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Background: Despite receiving standard treatment, the prognosis of glioblastoma (GBM) patients is still 
poor. Considering the heterogeneity of each patient, it is imperative to identify reliable risk model that can 
effectively predict the prognosis of each GBM patient to guide the personalized treatment. 
Methods: Transcriptomic gene expression profiles and corresponding clinical data of GBM patients 
were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) 
databases. Inflammatory response-related genes were extracted from Gene Set Enrichment Analysis (GSEA) 
website. Univariate Cox regression analysis was used for prognosis-related inflammatory genes (P<0.05). 
A polygenic prognostic risk model was constructed using least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis. Validation was performed through CGGA cohort. Overall survival (OS) 
was compared by Kaplan-Meier analysis. A nomogram was plotted to accurately predict the prognosis for 
each patient. GSEA was used for the pathway enrichment analysis. The single sample GSEA (ssGSEA) 
algorithm was implemented to conduct the immune infiltration analysis. The potential role of oncostatin M 
receptor (OSMR) in GBM was investigated through the in vitro experiment.
Results: A prognostic risk model consisting of 4 genes (PTPRN, OSMR, MYD88, and EFEMP2) was 
developed. GBM patients in the high-risk group had worse OS. The time-dependent ROC curves showed 
an area under the curve (AUC) of 0.782, 0.765, and 0.784 for 1-, 2-, and 3-year survival in TCGA cohort, 
while the AUC in the CGGA cohort was 0.589, 0.684, and 0.785 at 1, 2, and 3 years, respectively. The 
risk score, primary-recurrent-secondary (PRS) type, and isocitrate dehydrogenase (IDH) mutation could 
predict the prognosis of GBM patients well. The nomogram accurately predicted the 1-, 2-, and 3-year OS 
for each patient. Immune cell infiltration was associated with the risk score and the model could predict 
immunotherapy responsiveness. The expression of the prognostic gene was correlated with the sensitivity 
to antitumor drugs. Interference of OSMR inhibited proliferation and migration and promoted apoptosis of 
GBM cells.
Conclusions: The prognostic model based on 4 inflammatory response-related genes had reliable 
predictive power to effectively predict clinical outcome in GBM patients and provided the guide for the 
personalized treatment.
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Introduction

Glioblastoma (GBM) remains the most prevalent and 
aggressive primary brain cancer in adults (1,2). Despite 
standard treatment, including maximal surgical resection 
and postoperative radiochemotherapy with temozolomide, 
there is limited efficacy for GBM patients (1). With 
standard treatment, the median overall survival (OS) 
of GBM patients is only 15 months, with less than 5% 
surviving 5 years after initial diagnosis (3-5). Considering 
the heterogeneity and different prognosis in each patient, 
individualized treatment strategy is particularly important. 
Therefore, it is imperative to identify reliable risk model for 
the prognostic prediction and personalized treatment plan 
of GBM. 

Inflammation is one of the important features of tumors 
(6,7). Persistent uncontrollable inflammation plays an 
important role in tumor initiation, promotion, malignant 
transformation, invasion, and metastasis (8,9). Recently, 
mounting evidence has indicated that tumor-related 

inflammation advances tumor cell survival and proliferation, 
angiogenesis, and immunosuppression by suppressing 
effector immune cells and accumulating myeloid suppressor 
cells (6,10). Increased inflammation and immune infiltration 
in the tumor microenvironment have been reported to 
associate with shorter OS in patients with high-grade 
gliomas (11). Inflammatory response-related models have 
been reported for prognostic prediction in hepatocellular 
carcinoma, lung adenocarcinoma, breast cancer and clear 
cell renal cell carcinoma (12-15). These findings prompted 
the role of inflammatory response in cancer prognosis with 
a promising therapeutic target for cancers. However, the 
impact and prognostic prediction of inflammatory response-
related genes in GBM is still unclear. Therefore, we sought 
to develop a model associated with inflammatory genes to 
scientifically predict the prognosis of GBM patients.

Many prognostic models have previously been reported 
in GBM. For example, a study reported a prognostic model 
constructed by 11 cell senescence-associated genes in 
GBM (16). In addition, it was also found that the model 
constructed by m6A-Related lncRNA could predict the 
prognosis of GBM patients (17). However, the large 
number of model genes increased the difficulty of clinical 
translation, and the lack of experimental verification made 
the results less reliable. 

In this study, we downloaded transcriptomic gene 
expression profiles and corresponding clinical data of GBM 
patients from public databases. Then, we constructed a 
4-gene prognostic model using the differentially expressed 
inflammatory response-related genes in The Cancer 
Genome Atlas (TCGA) cohort and validated the reliability 
of the model using the Chinese Glioma Genome Atlas 
(CGGA) cohort. A nomogram based on risk score and 
clinical characteristics was plotted to further accurately 
predict the prognosis for each patient. Next, we explored 
the possible mechanisms using functional enrichment 
analysis. In addition, we analyzed the relationship of 
prognostic gene expression with immune infiltration type. 
Furthermore, the correlation between prognostic gene 
expression and drug sensitivity was investigated. Finally, 
we performed cell function experiments to investigate the 
potential role of oncostatin M receptor (OSMR) in GBM. 
We present the following article in accordance with the 
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Key findings
•	 In this study, we constructed a prognostic risk model consisting of 

4 inflammatory response-related genes (PTPRN, OSMR, MYD88, 
and EFEMP2) to predict the prognosis of glioblastoma (GBM) 
patients.

