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ABSTRACT Group A Streptococcus (GAS) is a major cause of global infection-related
morbidity and mortality. A modern controlled human infection model (CHIM) of GAS
pharyngitis can accelerate vaccine development and pathogenesis research. A robust ra-
tionale for strain selection is central to meeting ethical, scientific, and regulatory require-
ments. Multifaceted characterization studies were done to compare a preferred candi-
date emm75 (M75) GAS strain to three other strains: an alternative candidate emm12
(M12) strain, an M1 strain used in 1970s pharyngitis CHIM studies (SS-496), and a repre-
sentative (5448) of the globally disseminated M1T1 clone. A range of approaches were
used to explore strain growth, adherence, invasion, delivery characteristics, short- and
long-term viability, phylogeny, virulence factors, vaccine antigens, resistance to killing by
human neutrophils, and lethality in a murine invasive model. The strains grew reliably in
a medium without animal-derived components, were consistently transferred using a
swab method simulating the CHIM protocol, remained viable at �80°C, and carried
genes for most candidate vaccine antigens. Considering GAS molecular epidemiology,
virulence factors, in vitro assays, and results from the murine model, the contemporary
strains show a spectrum of virulence, with M75 appearing the least virulent and 5448
the most. The virulence profile of SS-496, used safely in 1970s CHIM studies, was similar
to that of 5448 in the animal model and virulence gene carriage. The results of this mul-
tifaceted characterization confirm the M75 strain as an appropriate choice for initial de-
ployment in the CHIM, with the aim of safely and successfully causing pharyngitis in
healthy adult volunteers.

IMPORTANCE GAS (Streptococcus pyogenes) is a leading global cause of infection-
related morbidity and mortality. A modern CHIM of GAS pharyngitis could help to accel-
erate vaccine development and drive pathogenesis research. Challenge strain selection is
critical to the safety and success of any CHIM and especially so for an organism such as
GAS, with its wide strain diversity and potential to cause severe life-threatening acute in-
fections (e.g., toxic shock syndrome and necrotizing fasciitis) and postinfectious compli-
cations (e.g., acute rheumatic fever, rheumatic heart disease, and acute poststreptococcal
glomerulonephritis). In this paper, we outline the rationale for selecting an emm75 strain
for initial use in a GAS pharyngitis CHIM in healthy adult volunteers, drawing on the
findings of a broad characterization effort spanning molecular epidemiology, in vitro as-
says, whole-genome sequencing, and animal model studies.
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Group A Streptococcus (GAS; Streptococcus pyogenes) is a major contributor to global
infection-related mortality and morbidity. It causes a diverse spectrum of human

disease syndromes, from superficial infections (e.g., pharyngitis and impetigo) to
invasive disease (e.g., necrotizing fasciitis and toxic shock syndrome) and autoimmune
complications (acute rheumatic fever, rheumatic heart disease, and glomerulonephritis)
(1). Development of a GAS vaccine has been impeded by scientific, regulatory, and
commercial obstacles (2). Controlled human infection models (CHIM) are increasingly
assuming an important role for vaccine development (3, 4). Drawing on the record of
historical CHIM studies that included 172 participants (5–7), a modern pharyngitis CHIM
in healthy adult volunteers has been proposed as part of a reenergized global effort to
accelerate GAS vaccine development (8). Selection of a thoroughly characterized strain
is central for development of a GAS CHIM.

A successful CHIM requires that infection and/or symptomatic disease endpoints are
reached reliably and safely and bear sufficient resemblance to a natural state to suggest
generalizability. The diverse clinical and microbiological profile of GAS presents chal-
lenges for CHIM study design, especially strain selection. There are more than 200
different GAS emm types. This widely used classification system is based on one part of
the gene encoding a single GAS antigen, the M protein. No other antigen has been
as closely studied, and the concept of M protein type-specific immunity has been
a cornerstone of GAS research. GAS is a highly adapted human pathogen, and the
limitations of in vitro assays and animal models have been well described. After
more than a century of research, fundamental aspects of pathogenesis and human
immune protection against GAS remain unknown. These knowledge gaps are
simultaneously an argument for building a CHIM and a source of uncertainty in
conceiving its design.

