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ABSTRACT Adaptive laboratory evolution of Yarrowia lipolytica PO1f in the bench-
mark ionic liquid (IL; 1-ethyl-3-methylimidazolium acetate) produced a superior IL-
tolerant microorganism, strain YICW001. Here, we report the genome sequences of
PO1f and YICWO0O01 to study the robustness of Y. lipolytica and its potential use as a
microbial platform for producing fuels and chemicals.

arrowia lipolytica PO1f (ATCC MYA-2613), one of the most widely characterized

strains of the Yarrowia clade (subphylum Saccharomycotina), is derivative of the
French haploid strain W29 (ATCC 20460), engineered to remove extracellular protease
production (1). This generally recognized as safe (GRAS) yeast (2) is regarded as an
emerging bioenergy microbe due to its ability to consume complex sugars (3, 4) and
produce specialty lipids (5-7), organic acids (8-10), and proteins (1, 11). Additionally, Y.
lipolytica exhibits exceptional tolerance to high salinity (12), broad pH ranges (13), and
ionic liquids (ILs) (14, 15). Microbial biocatalysis in IL is an attractive strategy for the
production of high-value chemicals (16) and biofuels (17) because ILs effectively
process recalcitrant biomass for fermentation (18-20). While ILs are toxic to most
microbes at a concentration of 0.5 to 1.0% (vol/vol) (21, 22), PO1f exhibits robust
growth and organic acid production in up to 10% (vol/vol) 1-ethyl-3-methyl imidazo-
lium acetate (EMIM OAc) (14). Aiming to illuminate the underlying mechanisms of IL
resistance, we report the genome sequences of the naturally IL-tolerant strain PO1f and
its superior evolved mutant, strain YICW001, generated from 200 generations of
adaptive laboratory evolution (15). To our knowledge, YICWO001 is the most IL-tolerant
microorganism, capable of growing in a variety of ILs at high levels, up to 18% IL.

PO1f and YICW001 were cultured in rich medium overnight, and their genomic DNA
samples were collected using a Zymo Research (Irvine, CA) fungal/bacterial DNA
miniprep kit (catalog no. D6005). Sequencing was performed at the U.S. Department of
Energy Joint Genome Institute (DOE JGI) using the Illumina HiSeq 2500 platform as
previously described (23). Briefly, 100 ng of DNA was sheared to 500-bp inserts with
Covaris LE220 (Woburn, MA) with size selection solid-phase reversible immobilization
(SPRI) beads (Beckman Coulter, Brea, CA). The KAPA-lllumina library creation kit (Kapa
Biosystems, Boston, MA) was used to treat the resulting fragments with end repair, A
tailing, and ligation of lllumina-compatible adapters (IDT, Inc., Skokie, IL). A clustered
flow cell was generated using a TruSeq paired-end cluster kit v4 from the multiplexed
libraries, and sequencing was performed following a 2 X 100-bp indexed run recipe
using the HiSeq TruSeq sequencing by synthesis (SBS) sequencing kits v4. The raw
sequence data were filtered using the JGI quality control (QC) pipeline, which integrates
BBDuk (v36.94) (http://bbtools.jgi.doe.gov) and BBMap. This pipeline removes contam-
inants, adapter sequences, right quality reads where quality drops to 0, reads contain-
ing 1 or more N bases, reads having an average quality score less than 13, and reads
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TABLE 1 Genome information and accession numbers

GenBank SRA BioProject Genome size Coverage No. of No. of gene
Strain accession no. accession no. accession no. (Mbp) (x) contigs models
PO1f WHUU00000000 SRP115772 PRINA347220 20.21 155.42 175 6,798
YICW001 WEZX00000000 SRP115773 PRINA347221 20.22 166.48 150 6,800

containing a minimum length less than or equal to 41 bp or 33% of the full read length.
Further, reads that were mapped at 95% identity to masked human, cat, dog, mouse,
or common microbial contaminants were removed. Genome assembly on JGI QC-
filtered genomic reads was carried out using SPAdes v3.11.1 (24) with the following
parameters: --phred-offset 33 --cov-cutoff auto -t 16 -m 115 --careful --12. The
genomes of PO1f and YICW001 were annotated with transcripts of FKP355 (25)
using the JGI annotation pipeline (https://mycocosm.jgi.doe.gov/programs/fungi/
FungalGenomeAnnotationSOP.pdf) (26, 27). The resultant genome assemblies are just
over 20.2 Mbp, containing 49% median GC content and 6,798 to 6,800 gene models
(Table 1).

Data availability. The whole-genome assemblies and annotation were deposited at

DDBJ/EMBL/GenBank under the accession numbers listed in Table 1. The versions
provided in this paper are the first versions.
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