What is known and what is new? 
•	 Recent studies have revealed the important role of inflammation 

in tumorigenesis and progression. However, the prognostic role 
of inflammatory response-related genes in GBM remains to be 
further elucidated. 

•	 In this study, we constructed a prognostic risk model consisting 
of 4 inflammatory response-related genes to predict the prognosis 
of GBM patients. The model had a stable predictive power 
in predicting OS, immune infiltration, potential mechanism, 
immunotherapy response and drug sensitivity. Interference of 
model gene OSMR inhibited proliferation and migration and 
promoted apoptosis of GBM cells. 

What is the implication, and what should change now? 
•	 The prognostic model provided a potential direction for 

the development of personalized prognostic prediction and 
immunotherapy for GBM patients.
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Table 1 Clinical characteristics of GBM patients in TCGA and 
CGGA database

Characteristics TCGA CGGA

Total 599 249

Age

<65 years 393 216

≥65 years 203 33

Not reported 3 0

Gender

Female 230 102

Male 366 147

Not reported 3 0

Survival status

Alive 144 49

Dead 455 166

Not reported 0 34

PRS

Primary NA 140

Recurrent NA 109

Secondary NA 0

Not reported NA 0

IDH mutation status

Wildtype NA 190

Mutant NA 49

Not reported NA 10

1p19q codeletion status

Codel NA 13

Non-codel NA 205

Not reported NA 31

MGMTp methylation status

Methylated NA 106

Un-methylated NA 93

Not reported NA 50

GBM, glioblastoma; TCGA, The Cancer Genome Atlas; CGGA, 
Chinese Glioma Genome Atlas; PRS, primary-recurrent-
secondary; NA, not applicable; IDH, isocitrate dehydrogenase. 

TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-6271/rc).

Methods 

Data collection

Transcriptional gene expression of 174 GBM patients and 
clinical information data (age, gender, survival state, overall 
survival) of 599 GBM patients were downloaded from 
TCGA (https://portal.gdc.cancer.gov/) database (Table 1). In 
addition, we downloaded gene expression data and clinical 
information (age, gender, survival state, overall survival, 
PRS type, radiotherapy, chemotherapy, IDH mutation, 
1p19q codeletion, and MGMTp methylation) of 249 GBM 
samples as an external validation from the CGGA (http://
www.cgga.org.cn) database (Table 1). Inflammatory response-
related genes were extracted from Gene Set Enrichment 
Analysis (GSEA; http://www.gsea-msigdb.org/gsea/index.
jsp) website. The flowchart of the research design was shown 
in Figure 1. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Construction and validation of an inflammatory genes-
related prognostic model 

The “Bioconductor Limma” R package was used to 
analyze differentially expressed inflammatory response-
related genes in TCGA cohort. Genes with fold change 
>0.5 and false discovery rate (FDR) <0.05 were considered 
differentially expressed inflammatory genes. Univariate 
Cox regression analysis was used to further screen for 
prognosis-related inflammatory genes (P<0.05). Then, 
these prognosis-related inflammatory genes were applied to 
conduct the least absolute shrinkage and selection operator 
(LASSO) regression analysis. The LASSO algorithm was 
used to avoid overfitting the prognostic model and screen 
out the optimal prognostic genes for constructing the 
prognostic model (18). The risk score was calculated as 
the sum of the expression of each gene, multiplied by its 
corresponding regression coefficient. Taking the median 
risk score as a cutoff, GBM patients were divided into high-
risk group and low-risk group according to the risk value. 
Principal component analysis (PCA) was performed with 

https://atm.amegroups.com/article/view/10.21037/atm-22-6271/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6271/rc
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn
http://www.cgga.org.cn
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
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Figure 1 Flowchart of analyzing inflammatory response-related genes in GBM. GBM, glioblastoma; LASSO, least absolute shrinkage and 
selection operator; PCA, principal component analysis; ROC, receiver operating characteristic; CGGA, Chinese Glioma Genome Atlas; 
WB, western blot; qRT-PCR, quantitative real time polymerase chain reaction; CCK-8 assay, Cell Counting Kit-8 assay. 

the “ggplot2” R package to explore the distribution of 
genes in different groups. OS was analyzed in the high-risk 
and low-risk groups using the “survival” and “survminer” 
R packages. The time-dependent receiver operating 
characteristic (ROC) curve analysis was performed using 
the “survival”, “survminer”, and “timeROC” R packages. 
Univariate Cox regression analysis was used to estimate the 
predictive value of the risk score and clinical characteristics 
such as age, gender, PRS type, radiotherapy, chemotherapy, 
IDH  muta t ion ,  1p19q code le t ion ,  and  MGMTp 
methylation. A nomogram was plotted to further accurately 
predict the prognosis for each patient through “regplot” 
and “rms” R packages.