A thorough and explicitly stated rationale for strain selection is an important step in
minimizing potential harm to participants and maximizing scientific impact. We con-
sidered desirable characteristics in selecting an initial strain to establish a GAS phar-
yngitis CHIM and surveyed available collections for suitable strains, focusing on an
emm75 strain (GAS M75 611024, termed M75) isolated in 2011 from the throat of a
5-year-old girl with acute symptomatic pharyngitis in Melbourne (Table 1; see also
Table S1 in the supplemental material) (9). In this paper, we present a multifaceted
characterization of the preferred CHIM candidate M75 strain and compared it to three
others: GAS M12 611025 (M12), an alternative challenge candidate; M1T1 5448 (5448),
representative of the M1T1 clone recently responsible for most pharyngitis and invasive
disease globally (10); and CDC SS-496 (SS-496), an M1 strain administered to 88 subjects
in 1970s pharyngitis CHIM studies (5, 7).

RESULTS
Growth in an animal-free medium. Compared to that in THY broth, no detrimental

effect on growth of M75, M12, and 5448 was observed in the animal-free medium
(Fig. 1A). Eight-hour growth curves for M75 clones tested after 7 days of repeated in
vitro passage were similar to those of the nonpassaged parent (data not shown).

Attachment properties. M75 had the highest adherence to D562 (75%) and HaCaT
(81%) cells (Fig. 1B). M12 (53%) and 5448 (51%) were similarly adherent to D562 cells.
M12 preferentially adhered to D562 over HaCaT cells (P � 0.005), whereas M75 and
M1T1 showed no preference. The affinity of M12 to pharyngeal over skin cells matches
its designation as an A-C pattern strain, associated with throat tissue tropism (11).
Invasiveness of M75 and M12 was low for both cell lines (�0.45%). Invasion by 5448 of
HaCaT cells (10%) was greater than that for D562 cells (0.2%) (Fig. 1B).

Capsule production. M75 produced 74 ng/ml of hyaluronic acid (HA) capsule,
whereas M12 produced 7,506 ng/ml (Fig. 1C). Capsule production by 5448 matched
previous findings (12).

Delivery characteristics and viability. The Dacron swab was considered most
suitable for delivery of the challenge inoculum (Fig. S1). Mean broth uptake by Dacron
(105 mg) and Rayon S (108 mg) swabs was comparable to that of cotton (129 mg), and
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uptake variance was lowest (7.7 mg) for the Dacron swab. Superior release was noted
for the Dacron swab with a mean of 1.8 � 103 CFU of M75 recovered after swab dipping
(Fig. 2B). Recovery from M75 vials frozen for 4 months did not fall below 95% of the
original inoculum at T � 0. Adherence and invasion were similarly unaffected by
storage (data not shown).

FIG 1 In vitro characterization of contemporary candidate strains for human challenge. (A) Growth kinetics of candidate strains in RPMI
1640 supplemented with 2% Veggietone (filled symbols) and Todd-Hewitt broth with 1% yeast extract (open symbols). Means and
standard deviations (SD) are representative of three separate experiments done in triplicate. (B) Strain attachment and cellular invasion.
Means and SD are from three separate experiments with triplicate wells. (C) Capsular hyaluronic acid quantification. Means and SD are
derived from a single experiment. (D) Resistance of M75, M12, and 5448 to killing by human neutrophils. Means and SD are from three
separate experiments using different blood donors, with seven biological replicates. (E) Strain lethality in a humanized plasminogen
transgenic AlbPLG1 murine invasive disease model (n � 10 for each strain).
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FIG 2 Comparative genomics of M75 611024, M12 611025, M1T1 5448, and M1 CDC SS-496. (A) Circular schematic of GAS M75 611024 showing GC plot
(inner ring) with GC content above (black) and below (gray) the genome average. Predicted prophage sequences are shown in red, with associated
prophage virulence determinants annotated and relative position of predicted coding sequences on the forward strand (blue) and reverse strand (gold).

(Continued on next page)
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Antibiotic susceptibility. M75 was susceptible to all tested antibiotics, while M12
was resistant to macrolides and fluoroquinolones (Table 2). All strains were susceptible
to clindamycin, and inducible resistance was not detected.

