) degradation pathways defined by pure culture studies, but 12 of them had the
KEGG pathway for degradation of the aromatic hydrocarbon cymene (Data set S4).
However, 18 MAGs included an aromatic ring-hydroxylating dioxygenase. Nine of these
MAGs can assimilate nitrogen from nitroalkanes (fuel additives) or nitriles. Finally, 24
out of these 29 MAGs contained at least 1 C1-oxidation enzyme, and 8 of the MAGs
contained genes for oligosaccharide degradation, such as alpha-L-rhamnosidase, beta-
xylosidase, and pullulanase (Data set S4).

Similar to Colwellia and Cycloclasticus, nine of these MAGs also contained second-
ary metabolite clusters of homoserine lactone (Litoricola Bin_27_2, Rhodobacteraceae
POLA0714-12_bin_12), terpene (Litoricola, Pseudohongiella, Rhodobacteraceae,
Puniceispirillum, SAR92, Porticoccus), and bacteriocin (Rhodobacteraceae).

Since several studies suggested that full degradation of PAHs may require bacte-
rial consortia (21, 37), we also investigated the metabolic potential of the whole
assembled community (open reading frames [ORFs] identified in contigs larger than
1 kbp). The full canonical naphthalene degradation pathway identified in pure cul-
tures and incorporated into the KEGG database was not found even when combining
all ORFs on contigs larger than 1,000 bp, whether they were binned into a MAG or
not. In the pathway for degradation of naphthalene to benzoate or gentisate, we
identified enzymes nahA, nahD, nahE, and salicylate hydroxylase, but not nahB, nahC,
or salicylaldehyde dehydrogenase.

Moreover, to confirm that we did not miss additional naphthalene degradation
genes because they did not assemble into contigs, we searched all forward reads from
the POLA May 2015 13C metagenome against all nucleotide sequences of naphthalene
dehydrogenase ferredoxin subunit (nahAc, the first step of naphthalene degradation)
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FIG 4 Simplified naphthalene degradation pathway and presence of genes coding for its enzymes in
the Colwellia (Col, green) and Cycloclasticus (Cyc, purple) MAGs.
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from NCBI GenBank (188 references, September 2019). We chose this gene because it
was not represented in the MAGs but is necessary for the function of naphthalene-1,2-
dioxygenase. We found 248 reads (0.0008% of the total metagenome) that hit with a
relaxed cutoff of E value 1023 (mean identity, 97.8%; minimum bitscore, 30). Using a
conservative estimate that this gene makes up 0.1% of the metagenome (similar to
16S-rRNA), and assuming one copy per cell and that each read maps to one copy of
the gene, this would imply that only 8 out of 10,000 cells carry the naphthalene dioxy-
genase nahAc gene. This fraction would decrease even further if we dropped the sin-
gle-copy and one read per gene assumptions.

In order to identify potential targets for biostimulation experiments, i.e., potentially
limiting substances that might aid oil degradation if added after a spill, we performed
a cross-comparison of the 29 MAGs that were significantly more abundant in naphtha-
lene-amended water and searched for amino acid biosynthetic pathways, vitamin syn-
thesis, potential nitrogen sources, and transporters.

While most MAGs had the ability to synthesize hydrophobic amino acids (leucine,
isoleucine, valine, and proline) and some polar amino acids (cysteine, histidine, ser-
ine, and threonine), as well as charged amino acid lysine and amphipathic amino
acid tryptophan, only one had the biosynthetic pathway for methionine, and none
had biosynthetic pathways for arginine, phenylalanine, or tyrosine. However, 15
MAGs had a putative transport system for polar amino acids or branched amino
acids, and 9 had a transport system for L-amino acids.

Only five MAGs contained a urea transport system, and while 34% of the naphtha-
lene-enriched genomes had a urease gene, so did 43% of the genomes that did not
respond to naphthalene amendment. In addition to Colwellia and Cycloclasticus, eight
MAGs can degrade urea to ammonia via urease, and four MAGs have genes coding for
nirBD nitrite reductase. Five MAGs contain a phosphonate transport system whereas
twenty, including Colwellia and Cycloclasticus, can transfer phosphate.