Functional enrichment analysis

To illuminate the relationship between the risk scores 
and biological functions, we used GSEA and the GSEA 
4.1.0 software to perform Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. 
The pathway was considered statistically significant when 
P<0.05.

Analysis of tumor immune microenvironment and 
immune infiltration

Single sample gene set enrichment analysis (ssGSEA) of the 
“GSVA” R package was applied to calculate the immune 
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cell infiltration score and immune-related function score. 
Spearman’s correlation was used to analyze the association 
of risk score with immune cell score, stromal cell score, 
Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) score, 
and tumor purity. 

Immunotherapy efficacy assessment and model comparison

To investigate whether the above inflammatory response-
related prognostic model can be used to assess the efficacy 
of immunotherapy in patients, we analyzed immunotherapy 
biomarkers based on TCGA database. TCGA sample 
expression profiles were uploaded to the tumor immune 
dysfunction and exclusion (TIDE) website (http://tide.dfci.
harvard.edu/) for TIDE, microsatellite instability (MSI), 
and dysfunction scores of each sample. Furthermore, 
the ROC curves were used to compare the prognostic 
predictive efficacy of the risk values with TIDE and tumor 
inflammation signature (TIS) scores (19).

Drug sensitivity analysis

Transcriptomic data and Food and Drug Administration 
(FDA)-approved drug sensitivity-related data were 
downloaded from the CellMiner website (https://discover.
nci.nih.gov/cellminer/). Pearson’s correlation analysis was 
used to investigate the relationship between drug sensitivity 
and prognostic gene expression.

Cell culture and siRNA processing

Human brain vascular pericytes (HBVP), U251 and 
U118 cells were obtained from the American Type 
Culture Collection (ATCC; Manassas, VA, USA) and 
cultured in Dulbecco’s modified Eagle medium (DMEM) 
medium containing 10% fetal bovine serum (FBS; Gibco, 
Waltham, MA, USA) in a 37 ℃, 5% CO2 incubator. 
OSMR small interfering RNA (siRNA) was obtained from 
OBIO (Shanghai, China) and transfected into cells using 
polybrene (OBIO, China) according to the manufacturer's 
instructions. 

Western blot (WB) analysis

Proteins from U251 and U118 cells were extracted using 
radioimmunoprecipitation assay (RIPA) lysis buffer 
(Servicebio, Wuhan, China). Protein samples were then 

separated by 10% sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred to 
polyvinylidene fluoride (PVDF) membranes. After being 
blocked with 5% skim milk for 1 hour at room temperature, 
the membranes were incubated with the following primary 
antibodies: OSMR (Abclonal, Wuhan, China), GAPDH 
(Proteintech, Rosemont, IL, USA) overnight at 4 ℃, 
followed by the secondary antibody at 25 ℃ for 1 hour. 
Finally, the blots were detected and imaged using the ECL 
Plus Western Blotting Detection System (GE Healthcare, 
Amersham, UK).

Quantitative real time polymerase chain reaction (qRT-PCR) 

Total cellular RNA was extracted with TRIzol reagent 
(TaKaRa, Shiga, Japan). Then HiScript II QRT SuperMix 
(Vazyme, Nanjing, China) was used to reverse transcribe 
total RNA to complementary DNA (cDNA) and qRT-PCR 
was performed with ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, China). The primers were listed as following: 
OSMR-forward: AATGTCAGTGAAGGCATGAAAGG; 
OSMR-reverse: GAAGGTTGTTTAGACCACCCC; 
GAPDH-forward: GACCACAGTCCATGCCATCA; 
GAPDH-reverse: GTCAAAGGTGGAGGAGTGGG.

Cell proliferation assay

After transfection with OSMR siRNA for 48 hours, U251 
and U118 cells were cultured in 96-well plates. Cell 
Counting Kit-8 (CCK-8) reagent [MedChemExpress 
(MCE), Monmouth Junction, NJ, USA] was added to each 
well according to the manufacturer’s instructions, and the 
proliferation capacity was detected at 1, 2, 3, and 4 days 
after culturing the cells using a microplate reader (BioTek, 
Winooski, VT, USA) to detect OD450 values.

Colony formation assay

After transfection with OSMR siRNA for 48 hours, U251 
cells were cultured in 6-well plate and incubated at 37 ℃ for 
10 days. Then, the cell clones were washed with PBS and 
fixed in 4% paraformaldehyde for 20 minutes and dyed with 
0.1% crystal violet for 15 minutes. Finally, cell colonies 
were counted.

Wound healing assay

Cells were cultured in 6-well plates with serum-free DMEM 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://discover.nci.nih.gov/cellminer/
https://discover.nci.nih.gov/cellminer/
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and then scraped with a 200 µL pipette tip. Images of cell 
migration were taken at 0, 12, and 24 hours after injury.