Whole-genome sequencing and phylogenetic analyses. The complete genome
of M75 611024 is comprised of a single chromosome of 1,852,894 bp (Fig. 2A). M75
has the multilocus sequence type (MLST) ST150 and contains the emm75.0 allele
and mrp24 and enn334 alleles, corresponding to the emm-like genes mrp and enn
(P. Smeesters, personal communication, July 2018). Three putative prophage se-
quences were identified in M75 harboring the endonuclease streptodornase 3
(spd3), pyrogenic exotoxins speL and speM, and the endonuclease sdn. M75 shared
a hypothetical ancestral relationship with a UK emm75 cluster (Fig. 2B), yet it
represents a distinct evolving lineage, suggesting an ancestral relationship to
modern-day ST150 emm75 clones.

One single-nucleotide polymorphism (SNP) was found for each of three M75
clones sequenced after 7 days of repeated in vitro passage compared to sequence
of the nonpassaged parent strain. Each SNP was intergenic and different, suggestive
of random mutations of unlikely functional consequence (data not shown).

M12 611025 belongs to MLST ST36 and carries the emm12.0 allele. It shares a high
degree of genome conservation with other emm12 genome sequences, varying in
prophage and integrative conjugative element content relative to the reference ge-
nomes HKU16 and MGAS9429 (Fig. 2C). Phylogenetic analysis alongside 141 extant
emm12 isolates showed an evolutionary relationship with other modern ST36 strains
(Fig. 2D), including recent scarlet fever outbreak strains (13).

The historical challenge strain SS-496 shares a higher degree of genetic and evolu-
tionary similarity with the ancestral M1 reference strain SF370 relative to the modern
M1T1 strains MGAS5005 and 5448 (Fig. 2E and F) (14). SS-496 contains the historical
SF370-like purA to nadC genomic region encoding streptolysin O.

Virulence factors and vaccine antigens. M75, M12, and SS-496 carry genes for an
array of adhesion and invasion factors common to many emm types (Table 3). M75
contains a frameshift mutation in the fibronectin binding protein Sfb1 within the FCT
locus. M12 carries the streptococcal superantigen A (ssa) gene recently reported in

FIG 2 Legend (Continued)
(B) Unrooted maximum likelihood tree of 131 emm75 strains from the United Kingdom, the United States, and France based on 1,046 SNPs relative to the
M75 611024 reference genome. Tips of the tree are color coded based on country of isolation. Location of genomes corresponding to M75 611024 and
the completely sequenced emm75 strains from France, STAB 090229 (CP020027), STAB 120304 (CP020082), and STAB 14018 (CP014542), are annotated.
(C) Comparative BLASTN analysis of M12 611025 (blue ring) and MGAS9429 (purple ring) relative to the emm12 reference genome HKU16 (inner black
circle). HKU16 GC content and GC skew are indicated in the inner ring, while annotated around the outside is the genomic position of known HKU16 mobile
genetic elements. (D) Maximum likelihood phylogenetic relationship of strain 611025 with 141 emm12 S. pyogenes strains from other geographical regions
based on 1,452 SNP sites from the core genome of the HKU16 reference genome. Tips of the tree are color coded based on country of isolation of each
isolate. Genomes from completely sequenced emm12 strains MGAS9429 (CP000259), MGAS2096 (CP000261), and HKU16 (QMH11M0907901;
AFRY01000001) are annotated. (E) Comparative BLASTN analysis of CDC SS-496 and other GAS M1 reference genomes, AP1, 5448, and MGAS5005, relative
to the SF370 M1 GAS reference genome (inner black circle). (F) Mid-point-rooted maximum likelihood phylogenetic relationship of M1 GAS reference
genomes based on 780 SNP sites. Tips of the tree are annotated by strain name and color coded by ring color from panel E. Genomes belonging to
SF370-like and MGAS5005-like lineages (14) are clustered by gray shading. Comparative BLASTN analyses were generated using BRIG (40).

TABLE 2 Antibiotic susceptibility of contemporary group A streptococcal strains M75
611024, M12 611025, and M1T1 5448

Antibiotic

Breakpointa (mg/liter) Etest MIC (mg/liter)

S I R M75 M12 5448

Penicillin �0.12 0.012 0.016 0.012
Erythromycin �0.25 0.5 �1 0.094 16 0.125
Clindamycin �0.25 0.5 �1 0.125b 0.125b 0.125b

Azithromycin �0.5 1 �2 1 64 1.5
Levofloxacin �2 4 �8 0.5 4 0.5
Rifampin �0.06 �0.5 0.064 0.064 0.125
aAll CLSI breakpoints except that for rifampin (EUCAST). I, intermediate susceptibility; R, resistant; S,
susceptible.

bInducible clindamycin resistance (D test) not detected.
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scarlet fever-associated isolates in China and the United Kingdom (15). M12 does not
carry the multidrug-resistant integrative conjugative element ICE-emm12 or the ssa-
carrying prophage �HKU.vir, linked to the emergence of scarlet fever clades (13). The
virulence profile of SS-496 is similar to that of pre-1980 M1 strains such as SF370, with
speH and speI exotoxins and the absence of the speA exotoxin typical of modern
isolates such as 5448 (Table 2). M75, M12, SS-496, and 5448 all possess wild-type covRS
and ropB two-component virulence regulators.