Regarding vitamins, in addition to Colwellia and Cycloclasticus, 4 MAGs can synthe-
size biotin and 12 MAGs can synthesize pantothenate (vitamin B5). Colwellia and four
additional MAGs can synthesize riboflavin (vitamin B2) (Fig. S2; Data set S4).

While oxidation of hydrocarbons is one source of energy for heterotrophic bacteria,
the presence of light harvesting mechanisms may enhance their ability to grow and
potentially incorporate naphthalene in ambient light conditions. Of the 29 MAGs with
a significant response to naphthalene amendment, 5 are capable of anoxygenic photo-
synthesis (three Rhodobacteraceae and two Halioglobus), and 18 encode proteorho-
dopsins (Data set S4).

DISCUSSION
Naphthalene biodegradation detected only in the Port of Los Angeles.

Naphthalene degradation rates were detectable only at POLA but not at SPOT or CAT.
As there is tidal mixing across the San Pedro Channel, we would expect some potential
for degradation at those sites by bacteria advected from the port. A possible explana-
tion for the nondetectable rates at SPOT and CAT is that diminishing PAH or other or-
ganic terrestrial runoff inputs offshore (38, 39) cannot support a degrader seed com-
munity compared to POLA. Indeed, the abundance of MAGs of the primary degraders
Colwellia and Cycloclasticus was extremely low at CAT and SPOT. However, seasonality
may also play a role in the detection of naphthalene degradation at SPOT and CAT.
Some hydrocarbon-degrading bacteria, such as Porticoccus, live in association with
algae that both synthesize and adsorb hydrocarbons (2). Had we collected samples in
March or April, when algal blooms regularly occur in the San Pedro Channel, we might
have been able to measure degradation outside POLA. These alga-associated hydrocar-
bon-degrading bacteria, even in pristine seawater, should be able to potentially
respond to high input of hydrocarbons (2, 40, 41). Future studies of degradation rates
could focus on sampling in the spring in order to confirm or refute this hypothesis in
the San Pedro Channel.
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The PAH carbon incorporation rate at POLA, however, indicated a minimum re-
moval of ;10% of the initial concentration per day. This rate is roughly 3-fold higher
than that measured in seawater from the Gulf of Mexico amended with crude oil (7,
42), although the incubation time was shorter than for the Gulf of Mexico experiments,
and the degradation rate may not be linear. The rate we measured is likely underesti-
mated, as measurement was performed using GF/F filters, which have a pore size lead-
ing to the loss of roughly half of marine free-living prokaryotes. In addition, there could
be degradation of PAH without incorporation of the labeled carbon into cells, which
would not be accounted for by this measuring technique.

Bacteria that responded to naphthalene amendment varied between sites and
incubation conditions. Incubation of POLA water with naphthalene revealed a differ-
ence in taxa that responded to naphthalene amendment after 24 h versus 88 h. First, it is
noteworthy that many of the MAGs that were abundant in naphthalene-amended water
after 88 h were already abundant after 24h. Some of them were common marine hetero-
trophs such as Puniceispirillum (SAR116) and Rhodobacteraceae. Both Pseudohongiella
and OM182 MAGs were matched by 16S-rRNA genes to OTUs that did not incorporate
carbon from naphthalene, indicating that their increased abundance in the presence of
naphthalene is not due to them being primary degraders. We speculate that their
increased abundance in amended water is due to tolerance to naphthalene rather than
utilization of naphthalene as a carbon source. We also note a difference in response time
between the primary degraders. In three out of four 24-h incubations, Cycloclasticus
abundance was already comparable to its abundance after 88 h, whereas Colwellia was
only abundant in one 24-h incubation, and its abundance was orders of magnitude
lower compared to 88 h. This may indicate a difference in growth rates and/or utilization
of substrates and nutrients, as both taxa were undetectable in unamended water.
Gutierez et al. (7) identified a 4- to 5-order of magnitude increase in the abundance of
Colwellia and Cycloclasticus in PAH-amended seawater after 3 days. It is notable that the
same naphthalene-degrading taxa appeared reproducibly in multiple incubations in dif-
ferent seasons. Thus, characterization of the metabolic requirements of these specific
MAGs could be helpful in the future in case of an oil spill at the Port of LA.