Transwell migration assay 

Cells were seeded in the upper transwell chamber with 
200 µL of serum-free medium, and 600 µL of medium 
containing 20% FBS was placed in the lower chamber. 
After 24 hours of incubation, cells in the lower chamber 
were fixed with methanol for 20 minutes, washed 3 times 
with phosphate-buffered saline (PBS), and then stained with 
1% crystal violet for 15 minutes, and counted under a light 
microscope in 3 random areas.

Apoptosis and cell cycle assay 

For the cell apoptosis assay, cells were collected and washed 
3 times with PBS. Then, cells were resuspended in binding 
buffer and stained with propidium iodide (PI) and Annexin 
V-FITC [Becton, Dickinson, and Co. (BD) Biosciences, 
Franklin Lakes, NJ, USA] for 15 minutes in the dark. 
Apoptosis was detected and analyzed by flow cytometry and 
FlowJo 10.6.2 (BD Biosciences, USA). For cell cycle assay, 
cells were collected and fixed in 70% ethanol overnight 
at 4 ℃ and stained with a cell cycle staining kit (Multi 
Sciences, Hangzhou, China). Flow cytometry and Modfit 
LT software (Verity Software House, Topsham, ME, USA) 
were used to detect and analyze the cell cycle. 

Statistical analysis

The gene differences between tumor tissue and normal 
tissue were analyzed using Wilcoxon test. Kaplan-Meier 
analysis was utilized to compare OS between the high-
risk and low-risk groups. R software (version 4.0.4; The 
R Foundation for Statistical Computing, Vienna, Austria) 
was used to conduct the statistical analyses. The difference 
analysis of the experimental data were conducted using 
unpaired t-test for two groups or one-way ANOVA test for 
multiple groups. P<0.05 indicated statistical significance.

Results

Identification of differentially expressed prognosis-related 
inflammation genes in TCGA cohort

We first downloaded inflammatory response-related 
genes from the GSEA website and transcriptional gene 

expression data from TCGA database, and found that 6,850 
inflammatory response-related genes were differentially 
expressed between GBM and normal tissues, including 
2,461 down-regulated and 4,389 up-regulated genes (Figure 
2, available online: https://cdn.amegroups.cn/static/public/
atm-22-6271-1.xlsx). We then performed univariate Cox 
analysis using the clinical information and gene expression 
data of GBM samples in TCGA database. A total of 
802 inflammatory genes associated with prognosis were 
obtained, including 157 low-risk genes and 645 high-risk 
genes (Figure S1).

Construction of an inflammatory response genes-related 
prognostic model in TCGA cohort

Next, we analyzed the 802 differentially expressed 
prognosis-related inflammatory genes and identified 4 
genes (PTPRN, OSMR, MYD88, EFEMP2) to construct 
a prognostic risk model through LASSO Cox regression 
analysis (Figure 3A,3B). The risk score was calculated as 
the following formula: Risk score = 0.155045 × PTPRN 
+ 0.002887 × OSMR + 0.037493 × MYD88 + 0.093558 
× EFEMP2 (Table 2). Based on the median cutoff value, 
GBM patients were divided into high-risk and low-
risk groups (Figure 3C). In TCGA cohort, PCA analysis 
showed that patients in the 2 subgroups were distributed 
in 2 directions, indicating that the model could effectively 
distinguish the high-risk and low-risk groups (Figure 3D). 
In addition, survival status scatter plots indicated that high-
risk patients had worse outcomes (Figure 3E). Consistently, 
Kaplan-Meier curves showed that high-risk patients had 
significantly shorter OS than low-risk patients (P<0.0001) 
(Figure 3F). The time-dependent ROC curves showed an 
area under the curve (AUC) of 0.782, 0.765, and 0.784 for 
1-, 2-, and 3-year survival, respectively (Figure 3G). 

Validation of the prognostic model in the CGGA cohort

To test the stability of the 4-gene prognostic model, 
we downloaded the gene expression data and clinical 
information from CGGA as external validation. Patients in 
the CGGA cohort were also classified into high- or low-
risk groups according to the median cut-off value of TCGA 
cohort (Figure 4A). Similar to the results of TCGA cohort, 
PCA analysis showed a discrete distribution of patients in 
the different risk groups (Figure 4B). Similarly, patients in 
the high-risk group were more likely to have a less favorable 
outcome (Figure 4C) and a shorter OS (P<0.001) (Figure 4D)  

https://cdn.amegroups.cn/static/public/atm-22-6271-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6271-1.xlsx
https://cdn.amegroups.cn/static/public/ATM-22-6271-supplementary.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545815/figure/F2/


Annals of Translational Medicine, Vol 11, No 2 January 2023 Page 7 of 20

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(2):69 | https://dx.doi.org/10.21037/atm-22-6271