High carriage (�60%) of protein and peptide candidate vaccine antigens was
observed for M75 and M12 using a homology-based genome approach (Table 4).

TABLE 3 Group A Streptococcus virulence factor genomic screen

Gene Function M75 611024 M12 611025 M1T1 5448 CDC SS-496

cfa-cfb CAMP factor ✓ ✓ ✓ ✓
tee (cpa) T-pilus antigen ✓ ✓ ✓
cppA Putative C3-degrading proteinase ✓ ✓ ✓ ✓
emm M-protein ✓ ✓ ✓ ✓
endoS Endo-beta-N-acetylglucosaminidase F2 precursor ✓ ✓ ✓ ✓
fbp54 Fibrinogen-binding protein ✓ ✓ ✓ ✓
fctA Major pilin Ap1 (FctA) ✓ ✓
fctB Minor pilin Ap2 (FctB) ✓ ✓
grab Protein G-related alpha 2M-binding protein ✓ ✓ ✓
hasA HA synthase capsule ✓ ✓ ✓ ✓
hasB UDP-glucose 6-dehydrogenase capsule ✓ ✓ ✓ ✓
hasC Putative UDP-glucose pyrophosphorylase ✓ ✓ ✓ ✓
htrA-degP Serine protease ✓ ✓ ✓ ✓
htsA Putative ABC transporter periplasmic binding protein ✓ ✓ ✓ ✓
htsB Putative ABC transporter permease ✓ ✓ ✓ ✓
htsC Putative ABC transporter ATP-binding protein ✓ ✓ ✓ ✓
hyl Hyaluronoglucosaminidase ✓ ✓ ✓ ✓
hylA HA lyase precursor ✓ ✓ ✓
hylP Hyaluronoglucosaminidase ✓ ✓ ✓ ✓
ideS-mac IgG-degrading protease ✓ ✓ ✓ ✓
lepA Signal peptidase I ✓ ✓
lmb Laminin binding protein ✓ ✓ ✓ ✓
mf-spd Deoxyribonuclease ✓ ✓ ✓ ✓
mf3 Deoxyribonuclease ✓ ✓ ✓
plr-gapA Glyceraldehyde-3-phosphate dehydrogenase ✓ ✓ ✓ ✓
prtF2 Collagen adhesion protein ✓
psaA Manganese-binding protein ✓ ✓ ✓ ✓
sagA Streptolysin S precursor ✓ ✓ ✓ ✓
sclA Collagen-like surface protein A ✓ ✓ ✓ ✓
sclB Putative collagen-like protein ✓ ✓
scpA C5A peptidase precursor ✓ ✓ ✓ ✓
sda Phage-encoded streptodornase Sda ✓ ✓
sdn Phage-encoded endonuclease Sdn ✓
sfbII-sof Fibronectin-binding protein ✓ ✓
sfbX Fibronectin-binding protein ✓ ✓
shp Hypothetical protein ✓ ✓ ✓ ✓
shr Fe3�-siderophore transporter ✓ ✓ ✓ ✓
sic Streptococcal inhibitor of complement ✓
ska Streptokinase precursor ✓ ✓ ✓ ✓
slo Streptolysin O ✓ ✓ ✓ ✓
smeZ Enterotoxin ✓ ✓ ✓ ✓
speB Cysteine protease ✓ ✓ ✓ ✓
speA Exotoxin A ✓
speG Exotoxin G ✓ ✓ ✓ ✓
speH Exotoxin H ✓ ✓
speI Exotoxin I ✓ ✓
speJ Exotoxin J ✓ ✓
speL Exotoxin L ✓
speM Exotoxin M ✓
spyA C3 family ADP-ribosyltransferase ✓ ✓ ✓ ✓
srtC1 Sortase ✓ ✓
ssa Streptococcal superantigen A ✓
tig-ropA Trigger factor ✓ ✓ ✓ ✓
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Human neutrophil killing assay. M75 was most susceptible to in vitro killing when
incubated with human neutrophils, although killing was observed for all strains
(Fig. 1D).