Incubation conditions were not identical between the 24-h experiments from all
three sites in July and October 2014 and the 88-h incubation (POLA only, May 2015).
Incubation in the dark (88 h) would promote heterotrophy, while incubation in the
light should still allow cyanobacteria and photosynthetic picoeukaryotes to compete
over nutrients with potential naphthalene degraders. Sixteen of the MAGs that were
enriched in amended 24-h incubations contained genes coding for proteorhodopsin.
Proteorhodopsin can enhance ATP synthesis (43–45) and substrate uptake (45–47).
Therefore, these organisms may have benefitted from incubation in light as opposed
to dark conditions.

Some MAGs were abundant in amended water from SPOT and/or CAT even though
there was no measurable degradation of naphthalene. They could be benefitting from
the toxicity of naphthalene to other bacteria leading to release of dissolved organic
carbon (48) or have the ability to degrade organic aromatic material which allowed
them to utilize naphthalene in addition to other carbon sources. In the case of naph-
thalene utilization, we would have expected OTUs associated with these MAGs to be
13C-labeled. Only one of these MAGs, representing Porticoccus, a bacterium previously
associated with PAH degradation (2, 49, 50), contained a 16S-rRNA gene. The matching
OTU, which was 97% identical to the type strain Porticoccus hydrocarbonoclasticus (49),
indeed showed minor 13C enrichment. However, it is plausible that these are naphtha-
lene degraders that incorporated very little naphthalene. Low incorporation could hap-
pen either if naphthalene was not a main source of carbon and growth rates were fast
enough to dilute the DNA labeling or, conversely, if these organisms are slow growers.

The duration of the 88-h SIP experiment may have enhanced accumulation of la-
beled carbon in bacterial DNA. In order to observe pronounced enrichment, the PAH
degraders have to replicate at least once, and DNA density increases with every repli-
cation, as the new strand is made with labeled nucleotides. Additionally, it is
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methodologically difficult to observe enrichment in rare taxa (51). Since the primary
degraders here were initially rare organisms, their abundance had to increase substan-
tially before their enrichment could be tracked. In this study, there were 24 OTUs which
did not belong to the main naphthalene degraders (Colwellia, Cycloclasticus, and
Neptuniibacter) but were still significantly enriched (9 to 15%). While two of them (i.e.,
Marinobacter and Pseudoalteromonas) may be involved directly in degradation of naph-
thalene but either grow more slowly or were simply outcompeted by Colwellia and
Cycloclasticus (52, 53), the rest are likely generalist heterotrophs which are also associ-
ated with degradation of algal blooms and the succession following them in the San
Pedro Channel (e.g., Flavobacteria, Marine group A, SAR86) (54).

Cross-feeding is a common potential complication in the interpretation of SIP
experiments in which by-products or end products of the labeled substrate are incor-
porated by organisms without the ability to degrade the original substrate. However,
in the case of naphthalene degradation, incomplete degradation by primary degraders
is less likely, as Cycloclasticus has been shown to completely degrade PAHs in culture
(27), and both Colwellia and Cycloclasticus were heavily and comparably labeled.
Generalists may have enzymes capable of degrading aromatic organic material, such
as lignin, which have some affinity to naphthalene as well, leading to less enrichment
compared to primary degraders due not to cross-feeding but to incorporation of car-
bon from various unlabeled substrates in addition to naphthalene.

Metabolism of putative PAH-degraders and potential degraders. In order to
gain more insight into the metabolic requirements of naphthalene-degrading bacteria
at POLA, we examined metabolic pathways and key transporters and enzymes within
the annotated proteins in our MAGs. To date, only one published study characterized
metabolic pathways in assembled genomes of marine oil-degrading bacteria, using
metagenomes from naphthalene- and phenanthrene-amended seawater from the
Deepwater Horizon (DWH) oil spill (7, 21). Within the DWH mesocosms, the prominent
naphthalene degraders belonged to the genera Cycloclasticus and Alteromonas, and
phenanthrene degraders included Neptunomonas, Cycloclasticus, and Colwellia, whereas
we found Cycloclasticus and Colwellia to be the primary naphthalene degraders at POLA.