Type Type

N

T

10

5

0

Figure 2 Heatmap of differentially expressed inflammatory genes in GBM tumor tissues versus normal tissues. GBM, glioblastoma.
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Figure 3 Construction of an inflammatory response genes-related prognostic model in TCGA cohort. (A) LASSO coefficient plot. (B) The 
best log Lambda value was selected for TCGA cohort through 10-fold cross-validation in the LASSO regression model. (C) Risk curve 
constructed based on the median value of the risk score in TCGA cohort. (D) PCA plot in TCGA cohort. (E) The distribution of survival 
status in TCGA cohort. (F) Survival analysis in TCGA cohort. (G) Time-dependent ROC curves in TCGA cohort. AUC, area under the 
curve; TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; 
ROC, receiver operating characteristic. 

compared to those in the low-risk group. In addition, the 
AUC of the prognostic model was 0.589 at 1 year, 0.684 
at 2 years, and 0.785 at 3 years (Figure 4E). Univariate 
Cox regression analysis showed the risk score (P<0.01), 
PRS type (P<0.001), and IDH mutation (P<0.05) could 
predict the prognosis of GBM patients well (Figure 4F).  

A nomogram was plotted to further accurately predict the 
prognosis for each patient according to the total points of 
the risk and clinical characteristics such as radiotherapy, 
MGMTp methylation, chemotherapy, age, IDH mutation, 
1p19q codeletion, gender, and PRS type. For example, 
the total points of the patient in the nomogram were 407, 
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Table 2 LASSO regression analysis results of model genes

Gene Coef HR HR.95L HR.95H P value

PTPRN 0.155044751136123 1.7523 1.336219 2.297944 5.00E-05

OSMR 0.00288662972796754 1.433946 1.192988 1.723572 0.000123

MYD88 0.0374931050514576 1.797359 1.291102 2.502125 0.000513

EFEMP2 0.0935581536160227 1.476297 1.188053 1.834475 0.00044

LASSO, least absolute shrinkage and selection operator; HR, hazard ratio.
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Figure 5 GSEA pathway enrichment analysis. (A) Top ten pathways of GSEA enrichment analysis. (B-D) Tumor-related signaling pathways 
enriched in the high- and low-risk group. (E-I) Immune-related pathways enriched in the high-risk group. KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GSEA, Gene set enrichment analysis.

corresponding to 47.7%, 9.58%, and 1.13% for 1-, 2-, and 
3-year OS, respectively (Figure 4G).

Pathway enrichment analysis 

To further explore the potential mechanism of the 
inflammatory genes affecting the prognosis of GBM 
patients, we performed KEGG pathway enrichment analysis 
in high- and low-risk groups. We found that 31 KEGG 
pathways such as glycan biosynthesis, adhesion molecules 
cams, hematopoietic cell lineage, cytokine-cytokine receptor 
interaction, and leukocyte transendothelial migration were 
significantly enriched in the high-risk group, whereas 39 

pathways such as cell cycle, basal transcription factors, 
RNA degradation, spliceosome, and RNA polymerase were 
enriched in the low-risk group (Figure 5A). Additionally, 
tumor-related signaling pathways such as the JAK-
STAT pathway was significantly enriched in the high-risk 
group (Figure 5B), whereas p53 and transforming growth 
factor beta (TGF-β) signaling pathways were enriched 
in the low-risk group (Figure 5C,5D). Unexpectedly, we 
found that 5 immune-related pathways were enriched in 
the high-risk group, including natural killer (NK) cell-
mediated cytotoxicity, chemokine signaling pathway, Fc 
gamma R-mediated phagocytosis, antigen processing 
and presentation, and intestinal immune network for 
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IgA production, but failed to find statistically significant 
pathways in the low-risk group (Figure 5E-5I).

Correlation analysis of immune subtypes and immune response 

Since we discovered that immune-related pathways were 
enriched in the high-risk group in the KEGG pathway 
enrichment analysis, we further questioned the relationship 
between risk score and immune infiltration. Thus, we 
used ssGSEA to quantify immune cell subpopulations, 
immune-related functions, and pathways. We found that 
the infiltration of activated dendritic cell (aDCs), B cells, 
DCs, plasmacytoid DCs (pDCs), macrophages, neutrophils, 
T-helper cells, Tfh, Th1 cells, Th2 cells, tumor infiltrating 
lymphocytes (TIL), and Treg were significantly higher 
in the high-risk group compared with the low-risk group 
(P<0.05) (Figure 6A). In addition, the results of immune 
function and pathway analysis showed that the scores of 
antigen-presenting cells (APC) co-inhibition, APC co-
stimulation, chemokine receptors (CCR), check-point, 
cytolytic activity, human leukocyte antigen (HLA), 
inflammation-promoting, parainflammation, T-cell co-
inhibition, T-cell co-stimulation, and type II interferon 
(IFN) response were significantly higher in the high-risk 
group than in the low-risk group (P<0.05) (Figure 6B). 
Next, we explored the impact of tumor microenvironment 
on the prognosis of GBM patients and found that risk score 
was positively correlated with stromal score (P<0.0001), 
immune score (P<0.0001),  and ESTIMATE score 
(P<0.0001), yet was negatively correlated with tumor purity 
(P<0.0001) (Figure 6C-6F), suggesting that the higher the 
stromal and immune cell content and lower tumor purity in 
GBM patients, the worse the prognosis of patients. 