Mouse lethal invasive model. Compared to M12, 5448, and SS-496, M75 was
avirulent in the humanized mouse invasive disease model (Fig. 1E).

DISCUSSION

We have described the rationale for selecting M75 for initial use in a new GAS
pharyngitis CHIM in healthy adults, including results of diverse preclinical studies
assessing its fitness for purpose. For context and comparison, we have presented
results for three other strains (M12, 5448, and SS-496).

M75 is compatible with critical protocol points: reliable growth in an animal-free
medium, retention of growth and attachment properties after prolonged storage at
�80°C, consistent delivery using a commercially available swab, and susceptibility to
antibiotics used to treat GAS pharyngitis. M75 looks to have an acceptable virulence
profile, with the capacity to cause pharyngitis and low potential for invasive disease.
M75 has attractive attachment properties for immortalized human pharyngeal and skin
cell lines, with limited cellular invasion. M75 was highly susceptible to in vitro killing by
human neutrophils, possibly due to its minimal capsular HA production. In a humanized
mouse model of invasive infection M75 was avirulent, whereas M12 and both M1
strains were lethal. Whole-genome sequencing placed the strains in the context of
epidemiologically related phylotypes and found broad representation of candidate
vaccine antigens and a relatively restricted array of virulence factor genes in M75.

CHIM strain selection has been guided by varied general and pathogen-specific
considerations, all with the goal of safely and reliably reproducing relevant and

TABLE 4 Group A Streptococcus candidate vaccine antigen genomic screenc

Gene/antigen Gene identifiera Function M75 611024 M12 611025 M1T1 5448

M-protein, N terminal (30-valent vaccine) ✓ ✓ ✓
M-protein, C terminal (J8.0) ✓ ✓
M-protein, C terminal (StreptInCor T-cell epitope)
M-protein, C terminal (StreptInCor B-cell epitope)
M-protein, C terminal (StreptInCor common epitope) ✓

adi MGAS5005_spy1275 Arginine deaminase ✓ ✓ ✓
fbaA MGAS5005_spy1714 Fibronectin-binding protein A
fbp54 AAA57236 Fibronectin-binding protein 54 ✓ ✓ ✓
oppA M5005_spy0249 Oligopeptide-binding protein ✓ ✓ ✓
GAC MGAS5005b Group A carbohydrate ✓ ✓ ✓
pulA SF370_spy1972 Putative pullulanase ✓ ✓ ✓
r28 AF091393 Rib-like cell wall protein
scpA MGAS5005_spy1715 C5a peptidase ✓ ✓ ✓
sfbI X67947 Streptococcal fibronectin binding protein I
sfbII-sof X83303 Serum opacity factor ✓
shr SPY1530 Streptococcal hemoprotein receptor ✓ ✓ ✓
sib35 AB254157 Streptococcal immunoglobulin-binding protein 35 ✓ ✓ ✓
slo M5005_spy0124 Streptolysin O ✓ ✓ ✓
spa MGAS8232_spyM18_2046 Streptococcal protective antigen
speA X03929 Streptococcal pyrogenic exotoxin A ✓
speB M5005_spy1735 Cysteine protease ✓ ✓ ✓
speC SF370_spy0711 Streptococcal pyrogenic exotoxin C
spy0651 MGAS5005_spy0651 Cell surface protein ✓ ✓ ✓
spy0762 MGAS5005_spy0762 Hypothetical membrane associated protein ✓ ✓ ✓
spy0942 MGAS5005_spy0942 Nucleoside-binding protein ✓ ✓ ✓
spyAD MGAS5005_spy0229 Adhesin and division protein ✓ ✓ ✓
spyCEP MGAS5005_spy0341 Interleukin-8 serine protease ✓ ✓ ✓
sse SF370_spy1407 Serine esterase ✓ ✓
tee MGAS5005_spy0109 T antigen ✓ ✓ ✓
tif SF370_spy1612 Trigger factor ✓ ✓ ✓

aNucleotide gene sequences derived from completely sequenced genomes or listed GenBank identifiers. Accession numbers for genome sequences include MGAS5005
(CP000017), SF370 (AE004092), and MGAS8232 (AE009949).

