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The critical role of gut
microbiota in obesity

Zilu Cheng, Li Zhang, Ling Yang* and Huikuan Chu*

Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
Obesity is a global epidemic characterized by energy disequilibrium, metabolic

disorder, fat mass development, and chronic low-grade inflammation, which

significantly affects the health state of individuals of all ages and strains the

socioeconomic system. The prevalence of obesity is rising at alarming rates and

its etiology involves complicated interplay of diet, genetic, and environmental

factors. The gut microbiota, as an important constituent of environmental

factors, has been confirmed to correlate with the onset and progression of

obesity. However, the specific relationship between obesity and the gut

microbiota, and its associated mechanisms, have not been fully elucidated. In

this review, we have summarized that the microbial diversity was significantly

decreased and the Firmicutes/Bacteroidetes ratio was significantly increased in

obesity. The altered gut microbiota and associated metabolites contributed to

the progression of the disease by disrupting energy homeostasis, promoting

lipid synthesis and storage, modulating central appetite and feeding behavior,

as well as triggering chronic inflammation, and that the intentional

manipulation of gut microbiota held promise as novel therapies for obesity,

including probiotics, prebiotics, and fecal microbiota transplantation.

KEYWORDS

gut microbiota, obesity, energy homeostasis, bile acids, SCFAs
Abbreviations: HFD, high-fat diet; LBP, lipopolysaccharide binding protein; SCFAs, short-chain fatty

acids; TGR5, Takeda G protein-coupled receptor 5; BAT, brown adipose tissue; FXR, Farnesoid X Receptor;

FGF, fibroblast growth factor; FIAF, fasting-induced adipose factor; SREBP1c, sterol regulatory binding

protein1c; ChREBP, carbohydrate response element binding protein; LPS, lipopolysaccharide; IL,

Interleukin; TNF, tumor necrosis factor; LPL, lipoprotein lipase; PYY, peptide YY; GLP-1, glucogen-like

peptide 1; GABA, g-aminobutyric acid; NF-kB, nuclear factor kappa B; MCP, monocyte chemoattractant

protein; GPR, G protein coupled receptor; FMT, Fecal microbiota transplantation; T2DM, type-2 diabetes

mellitus; lncRNA, long noncoding RNA.
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1 Introduction

It is widely acknowledged that obesity is a chronic metabolic

disease mainly induced by the disequilibrium of energy intake

and energy expenditure, which results in excess fat

accumulation, metabolic disorders, as well as chronic low-

grade inflammation. The prevalence of obesity is rising at

alarming rates (1). According to a comprehensive study,

overweight and obese individuals account for about one-third

and 10% of the world’s population, respectively (2). Besides, 1.12

billion people in the globe are predicted to suffer from obesity by

2030 (1), which poses a great threat to human health and an

enormous burden to the social economy. Moreover, obesity has

been considered to correlate with higher risks of other diseases,

such as cardiovascular and respiratory problems, diabetes, and

even cancer (2, 3). The etiology of obesity is multifactorial and

not yet fully elucidated; some factors include sedentary lifestyle,

unhealthy eating habits, genetic predisposition, and

environmental factors (4, 5). Evidence is mounting that the

gut microbiota, as a pivotal environmental factor, contributes to

the occurrence and progression of obesity significantly, which

has been confirmed to play significant roles in other metabolic

disorders, such as non-alcoholic fatty liver disease and diabetes

(6–9).

The gut microbiota refers to a complicated ecosystem

colonized in the human gut tract, which embodies large

amounts of microorganisms, including bacteria, fungi, virus,

archaea, protists and so on. The total weight of the gut

microbiota is about 1-2 kg, and the number of genes it

contains is more than 100 times than that of the human body

in which it resides (10). In a healthy status, the gut microbiota

coexists with the host harmoniously and participates in the

regulation of multiple physiological functions of the host,

including digesting and absorbing essential nutrients,

conferring protection against detrimental microbes, and

maintaining immune homeostasis (11). Herein, gut dysbiosis is

unfavorable for the host, and putatively results in a variety of

diseases, including obesity, which alignes with previous studies

(6–9). The altered gut microbiota putatively participates in the

pathogenesis of obesity via multiple mechanisms, including

energy homeostasis disruption, lipid synthesis and storage,

central appetite and feeding behavior regulation, as well as

chronic low-grade inflammation.

Currently, there exist various effective interventions for

obese treatment, such as healthy lifestyles, weight-reducing

drugs, and bariatric surgery. Nevertheless, great efforts are still

warranted to seek novel validated therapeutic methods, owing to

the difficulty of sustaining long-term diet control, moderate

exercise, and the undesirable effects of drugs and surgery (12).