Immunotherapy efficacy assessment and model comparison

To further investigate whether our inflammatory response-
related prognostic model can be used to assess the efficacy 
of immunotherapy in patients, we analyzed immunotherapy 
biomarkers based on TCGA database. The results 
demonstrated that the high-risk group had a higher TIDE 
score (P<0.001) (Figure 7A), a lower MSI score (P<0.05) 
(Figure 7B), and a higher dysfunction score (P<0.001)  
(Figure 7C), indicating that the GBM high-risk group 
had greater immune escape potential  and poorer 
immunotherapy efficacy. In addition, as seen from the ROC 
curve, our inflammatory response-related prognostic model 
had the largest AUC value, indicating a higher prognostic 

predictive efficacy than that of TIDE and TIS scores  
(Figure 7D).

Drug sensitivity analysis

To enhance the clinical value of our model, we further 
investigated the availability of the prognostic model for 
clinical drug selection. We found that OSMR expression 
was positively correlated with the sensitivity of simvastatin 
(P<0.001) and erlotinib (P<0.01) (Figure 8A,8B) and 
negatively correlated with the sensitivity of tamoxifen 
(P<0.001), nilotinib (P<0.001), crizotinib (P<0.001), 
palbociclib (P<0.001), LDK−378 (P<0.001), oxaliplatin 
(P<0.001), cyclophosphamide (P<0.01), and raloxifene 
(P<0.01) (Figure 8C-8J). In addition, MYD88 expression 
was positively correlated with nelarabine sensitivity 
(P<0.001) (Figure 8K), whereas PTPRN expression was 
negatively correlated with nilotinib sensitivity (P<0.001) 
(Figure 8L). In addition, higher expression of EFEMP2 was 
associated with increased resistance to homoharringtonine 
(P<0.001), actinomycin D (P<0.01), vinblastine (P<0.01), 
and TYROTHRICIN (P<0.01) (Figure 8M-8P). 

Interference of OSMR expression inhibits GBM cell 
proliferation and migration 

To further increase the credibility of the prognostic model 
in GBM, we conducted an in vitro experiment. Since the 
expression of OSMR had the most significant effect on 
the prognosis of GBM patients among the 4 model genes 
(Figure S2A-S2D), we selected OSMR for subsequent 
functional validation. We examined the messenger RNA 
(mRNA) expression of OSMR in HBVP and different GBM 
cell lines, and found that OSMR expression was highest 
in U251 and U118 cells (P<0.0001) (Figure 9A), so we 
used U251 and U118 cells for the follow-up experiments. 
OSMR expression in U251 and U118 cells was successfully 
interfered with siRNA and confirmed by WB and qRT-
PCR (P<0.05) (Figure 9B,9C). CCK-8 assays showed that 
OSMR interference significantly inhibited the proliferation 
of U251 and U118 cells at day 3 (P<0.0001, P<0.01) and day 
4 (P<0.0001, P<0.001) (Figure 9D). Colony formation assay 
showed that OSMR interference significantly inhibited the 
colony formation of U251 cells (P<0.01) (Figure S2E,S2F). 
Subsequently, wound healing and transwell migration assays 
were applied to explore the effect of OSMR interference on 
the migratory ability of GBM cells, and the results showed 
that interference of OSMR significantly inhibited the 

https://cdn.amegroups.cn/static/public/ATM-22-6271-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-6271-supplementary.pdf
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Figure 6 Immune infiltration and tumor microenvironment analysis. (A) Immune cell subpopulations in the high- and low-risk groups. (B) 
Immune-related functions and pathways in the high- and low-risk groups. (C) The correlation between stromal score and risk score. (D) 
The correlation between immune score and risk score. (E) The correlation between ESTIMATE score and risk score. (F) The correlation 
between tumor purity and risk score. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. NK, natural killer; TIL, tumor infiltrating 
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Figure 7 Immunotherapy efficacy assessment and model comparison. (A) TIDE score in the high- and low-risk groups. (B) MSI score in the 
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migration of U251 and U118 cells (P<0.05) (Figure 9E-9H).  
In addition, the flow cytometry result showed that 
interference of OSMR greatly enhanced apoptosis of U251 
cells (P<0.001) and U118 cells (P<0.01) (Figure 9I,9J). In 
the cell cycle assay, we found an increase in G1 phase cells 
and a significant decrease in G2/M phase in U251 cells after 
OSMR interference (P<0.05), suggesting that interference 
of OSMR resulted in G1 phase block in U251 cells  
(Figure S2G,S2H). In conclusion, these results suggested 
that  interference of  OSMR express ion inhibited 
proliferation, migration and promoted apoptosis of GBM 
cells, further confirming the credibility of model in 
predicting GBM prognosis.