bGAC operon (�14.2 kb) refers to MGAS5005 genome coordinates 604873 to 619151.
cBLAST analyses at a homology level of 80% for protein antigens and 100% for peptide-derived sequences.
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generalizable asymptomatic (infection/carriage) or symptomatic (disease) study end-
points (3, 4, 16). Suitable well-characterized strains may already exist, such as the
Salmonella enterica serovar Typhi Quailes strain (17). Patients with mild to moderately
severe uncomplicated disease may be a source of naturally attenuated new strains.
Multiple strains, sometimes from different locations, may be required to represent
natural strain diversity and/or enable heterologous rechallenge (18). If mechanisms of
severe infection and/or complications are known, the implicated virulence factor(s) may
be avoided (e.g., Shiga toxin-producing Escherichia coli [19] and Campylobacter jejuni
inducing cross-reactive antibodies to GM1 and GQ1b gangliosides [20]). Pathogens may
be modified for use, such as the propagation of single-sex Schistosoma mansoni
cercariae to prevent chronic schistosomiasis (21). For vaccine studies, target antigen(s)
must be present in the challenge strain(s). In every instance, strains must be charac-
terized and be compatible with protocols for manufacturing and inoculation and with
techniques to measure organism and host responses.

The limitations of this characterization effort are inherent in the rationale for
pursuing a GAS CHIM. In vitro assays, genomics, and animal models do not fully capture
or predict the dynamic elements and sequelae of human infection by GAS, a highly
adapted and human-restricted pathogen. Even advanced nonhuman primate models
produce a pharyngitis syndrome with important differences from human disease. A
single contemporary clone, represented here by 5448, is simultaneously the most
common cause in urbanized settings of both the mildest and most severe disease
syndromes, with the basis for tissue tropism and bacterial-human genotype-phenotype
relationships still relatively obscure. These uncertainties dictate a cautious approach
extending beyond strain selection, including strain manufacture following principles of
Good Manufacturing Practice, initial inclusion of healthy adults only without risk factors
for severe GAS disease, a dose-ranging study to establish attack rate and safety,
inpatient admission at a trials facility supported by a tertiary hospital, universal anti-
biotic treatment, outpatient follow-up, and echocardiography at screening and final
visits.

A generic limitation of CHIM studies is the uncertain degree to which data from
healthy adults experiencing a single syndrome (pharyngitis) caused by one strain (M75)
can be generalized to other subjects, syndromes, strains, and settings (e.g., children
with GAS skin infections due to other emm types in low- and middle-income countries).
While inclusion of other strains and even a skin infection CHIM are conceivable
extensions, model findings must be interpreted alongside knowledge derived from
more naturalistic studies. For vaccine development, a GAS pharyngitis CHIM has dual
scientific and strategic purposes, aiming to serve as a bridge to field trials with a more
natural distribution of subjects, syndromes, and strains.

With a view to the very high priority given to participant safety and risk minimiza-
tion, findings from these strain characterization studies reinforce the appropriateness of
M75 for initial use in a GAS pharyngitis CHIM.

MATERIALS AND METHODS
Bacterial isolates. M75 611024 and M12 611025 were isolated in 2011 from throat swabs collected

from children with acute pharyngitis in Melbourne, Australia, and stored at the Murdoch Children’s
Research Institute (9). Mark Walker at the University of Queensland supplied 5448 (10, 22). The U.S.
Centers for Disease Control and Prevention (CDC) Streptococcus Laboratory provided the SS-496 strain,
submitted in 1958 from Duke University.

Growth and viability. For administration to human volunteers, an animal-free medium must sustain
sufficient strain growth. A chemically defined medium was developed (VR broth) consisting of RPMI 1640
(Gibco) and 2% (wt/vol) Veggietone genetically modified organism-free soya-peptone (Oxoid). Eight-
hour growth assays were done comparing growth of M75 in this medium to that in Todd-Hewitt broth
(Oxoid) with 1% (wt/vol) yeast extract (Bacto) (THY). Bacteria were grown in 125-ml Erlenmeyer flasks
containing 25 ml of VR or THY broth and agitated gently at 75 rpm. To simulate manufacturing processes,
M75 growth in VR broth was examined after 7 days of repeated in vitro passage, using frozen cultures
of three postpassage clones and the prepassage parent isolate.