On the other hand, gut microbiota could be a promising target

for obese treatment as it is a critical contributor to the

progression of obesity. Therefore, more attention should be
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paid to elucidating the relationship between obesity and the

gut microbiota, unraveling the underlying mechanisms that the

gut microbiota induces obesity, as well as exploring the safety

and efficacy of potential therapies based on gut microbiota

restoration for obesity treatment.
2 The relationship between obesity
and gut microbiota

2.1 Gut bacteria

The gut bacteria play critical roles in the onset and

progression of obesity. Following the same high-fat diet (HFD)

feeding, the wild-type mice developed obesity, whereas the

germ-free mice did not, indicating that germ-free mice were

able to resist HFD-induced obesity (6). Enterobacter cloacae,

which was intimately related to obesity, brought reduced

adiponectin levels, elevated lipopolysaccharide binding protein

(LBP) concentration, glucose tolerance disruption, and weight

gain upon introduction into the germ-free mice (7). Moreover,

the germ-free mice developed obesity when transplanted with

fecal microbiota from obese mice (8, 9). Conversely, the

symptom of metabolic syndrome in obese mice was markedly

ameliorated after they received fecal microbiota from lean mice

(13). The above noted evidence supported the notion that gut

bacteria are intimately associated with obesity.

An accumulating body of evidence has suggested that the

composition and biodiversity of gut bacteria in obese groups

significantly differed from those in healthy groups (Table 1) (14–

20). Compared to the controls, the diversity of gut bacteria has

decreased significantly in obese subjects (20). The taxonomic

analysis of fecal bacteria from obese individuals and lean

individuals showed that at the phylum level, the abundance of

Firmicutes and the Firmicutes/Bacteroidetes ratio have increased

significantly in obese subjects while the abundance of

Bacteroidetes has decreased significantly in such groups

compared to lean subjects (19). These findings were consistent

with the results reported by previous animal studies that

analyzed the fecal microbiome of lean mice and obese mice

induced by HFD (21). The reduction of Bacteroidetes was

thought to correlate with fat loss, whereas the increment of

Firmicutes was positively related to digestible energy intake and

fat storage (18). However, in several recent studies, some

researchers have found that no significant difference existed in

obese and lean individuals concerning Firmicutes/Bacteroidetes

ratio and the abundance of Bacteroidetes (16, 18). The

controversial results warrant further investigation. At the

genus level, the abundance of Lactobacillus reuter, Fusobacteria

Alistipes, Anaerococcus, Corpococcus, Fusobacterium ,

Parvimonas, Bifiobacterium, Clostridium leptum, Lactobacillus/

Leuconostoc/Predicoccus, Veillonellaceae, Paraprevotellaceae,
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Roseburia sp., and Eubacterium sp. were enriched in obese

subjects compared to lean subjects (14, 16–18, 20) In contrast,

the abundance of Akkermansia, Lactobacillus plantarum,

Clostridium leptum, Clostridium coccoides, Bifidobacterium

longum, Bifidoacterium animalis, Lactobacillus Plantarum,

Lactobacillus paracasei, Methanobrevibacter smithii,

B a c t e r o i d e s , D e s u l f o v i b r i o , F a e c a l i b a c t e r i um ,

Lachnoanaerobaculum, Olsenella, Prevotella, Eggerthella,

Adlercreutzia, Bacteroides rodentium, B. intestinalis, and B.

eggerthii were retracted in such subjects (14–18, 20). The

afore-mentioned findings also indicated the specificity of

obesity-related bacteria species, and more precisely, bacteria

from the identical genus exhibited contrary functions in

obesity, which the complicated metabolic mechanisms of

obesity could partly explain.
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In addition, some specific species had an intimate

association with the degree of obesity and the levels of

associated metabolic indicators. The Lactobacillus genera were

negatively related to a body mass index, a proxy for adiposity,

and positively correlated with leptin independent of calorie

intake (22). In several studies, the Christensenellaceae was

negatively related to total cholesterol, serum triglyceride, low

density lipoprotein, and apolipoprotein B, while it had a positive

correlation with high density lipoprotein (23).
2.2 Gut non-bacterial communities

Besides bacteria, gut archaea, fungi and virus have

contributed to the pathogenesis of obesity. Zhang et al (24)
TABLE 1 Alterations of gut bacteria associated with obesity in humans.