Discussion

GBM is a highly malignant tumor with a high mortality 

rate (20,21). Despite the application of standard treatment, 
namely surgical resection, postoperative radiotherapy, and 
temozolomide chemotherapy, the OS of patients remains 
unsatisfactory (22,23). Therefore, there is an urgent need to 
explore effective diagnostic markers and develop molecular 
targeted therapies. The rapid development of high-
throughput sequencing technologies enables researchers to 
explore the mechanism of GBM progression by analyzing 
large-scale gene expression data and clinical information of 
GBM patients (24). 

Recent studies have shown that inflammation accelerates 
GBM progression and causes resistance to treatment. A 
network analysis showed that survival of GBM patients was 
associated with inflammatory response (25). Another study 
revealed that TP53 gain-of-function (GOF) mutations 
promoted inflammation in GBM, thereby worsening 
the outcome of GBM patients (26). In addition, studies 

https://cdn.amegroups.cn/static/public/ATM-22-6271-supplementary.pdf
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Figure 8 Drug sensitivity analysis. (A-J) The correlation of OSMR expression with drug sensitivity. (K) The correlation of MYD88 
expression with drug sensitivity. (L) The correlation of PTPRN expression with drug sensitivity. (M-P) The correlation of EFEMP2 
expression with drug sensitivity. OSMR, oncostatin M receptor. 

also reported that increased serum levels of neutrophils 
and inflammatory proteins were associated with poor 
prognosis in GBM patients (27,28). Thus, the inflammatory 
microenvironment is closely related to the progression and 
prognosis of GBM patients. 

However, the prognostic value of inflammation-
associated genes in GBM remains to be explored. 
Therefore, in this study, we systematically analyzed the 
expression of inflammatory response-related genes in GBM 
tissues and their association with OS. A prognostic model 
integrating 4 inflammatory response-related genes (PTPRN, 
OSMR, MYD88, and EFEMP2) was then constructed 
through TCGA database and validated in the CGGA 
cohort. The GBM patients were divided into high- and 

low-risk groups based on their median risk score. High-
risk patients were more likely to have shorter OS. PTPRN, 
a type I transmembrane protein, plays a key role in the 
cell functions-related signaling cascades, which may cause 
cancer, autoimmune diseases, and metabolic syndrome 
(29-31). Overexpression of PTPRN is significantly 
associated with poor OS in GBM patients (32). In addition, 
a recent study showed that PTPRN overexpression 
induced proliferation and migration of glioma cells, 
whereas PTPRN knockdown inhibited tumor growth in 
mouse model of glioma (33). Similarly, by analyzing the 
relationship between inflammatory response and GBM 
prognosis, we found that PTPRN might promote GBM 
progression by affecting the inflammatory response and 
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Figure 9 Interference of OSMR expression inhibits GBM cell proliferation and migration. (A) The relative expression of OSMR in the 
normal brain cell line HBVP and GBM cell lines U87, U251 and U118 was detected by qRT-PCR. (B) The transfection efficiency of si-
OSMR in the U251 and U118 cells was detected by WB. (C) The transfection efficiency of si-OSMR in the U251 and U118 cells was 
detected by qRT-PCR. (D) The effect of OSMR interference on the proliferation of the U251 and U118 cells was detected by CCK-8 assay. 
(E) Representative images of wound healing assay. Scare bar =200 μm. (F) Statistical analysis of wound healing assay results after interference 
of OSMR. (G) Representative images of transwell migration assay, stained with 1% crystal violet. Scare bar =200 μm. (H) Statistical analysis 
of transwell migration assay results after interference of OSMR in the U251 and U118 cells. (I) The effect of OSMR interference on the 
apoptosis of the U251 and U118 cells was detected by flow cytometry. (J) Statistical analysis of cell apoptosis after interference of OSMR in 
the U251 and U118 cells. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. OSMR, oncostatin M receptor; GAPDH, glyceraldehyde 
3-phosphate dehydrogenase; NC, normal control; OD, optical density; si-OSMR, siRNA-OSMR; PI, propidium iodide; FITC, fluorescein 
isothiocyanate; GBM, glioblastoma; qRT-PCR, quantitative real time polymerase chain reaction; CCK-8, Cell Counting Kit-8; WB, 
western blot. 

tumor microenvironment. OSMR is a cytokine receptor 
gene of the interleukin-6 (IL-6) family that plays a key role 
in driving glioma cells to the mesenchymal phenotype (34). 
OSMR expression is significantly higher in GBM than 
low-grade glioma, and OSMR can be used as a biomarker 
to predict the response of GBM patients to standard 
radiotherapy and chemotherapy (35). In our study, we 
observed that interference of OSMR expression inhibited 
the proliferation and migratory capacity of GBM cells  
in vitro, further confirming the important role of OSMR 
in predicting GBM prognosis. MYD88 is a key adaptor 
protein in the IL-1 receptor and toll-like receptor signaling 
pathways. MYD88 expression is significantly associated with 
OS and grade in glioma patients (36). This is consistent 
with the findings of our study that MYD88 was significantly 
upregulated in GBM tissues and correlated with poor OS 
in GBM patients. EFEMP2, a member of the fibronectin 
family, has been reported to promote tumor proliferation 
in lung cancer, colon cancer, and glioma (37,38). In our 
study, we demonstrated that upregulation of EFEMP2 
was associated with shorter OS in GBM. Furthermore, 
Huang et al. found that EFEMP2 indicated assembly of M0 
macrophages in the tumor microenvironment and a more 
malignant phenotype of glioma (39).