HA capsule assay. The hyaluronic acid (HA) capsule is a GAS virulence factor that resists op-
sonophagocytosis (23). Capsular HA levels were quantified using a test kit (Corgenix), as previously
described (10).
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Attachment properties. Cell culture lines have been used to study GAS adherence (24, 25). We used
Detroit 562 (D562) human pharyngeal cells and skin HaCaT cells, simulating natural sites of infection. As
previously described, total cell-associated GAS (percentage of original inoculum) and invasiveness
(intracellular fraction of total cell-associated GAS) were determined using GAS grown to mid-exponential
phase (optical density at 600 nm [OD600] of �0.5) in VR broth and diluted in 500 �l of assay medium
(MEM with 5% fetal bovine serum; Gibco) to a multiplicity of infection of 5:1 (GAS:cells) (10). Inoculated
trays were centrifuged for 5 min at 200 � g and incubated for 1 h at 37°C in 5% CO2 and then washed
three times with phosphate-buffered saline (PBS) to remove nonadherent bacteria. Cell-associated GAS
(adherent plus invasive) were detached using 200 �l 0.25% trypsin, lysed with 0.025% Triton-X (Sigma)
in distilled water, and enumerated by track dilution on horse blood agar. To measure invasive bacteria,
cells were washed once after incubation in assay medium for 1 h and then incubated for another hour
in medium containing 100 �g/ml gentamicin and enumerated as before.

Delivery characteristics. To assess M75 viability following storage at �80°C, bacteria were grown in
VR broth (OD600 of 0.5), centrifuged, and suspended in broth containing 10% (vol/vol) glycerol (Sanofi).
Vials containing 105, 106, 107, and 108 CFU/ml were thawed at intervals and immediately tested without
washing (mimicking the challenge protocol) for (i) growth in solid and liquid media, (ii) viability by
enumeration, and (iii) attachment properties, as described above.

For the challenge procedure, swab uptake and release of the GAS inoculum should be consistent. We
simulated direct oropharyngeal application using four Copan swabs: FLOQSwab (nylon), Dacron (poly-
ester), and small (S) and large (L) rayon swabs. For uptake, vials of broth were weighed before and after
dipping of swabs for 10 s. Swab release of GAS was measured by dipping swabs in 1-ml vials containing
1 � 105 to 3 � 105 CFU of M75 for 10 s, followed by transferring to 1 ml of PBS for 10 s and then
enumerated by spread plate dilutions.

Antibiotic susceptibility testing. MICs were determined by Etest, and double disk diffusion (d-zone
test) was used to detect inducible clindamycin resistance. Interpretive breakpoints of the Clinical and
Laboratory Standards Institute (CLSI; penicillin, erythromycin, azithromycin, clindamycin, and levofloxa-
cin) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST; rifampin) were used
(26, 27).

Whole-genome sequencing and phylogenetic analyses. The complete M75 611024 genome
sequence was determined using long-read single-molecule real-time sequencing on the Pacific Biosci-
ences RS II platform. Filtering of the long reads identified 104,694 reads with an average polymerase read
length of 4.1 kb. A single circular assembly was generated using SMRT analysis, v2.3.0 (Pacific Biosci-
ences), and HGAP, v3, and polished using Quiver at an average read depth of 96-fold. To aid in assembly
validation, M75 was also sequenced on an Illumina Next-seq 500 to produce paired-end reads with a read
length of 150 bases. The M75 611024 genome sequence has been submitted to GenBank (accession
number CP033621). The genomes of M12 611025 and CDC SS-496 were sequenced by Illumina Next-seq
500 with a paired-end read length of 150 bases. Draft genome assemblies were generated using SPAdes
v3.12.0. Illumina short reads of M12 611025 (accession number SRR8217179) and CDC SS-496
(SRR8217180) have been submitted to the Short Read Archive (PRJNA504701).

To study M75 genomic stability, three clones were sequenced by Illumina Next-seq 500, with 150-bp
paired-end reads, after 7 days of repeated in vitro passage. These sequences were aligned with the
prepassage parent M75 reference sequence to identify single-nucleotide polymorphisms (SNPs).