Both Colwellia and Cycloclasticus were nondetectable in both 16S-rRNA amplicons
and MAG coverage before enrichment. However, after 88 h of incubation, they were
the most dominant taxa in the mesocosms and exhibited very significant enrichment,
indicating incorporation of naphthalene-derived carbon into their DNA over a substan-
tial number of replication cycles.

The Colwellia MAG was the only one assembled here that contained two of the four
annotated subunits of naphthalene 1,2-dioxygenase (nahAa, nahAb). As this is the first
step of the pathway, requiring investment of reducing power (55), it is not surprising
that several downstream enzymes as well as meta-cleavage of catechol are also pres-
ent in the MAG. In comparison with the naphthalene degradation enzymes found in
the Colwellia genome from the Gulf of Mexico, this MAG had different subunits of
naphthalene dioxygenase as well as downstream enzyme nahD but lacked nahB and
nahF, which were identified in the DWH MAG.

Cycloclasticus genes dominated the metagenome of the phenanthrene-enriched
DWH mesocosm (21), highlighting its importance as a primary PAH degrader (56).
Unlike the Colwellia MAG, our Cycloclasticus MAG contained hardly any part of the
KEGG-defined aerobic naphthalene or phenanthreme degradation pathways which are
based on pure cultures. This is in stark contrast to the Cycloclasticus genome assembled
from DWH naphthalene-amended water (21). However, it did include several ring-
hydroxylating dioxygenases. While these enzymes are best known to degrade single aro-
matic hydrocarbons, previous studies demonstrated that some single-ring aromatic
degrading enzymes are capable of degrading naphthalene (two aromatic rings) effi-
ciently (56–59). Additionally, Cycloclasticus has been shown to be able to degrade a vari-
ety of aromatics (27). Moreover, the Cycloclasticus MAG has a sigma-54-dependent tran-
scription regulator with a potential hydrocarbon-binding domain as identified in
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Cycloclasticus zancles 78-ME (GenBank accession number AGS40441.1), which could con-
trol transcription of hydrocarbon degradation genes. Dioxygenases require iron and an
iron-binding domain, such as ferredoxin, that can be shared by multiple enzymes (60,
61), which we found in this MAG. As we know that our Cycloclasticus phylotype can take
up naphthalene-derived carbon as its main carbon source based on the SIP results and
has genes that can participate in similar pathways but none of the culture-defined path-
way, we posit that nontraditional dioxygenases with affinity to naphthalene were utilized
to degrade naphthalene and downstream by-products. To further support this idea,
metatranscriptomes of the microbial community within the oil plume of the Deepwater
Horizon spill revealed low to nonexistent transcription of known PAH-degradation genes
despite their presence in metagenomes (62). Moreover, the use of stable isotope probing
indicated that both Colwellia and Cycloclasticus had the ability to degrade PAHs, whereas
if only metagenomics was used, we might have concluded that they did not. The pres-
ence of C1-oxidizing enzymes in most naphthalene-enriched MAGS also implies that
even those that cannot directly degrade naphthalene may benefit from degradation of
by-products.

The presence of secondary metabolite clusters including lasso protein and bacterio-
cin in several MAGs suggests that part of the success of these organisms may be attrib-
uted to antimicrobial activity in addition to the ability to incorporate carbon from
naphthalene.

MAG-generated hypotheses for future biostimulation experiments at POLA.
Previous studies revealed that in many systems bioremediation of crude oil can be
enhanced by addition of nitrogen and phosphorus (17, 63). While oil-degrading bacte-
ria are found in many marine systems (64), their metabolic requirements may vary by
system, depending on limitations in situ. The significant genomic dissimilarity between
the strains of Colwellia and Cycloclasticus found at POLA and the ones found at the
Gulf of Mexico implies that we cannot assume similarity in metabolic requirements
between systems. As oil degradation requires a considerable amount of nitrogen (65),
choosing the correct form of nitrogen could be crucial. The same could apply to other
nutrients.