With a better understanding of the association 

between tumor microenvironment and tumor, the role of 
inflammation in the tumor microenvironment cannot be 
ignored. To gain more insight into the correlation between 
risk scores and immune components, we investigated 
immune infiltrating cells in different groups. The results 
showed that immune infiltrating cells were enriched in 
the high-risk group, such as aDCs, B cells, DCs, pDCs, 
macrophages, neutrophils, T-helper cells, Tfh, Th1 
cells, Th2 cells, TIL, and Treg, indicating that immune 
regulation was disturbed in the high-risk group, leading 
to more aggressive tumors and poorer prognosis in GBM 
patients. In addition, the results of correlation analysis 
suggested that the higher the stromal and immune cell 
content and lower tumor purity in GBM patients, the worse 
the prognosis of patients, which is consistent with the 
previous study on aggressive gliomas (40).

Although immunotherapy is a promising strategy, GBM 
has a wide range of immunosuppressive mechanisms, and 
the GBM microenvironment plays an important role in 
tumor immune escape, which leads to immunosuppression 
and affects immunotherapy efficacy (41-44). Predicting 
the efficacy of immunotherapy is critical to determine the 
prognosis of GBM patients. By analyzing immunotherapy-
related markers, we found that our inflammatory response-
related prognostic model can successfully predict the 
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efficacy of immunotherapy in GBM, and the high-risk 
group has greater immune escape potential and is less likely 
to benefit from immunotherapy, which can provide clinical 
guidance on the choice of immunotherapy.

Next, we attempted to further analyze the potential 
mechanism of inflammatory response-related genes 
in GBM. GSEA revealed that tumor-related signaling 
pathways such as the JAK-STAT pathway were significantly 
enriched in the high-risk group, whereas p53 and 
TGF-β signaling pathways were enriched in the low-
risk group. Studies have demonstrated that inhibition 
of phosphorylation of JAK or STAT is associated with a 
decrease in anti-apoptotic proteins, leading to apoptosis in 
GBM cells (45-47). P53 is a tumor suppressor protein that 
activates cell cycle arrest or induces apoptosis, preventing 
further division and growth of damaged cells (48,49). 
Dysregulated p53 pathway was found in 84% of GBM 
patients and 94% of GBM cell lines (50,51), which is 
related to the proliferation, migration, invasion, and evasion 
of apoptosis of GBM cells (52). The TGF-β signaling 
pathway plays a very important role in tumorigenesis and 
progression (53,54). On the one hand, TGF-β inhibits 
tumorigenesis and early development by suppressing cell 
cycle progression, inducing apoptosis, and inhibiting the 
expression of growth factors, cytokines and chemokines, and 
on the other hand, TGF-β is considered pro-oncogenic by 
affecting multiple components of the immune system and 
regulating the tumor microenvironment (55). Therefore, 
according to the above studies and our results, inflammatory 
response-related genes may affect the prognosis of GBM 
patients through the JAK-STAT, P53 and TGF-β signaling 
pathways. In addition, immune-related signaling pathways, 
such as NK cell-mediated cytotoxicity, chemokine signaling 
pathway, Fc gamma R-mediated phagocytosis, antigen 
processing and presentation, and intestinal immune network 
for IgA production were significantly enriched in the high-
risk group, further validating the close relationship between 
inflammatory response and tumor progression.

Furthermore, by analyzing the NCI-60 cell lines data, 
we found that the expression of the prognostic genes was 
associated with the sensitivity to FDA-approved drugs in 
our study. For example, OSMR expression was positively 
correlated with resistance to tamoxifen, nilotinib, crizotinib, 
palbociclib, LDK-378, oxaliplatin, cyclophosphamide, and 
raloxifene. Tamoxifen has been reported to have potent 
antitumor activity in various types of tumors, including 
glioma (56,57). Thus, patients with high expression of 
OSMR may be predictive of resistance to tamoxifen 

treatment. In addition, increased expression of MYD88 
was associated with increased sensitivity to nelarabine. 
Therefore, these data may provide a new perspective for the 
future precise treatment of GBM patients. 

Conclusions

In conclusion, our study constructed a novel prognostic 
model consisting of 4 inflammatory response-related 
genes. The prognostic model we constructed was shown 
to have stable predictive power in predicting OS, immune 
infiltration, potential mechanism, immunotherapy response, 
and drug sensitivity, providing a potential direction for the 
development of personalized therapy for GBM patients.
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