Study Participants Comparison Change of gut microbiota Method

Increased Decreased

Million et al.
(14)

Obese
(n=68)
Lean
(n=47)

Obese
vs
Lean

Lactobacillus reuter Methanobrevibacter smithii,
Lactobacillus paracasei, Lactobacillus
Plantarum, Bifidoacterium animalis

qPCR

Teixeira et
al. (15)

Obese
(n=17)
Lean
(n=15)

Obese
vs
Lean

Bifidobacterium, Bifidobacterium
longum,
Clostridium coccoides,
Clostridium
leptum,
Lactobacillus
plantarum, Akkermansia

qPCR

Andoh et al.
(16)

Obese
(n=10)
Lean
(n=10)

Obese
vs
Lean

Firmicutes, Fusobacteria
Alistipes, Anaerococcus, Corpococcus,
Fusobacterium Parvimonas

Bacteroides, Desulfovibrio, Faecalibacterium,
Lachnoanaerobaculum
Olsenella

16S rRNA
sequencing

Selma et al.
(17)

OW and Obese
(n=49)
Lean
(n=20)

OW and obese
vs
Lean

Firmicutes, Clostridium
leptum, Lactobacillus/
Leuconostoc/
Predicoccus, Bifidobacterium

Prevotella qPCR

Yun et al.
(20)

OW
(n=326)
Obese
(n=419)
NW
(n=529)

OW and obese
vs
NW

Veillonellaceae,
Paraprevotellaceae,

Akkermansia,
Eggerthella, Adlercreutzia

16S rRNA
sequencing

Kolida
et al. (19)

Obese
(n=11)
UW
(n=7)
NW
(n=17)

Obese
vs
UW and NW

Firmicutes Bacteroidetes 16S rRNA
sequencing

Murga-
Garrido
et al. (18)

OW and obese
(n=20)
NW
(n=26)

OW and obese
vs
NW

Eubacterium sp.
Roseburia sp.

Bacteroides rodentium,
B. intestinalis,
B. eggerthii,
Methanobrevibacter smithii

genomic pool
sequencing
Comparison of condition A vs condition B: “Increased” signifies an increase in condition A relative to condition B. “Decreased” signifies a decrease in condition A relative to condition B.
OW, overweight; NW, normal weight; UW, underweight.
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found that compared to post-gastric-bypass or normal weight

subjects, the abundance of H2-utilizing methanogenic Archaea

has increased significantly in obese subjects. When coexisting

with H2-producing bacteria in the human gut tract, the H2-

utilizing methanogenic Archaea had the capacity to facilitate the

interspecies H2 transfer between bacteria and archaea, which

was considered as one of the crucial approaches to enhance

energy uptake in obese subjects (24). Moreover, the increment of

H2-utilizing methanogenic Archaea was also positively related

to short-chain fatty acids (SCFAs) production by facilitating

fermentation, which played significant roles in the progression

of obesity (24).

Besides, the abundance of the fungal species Saccharomyces

cerevisiae has increased significantly in the obese mice induced

by HFD, compared to lean mice (25). Conversely, the

Saccharomyces species abundance in obese individuals has

decreased significantly compared to the controls in a recent

report (26). Whether this alteration in fungal species will exert

influence on the development of obesity and the specific related

mechanisms remains largely unknown.

It has been observed that the amount of weight gain of obese

mice was reduced after they were transplanted with caecal viral

communities from lean subjects, which supported the intimate

linkage between gut virus and obesity (27). The amounts of viral

RNA and DNA in fecal samples from obese mice have increased

significantly compared to those in normal mice, which indicated

the significant increment of RNA and DNA viral communities in

obese subjects (28). Moreover, fecal viral contents have been

confirmed to have a positive correlation with obese-enriched

bacteria, such as Firmicutes, whereas fecal viral population was

negatively related to lean-enriched bacteria, including

Bacteroidetes and Bifidobacteria (29). It seems reasonable to

speculate that gut viral communities putatively take part in the

development of obesity by interacting with gut obese-related

bacteria, especially bacteriophages. Furthermore, the increment

of fecal viral communities was putatively conducive to the release

of viral proteins (28), which had the capacity to interact with

host cells and take part in the regulation of biological processes,

such as host metabolism and inflammation responses (30),

thereby contributing to the progression of obesity.
2.3 The differences of gut-microbiota
patterns in obesity and type-2
diabetes mellitus