Both Colwellia and Cycloclasticus displayed a potential for using a variety of nitro-
gen sources to different ends, with a full dissimilatory nitrate reduction to ammonium
(DNRA) pathway and nitrite/nitrate transporters (focA, narK), as well as a urea trans-
porter and the ammonium-assimilating glutamate synthase pathway. Nitrate, nitrite,
and ammonium are always detectable at POLA in surface seawater (66) and thus are
not limiting nutrients in this site. It is possible that PAH degradation occurs in large
part on particles that contain anaerobic microniches at POLA, which would explain the
presence of DNRA within the MAGs. Colwellia and Cycloclasticus strains have also been
isolated from sediments, where conditions may become anaerobic and support DNRA
(9, 12). However, ammonium assimilation via glutamate synthase is an aerobic process
that could be sustained in seawater.

Based on the functional pathways and ABC transporters found in MAGs of naphtha-
lene incorporators, we propose specific targets for future experiments on enhance-
ment of PAH bioremediation at the Port of Los Angeles. Phosphate is more likely to
augment bioremediation than phosphonate. To supply iron for dioxygenase synthesis,
adding heme/hemoproteins should be superior to adding Fe(II) or Fe(III), as 27/29
enriched MAGs contain heme transporters. Marine bacterioplankton have been shown
to be able to incorporate iron from heme groups (67, 68). Finally, polar amino acids, for
which we did not find any biosynthetic pathways but did find transporters in enriched
MAGs, could also potentially augment bioremediation.

In the current climate of excessive use of fossil fuels, chronic deposition of toxic and
recalcitrant polycyclic aromatic hydrocarbons into the coastal ocean is inevitable. PAH-
degrading bacteria may provide some control over the remineralization of these inputs
and could serve as targets for bioremediation technologies. Identification of naturally
occurring biodegraders is a crucial first step, but optimization of the degradation process
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requires knowledge of the metabolic requirements of local organisms (26). Moreover,
their genomic information remains an available resource should other hypotheses for
biostimulation arise.

MATERIALS ANDMETHODS
Field sites and sample collection. While the Port of Los Angeles (POLA) is not routinely monitored

for PAHs, it is located in an area with natural oil seeps, it houses a ship-refueling station of high-aro-
matic-content marine diesel (Environmental Science and Technology Centre [https://etc-cte.ec.gc.ca/
databases/OilProperties/pdf/WEB_Marine_Diesel_Fuel_Oil.pdf], 22 November 2017), and it is surrounded
by the second-largest metropolitan area in the United States, which is likely a source of consistent
atmospheric PAH deposition. The LA-Long Beach port is the busiest port in the United States and the
10th-busiest in the world according to the International Association of Ports and Harbors (IAPH [https://
www.iaphworldports.org], 26 November 2017). A report published in 2010 revealed detectable levels of
many PAHs at various stations within the port and as far as outside the port entrance, corresponding to
our sampling site (69, 70). Due to the high marine traffic at POLA, there is constant resuspension into
the water column of sediment, which would normally (without such regular resuspension) serve as a
sink for PAHs due to their tendency to attach to particles (69, 70). The port of LA consistently has higher
nutrient concentrations compared to SPOT and CAT, with the ammonium concentration ranging season-
ally between 0.1 and 3mM and NOx between 0.2 and 2mM (66).

Surface seawater was collected in July and October 2014 from three sites across the San Pedro
Channel near Los Angeles, CA, USA (Fig. 1)—the port of Two Harbors, Santa Catalina Island (CAT), the
San Pedro Ocean Time-series (SPOT), and the Port of Los Angeles (POLA). An additional sample was col-
lected in May 2015 only from POLA. Water was collected by high-density polyethylene (HDPE) bucket
into two 10-liter low-density polyethylene (LDPE) containers and stored in a cooler in the dark until ar-
rival at the lab.