Phylogenetic analysis of a global data set of emm75 isolates was determined by mapping short read
sequences of 131 global emm75 genomes from the United Kingdom (n � 124), United States (n � 4), and
France (n � 3) (28–30) to the M75 611024 reference genome with BWA MEM (v0.7.16). SNPs with a Phred
quality score of �30 were identified in each isolate using SAMtools pileup with a minimum coverage of
30�. Prophage sequences within M75 611024 were identified using the Phaster server, with SNPs located
within these prophage excluded, as they represent evolutionary confounders. A maximum likelihood
phylogenetic tree was built from 1,046 concatenated SNP sites using RAxML, v8.2.8, with the general
time-reversible model and gamma correction with 100 bootstrap resamplings to assess phylogenetic
support.

Phylogeny of 141 emm12 genomes, including the Illumina reads of M12 611025 and sequences from
Australia, the United States, Hong Kong, and mainland China, was analyzed by mapping to the reference
genome HKU16 (strain QMH11M0907901 [GenBank accession no. AFRY01000001]) from 1,452 vertically
inherited SNPs as previously described (13). Illumina reads of the M1 genome sequence CDC SS-496 were
mapped to MGAS5005 (GenBank accession no. NC_007297) and other M1 reference genomes with
phylogeny inferred form 780 vertically inherited SNPs.

Virulence factors and vaccine antigens. Virulence gene carriage was determined for M75, M12,
5448, and SS-496 by blastN screening assemblies against the virulence factor database (VFDB) (31). Gene
presence was defined by an 80% nucleotide cutoff over 80% of the gene length.

Protection in animal models has been shown for more than twenty-five candidate GAS vaccine
protein antigens and several peptide-based antigens (32). For protein antigens, presence was defined by
an 80% nucleotide cutoff over 80% of the gene length. For sequence-constrained peptide-based vaccine
epitopes J8.0 (SREAKKQVEKAL) (33) as well as the StreptInCor sequence (KGLRRDLDASREAKKQLEAEQQ
KLEEQNKISEASRKGLRRDLDASREAKKQVEKA) (34) and associated T-cell (KGLRRDLDASREAKKQLEAEQQ),
B-cell (ASRKGLRRDLDASREAKKQVEKA), and common B-T-cell (KGLRRDLDASREAKKQ) epitopes, a 100%
nucleotide sequence match was taken to define presence, although 100% homology may not be
required to induce production of broadly cross-reactive antibodies and vaccine protection.

Neutrophil killing assay. Survival of M75, M12, and 5448 incubated with human neutrophils in vitro
was assayed as previously described (35). Experiments were performed in triplicate using mid-

Osowicki et al.

January/February 2019 Volume 4 Issue 1 e00647-18 msphere.asm.org 10

https://www.ncbi.nlm.nih.gov/nuccore/CP033621
https://www.ncbi.nlm.nih.gov/sra/SRR8217179
https://www.ncbi.nlm.nih.gov/sra/SRR8217180
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA504701
https://www.ncbi.nlm.nih.gov/nuccore/AFRY01000001
https://www.ncbi.nlm.nih.gov/nuccore/NC_007297
https://msphere.asm.org


exponential-phase GAS at a multiplicity of infection of 10:1. Differences in neutrophil survival were
analyzed using 1-way analysis of variance (GraphPad Prism).

Murine invasive model. Strain virulence was compared in a humanized plasminogen transgenic
AlbPLG1 mouse model (36). In separate experiments, groups (n � 10) of AlbPLG1�/� mice were admin-
istered subcutaneous doses of either M75 (7 � 107 CFU), M12 (8 � 107 CFU), 5448 (5 � 107 CFU), or
SS-496 (3 � 107 CFU), and survival was monitored for 10 days, as previously described (37, 38).

Ethics statement. Animal procedures followed the Australian Code for the Care and Use of Animals
for Scientific Purposes and were approved by the University of Queensland Animal Ethics Committee
(SCMB/140/16/NHMRC) (39). An initial dose-ranging CHIM study has been approved by The Alfred
Hospital Ethics Committee (500/17) and is registered at ClinicalTrials.gov (NCT03361163).

Data availability. The M75 611024 genome sequence has been submitted to GenBank (accession
number CP033621). Illumina short reads of M12 611025 (accession number SRR8217179) and CDC SS-496
(SRR8217180) have been submitted to the Short Read Archive (PRJNA504701). M75 was also sequenced
on an Illumina Next-seq 500 to produce paired-end reads with a read length of 150 bases (accession
number SRR8217178).
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