Isotope addition and incubation. Unlabeled (12C) naphthalene or fully labeled 13C-10-naphthalene
(ISOTEC, Miamisburg, OH, USA) as crystals at a maximum final concentration of 400 nM was added to
each 10-liter container of water collected without replication. This concentration is roughly 3 orders of
magnitude lower than the solubility of naphthalene in water (30mg/liter = 234 mM). Ammonium-chlo-
ride at a final concentration of 1mM was also added to each container to prevent nitrogen limitation of
PAH degraders. Naphthalene-amended seawater from all three sites from July and October 2014 was
incubated in 10% ambient light, which is comparable to the light at 5-m depth at SPOT, at surface water
temperature (17°C) for 24 h. POLA water from May 2015 was incubated in the dark at surface water tem-
perature (20°C) for 88 h. Incubation of POLA water in the dark was performed to simulate more closely
the conditions in that site, as light attenuation at POLA is much steeper than that of the other sites
(Fig. S1). At the end of the incubation period the seawater was filtered through an 80-mm mesh and a
glass fiber Acrodisc (Millipore-Sigma, St. Louis, MO, USA) prefilter (pore size 1mm) followed by a 0.2-mm
polyethersulfone (PES) Sterivex filter (Millipore-Sigma) to capture only planktonic bacteria and archaea.
After filtration, 1.5ml sodium-chloride-Tris-EDTA (STE; 10mM Tris-HCl, 1mM EDTA and 100mM NaCl)
buffer was injected into the Sterivex casing, and the filters were promptly sealed and stored in –80°C.

Carbon incorporation rate measurement. Seawater (2 liter per bottle, with headspace) from all
three sites was incubated in quadruplicate 2-liter polycarbonate bottles with 400 nM 13C labeled naph-
thalene. Ammonium-chloride at a final concentration of 1mM was also added to each bottle, similar to
the previously described incubations. A single bottle from each site was filtered immediately after
amendment to establish a t0 atom percent 13C of the particulate carbon as a baseline for incorporation
rate measurement. The remaining bottles (3 replicates per site) were incubated in a temperature-con-
trolled room (see above). Incubations were carried out for;24 h and were terminated by filtration of mi-
crobial biomass onto precombusted (;5 h at 400°C) 47-mm GF/F filters (Whatman, Maidstone, United
Kingdom). The filters were then dried at 60°C and kept in the dark until analysis. Isotopic enrichment
was measured on an IsoPrime continuous-flow isotope ratio mass spectrometer (CF-IRMS). IRMS data
were corrected for both size effect and drift before being calculated as previously described (71).

DNA extraction. Total DNA was extracted from the Sterivex filters using a modified DNeasy plant kit
protocol (Qiagen, Hilden, Germany). The Sterivex filters containing STE buffer were thawed; 100 ml
0.1mm glass beads was added into the filter casing and put through two 10-min cycles of bead beating
in a TissueLyser device (Qiagen, Hilden, Germany). The flowthrough, pushed out using a syringe, was
incubated for 30 min at 37°C with 2mg/ml lysozyme followed by another 30-min incubation at 55°C
with 1mg/ml proteinase K and 1% SDS. The resulting lysate was loaded onto the DNeasy columns, fol-
lowed by the protocol described in the kit instructions. Only samples from the POLA May 2015 sample
yielded enough DNA for ultracentrifugation of both the labeled and unlabeled DNA. However, metage-
nomes were sequenced from all dates and sites except SPOT October 2014, as the amount of extracted
DNA was insufficient for library preparation.

Ultracentrifugation and density-fraction retrieval. Isopycnic ultracentrifugation and gradient frac-
tionation were performed as described in previous work (25, 72). Briefly, DNA from the labeled and unla-
beled samples was added into separate quick-seal 5-ml tubes (Beckman Coulter, Indianapolis, IN, USA)
combined with 1.88 g/ml CsCl and gradient buffer for a final buoyant density of 1.725 g/ml. The tubes
were sealed and centrifuged in a Beckman Optima L100 XP ultracentrifuge and near-vertical rotor NVT
65.2 at 44,100 rpm (190,950 relative centrifugal force [rcf]) at 20°C for 64 h.

The gradient was divided into 50 fractions of 100ml each. Refraction was measured using 10ml of each
fraction using a Reichert AR200 digital refractometer and converted into buoyant density (r = 10.927 · nc-
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13.593) (73). DNA in each fraction was preserved in 200-ml polyethylene glycol (PEG) and 1ml glycogen,
precipitated with ethanol, eluted in 50ml Tris-EDTA (TE) buffer, and quantified using PicoGreen
(Invitrogen, Carlsbad, CA, USA).

Amplification of the 16S-rRNA V4-V5 hypervariable regions. PCR was performed on each fraction
with detectable DNA. Each reaction tube contained 12ml 5 Prime HotMaster mix (QuantaBio, Beverly,
MA, USA), 1ml (10 pg) barcoded 515F-Y forward primer (59-GTGYCAGCMGCCGCGGTAA), 1ml (10 pg)
indexed 926R reverse primer (59-CCGYCAATTYMTTTRAGTTT), 1 ng DNA, and 10ml molecular-grade
water.

Thermocycling conditions were as follows: initial denaturation at 95°C for 3 min, 30 cycles of denatu-
ration at 95°C for 45 s, annealing at 50°C for 45 s, and elongation at 68°C for 90 s, followed by a final elon-
gation step at 68°C for 5min.

PCR products from each fraction were cleaned using 1� Agencourt AMPure XP beads (Beckman
Coulter), quantified with PicoGreen, and diluted to 1 ng/ml. A pool of 1 ng of each uniquely barcoded
product was cleaned and concentrated again with 0.8� Agencourt AMPure XP beads.

The pooled amplicons were sequenced on an Illumina MiSeq instrument (University of California at
Davis, USA) for 600 cycles. Each pool was also spiked with 1 ng of an even and a staggered mock com-
munity in order to assess the sequencing run quality (74). All expected OTUs were found in the observed
mock communities and accounted in total for 99.5% of the reads, indicating that there was no unex-
pected bias in the sequencing run (75). Sequencing yield information can be found in Data set S1.

Amplicon data processing. The raw reads were quality-trimmed using Trimmomatic (76) version
0.33 with parameters set to LEADING:20 TRAILING:20 SLIDINGWINDOW:15:25 MINLEN:200 and merged
with Usearch version 7 (77) with a limit of a maximum of 3 differences in the overlapping region. The
resulting merged-reads were analyzed in mothur (78) and clustered at 99% identity following the MiSeq
standard operating procedures (SOP) (20 March 2016) (79) with one exception; we found that degap-
ping the aligned sequences, aligning them again, and dereplicating them again fixed an artifact in which
a few abundant OTUs were split due to the alignment, despite 100% identity, due to an additional termi-
nal base between the OTU representative sequences. OTUs with a total of less than 10 reads over all frac-
tions were removed from the analysis. The remaining 2,366 OTUs were assigned taxonomy using the
arb-silva SINA search and classify tool version 1.3.2 (80).

Detection of OTU enrichment due to substrate incorporation. Plots of normalized abundance as
a function of density were generated in R (https://www.r-project.org/) for the top 200 most abundant
OTUs in each sample. The abundance of each OTU was normalized to a sum of 1 across all fractions.

To detect enrichment, the weighted mean density of an OTU in the labeled and unlabeled samples
was calculated, and if the difference exceeded 0.005 g/ml, the shift was determined to be significant
(22). As quantitative SIP (qSIP) is sensitive to OTU abundance (22, 51), OTUs were used further only if
they were nonspurious OTUs, whose distribution could not be differentiated from a normal distribution
in both enriched and control samples (Kolmogorov-Smirnov test, alpha = 0.05). With these criteria, 180
OTUs were further analyzed.

Metagenomic library preparation. The original unfractionated DNA extracted from the Sterivex fil-
ters was sheared with a Covaris m2 instrument to a mean length of 800 bp. Libraries were prepared
from 15 ng of sheared DNA using the Ovation ultralow DR multiplex system v2 kit (NuGEN, Redwood
City, CA, USA) with 9 amplification cycles. The libraries were bead purified as described above and
sequenced on an Illumina MiSeq device for 600 cycles (UC Davis, USA) or on an Illumina HiSeq rapid run
for 500 cycles (University of Southern California [USC] genome core). See Data set S1 for a detailed list of
sequenced metagenomes.

Metagenomic sequencing analysis. Reads were quality-trimmed using Trimmomatic version 0.33 as
described above. Paired reads were assembled per sample in an iterative subsampling and assembly pro-
cess as described in Hug et al. (81) but using metaSPAdes version 3.9.1 instead of IDBA-UD, followed by
overlap assembly with minimus 2 with minimum overlap of 200bp and minimum identity of 99%. Paired
reads from all sequenced samples (Table S1) were mapped back to the contigs with BBmap (sourceforge
.net/projects/bbmap/) requiring 95% identity. Binning was performed using two approaches: (i) binning
the POLA 5/15 13C metagenome with CONCOCT (82) and bin refinement in Anvi’o (83) and (ii) pooling
contigs longer than 5 kbp from four naphthalene-enriched metagenomes (POLA 5/15 12C, POLA 5/15 13C,
POLA 7/14 12C, POLA 7/14 13C), dereplicating them with cd-hit at 99% id (84, 85), and binning them using
a combination of MaxBin 2 (86), CONCOCT (82), and MetaBAT 2 (87). These bins were combined, refined,
and reassembled using the MetaWRAP pipeline (88). The resulting metagenome-assembled genomes
(MAGs) generated by both methods were dereplicated using dRep (89), and only MAGs that were at least
50% complete and under 10% redundant were analyzed.

Initial taxonomic assignment of MAGs was performed using GTDB-Tk (90). We then improved the
taxonomy by generating class-level phylogenomic trees with GToTree (33) using NCBI RefSeq complete
genomes and placing the bins assigned to the class by GTDB-Tk within them.

Reads from additional unenriched seawater metagenomes from all three sites were also mapped to
the dereplicated MAG set to detect MAGs whose abundance increased in the presence of naphthalene.
16S-rRNA genes found in MAGs were searched against the amplicon OTUs.

Metabolic analysis. Open reading frames (ORFs) in the final set of metagenome-assembled
genomes (MAGs) were predicted using Prodigal (91) and annotated by assignment to clusters of orthol-
ogous groups (COGs) using the Anvi’o anvi-run-ncbi-cogs function. KEGG (Kyoto Encyclopedia of Genes
and Genomes) orthology for ORFs was assigned with KofamScan using the prokaryote profile and its
built-in thresholds (92). KofamScan results were summarized using KEGGDecoder (93) (Fig. S2). The
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taxonomic classification of ORFs was determined based on lowest-common ancestry using Kaiju (94)
and based on the RefSeq database.

Secondary metabolite clusters were identified using the antiSMASH bacterial version 5 online plat-
form (95) with the “relaxed cutoffs” option. Iron-related transport and storage systems were identified
using FeGenie (96). Additional functional analysis was also done with METABOLIC version 1.3 (97) and
DRAM (98).

Read recruitment from different samples to the MAGs and viral contigs was analyzed with Anvi’o
(83) using the Q2Q3 setting. This setting ignores the 25% lowest covered and 25% highest covered posi-
tions within the MAG when calculating mean coverage to avoid bias due to islands or highly conserved
genes.

Data availability. Metagenomic and amplicon raw reads from enrichment mesocosms can be found
on EMBL-ENA under project PRJEB26952 and samples ERS2512855 to ERS2512864. The metagenomic
library blank is under sample ERS2507713. Amplicon reads can be found under sample accession numbers
ERS2507470 to ERS2507679, and PCR blanks and mock communities, under samples ERS2507702 to
ERS2507712. Metagenomic t0 raw reads can be found under project PRJEB12234 and samples ERS2512914
to ERS2512919.
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