Obesity and type-2 diabetes mellitus (T2DM) are both

emerging as global epidemics, and they encompass common

underpinnings, including insulin resistance, dysglycemia as well

as chronic low-grade inflammation. A plethora of researches

have indicated that gut microbiota plays a critical role in the

etiology of obesity and T2DM (31, 32). Not surprisingly, there

are some similar alterations of the gut microbiota in obesity and
Frontiers in Endocrinology 04
T2DM owing to their common pathological characteristics. To

be more specific, the abundance of Gram-negative bacteria was

increased in both obesity and T2DM groups, which triggers

chronic low-grade inflammation in these metabolic diseases

(31). Moreover, the genera of Akkermansia, Faecalibacterium,

and Bacteroides have a negative association with obesity and

T2DM (32). However, the differences in gut microbiota between

obesity and T2DM still exist. At the phylum level, the Firmicutes

abundance in T2DM was markedly decreased while the

Bacteroidetes abundance was markedly increased compared to

the controls (33), which was completely contrary to the

corresponding results in obesity. In addition, unlike obesity,

the abundance of butyrate-producing bacteria in T2DM was

significantly decreased, such as Faecalibacterium prausnitzii,

Roseburia intestinalis, Bacteroides intestinalis, Eubacterium

eligens, and Eubacterium rectale (34, 35).Moreover, in contrast

to obesity, the conditioned pathogens were markedly enriched in

T2DM patients, including Escherichia coli, Clostridium

symbiosum, Clostridium ramosum, Clostridium hathewayi,

Clostridium clostridioforme, Eggerthella lenta, and Bacteroides

caccae (34–36). The analysis and comparison of the gut

microbiota in obesity and T2DM are conducive to more

precise treatment and management of the two diseases.

To sum up, gut microbiota has an intimate association with

obesity. Compared to the controls, the reduced bacterial

diversity and increased Firmicutes/Bacteroidetes ratio were

generally regarded as the basic characteristics of obese subjects

despite several controversial results (19–21). Some specific

bacter ia l spec ies , such as Lactobac i l lu s (22) and

Christensenellaceae (23), were related to the grade of obesity

and the level of associated metabolic indicators in obese

individuals. Besides bacteria, gut archaea, fungi, and viruses

have also contributed to the pathogenesis of obesity (24–28).

However, studies concerning their specific roles in the

occurrence and development of the disease are still in their

infancy, awaiting further investigation and the emergence of new

evidence. Furthermore, the gut microbiota composition in

obesity is different from that in other metabolic diseases, such

as T2DM (33–36), and great efforts are still warranted to identify

the specific species of gut microbiota in obesity.
3 The mechanisms by which the gut
microbiota influences obesity

3.1 Energy homeostasis disruption

3.1.1 Digestible energy uptake
Evidence has been mounting that altered gut microbiota in

obese subjects exhibited more potent energy uptake properties

from ingested food compared to the controls, mainly by

promoting the production of nutrient transporters and various

primary fermentation enzymes (37, 38). To be more specific, the
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increment of Clostridium ramosum (Firmicutes phylum), was

able to increase the efficiency of digestible energy uptake via

higher expression of Glut2 (a glucose transporter) and CD36 (a

fatty acid translocase) (37). The increased Firmicutes abundance

and Firmicutes/Bacteroidetes ratio in obese subjects correlated

with the digestion of some indigestible polysaccharides, the

subsequent production of monosaccharides and SCFAs,

especially acetate and butyrate, and the energy extraction from

substances that would alternatively have been diminished by the

faeces. These processes were predominantly induced by elevated

levels of a-amylases and amylomaltases in obese-enriched gut

bacter ia (38) . The host can absorb the produced

monosaccharides and SCFAs in the gut tract. And it is

estimated that SCFAs can provide humans with 5-15% of the

total calories required and provide colonic epithelial cells with

60-70% of the calories required (39).

In addition, the interspecies H2 transfer between bacteria

and archaea also greatly increased digestible energy uptake in

obese subjects (24). The parallel increment of H2-utilizing

methanogenic Archaea and H2-producing bacteria in obese

individuals’ gut tract was conducive to the conversion of

polysaccharides to SCFAs, mainly through relieving

thermodynamic limitations, as H2-utilizing methanogenic

Archaea had the capacity to dislodge fermentation

intermediates, such as formate or H2 (24).

3.1.2 Energy expenditure
The changed gut microbiota in obese subjects leads to the

alterations of luminal contents metabolism, such as bile acids

and SCFAs, which participate in the modulation of energy

expenditure. The activated Takeda G protein-coupled

receptor5 (TGR5) by the bile acid in brown adipose tissue

(BAT) induces the expression of PPARg coactivator-1a (40)

and iodothyronine-deiodinase type 2. The former is a significant

regulator of mitochondrial biogenesis, and the latter is conducive

to the transition from inactive thyroxine to 3,5,3 ’-

triiodothyronine, which further enhances the uncoupling of

mitochondrial function and increasing thermogenesis via the

activation of the thyroid hormone receptor, ultimately

contributing to energy expenditure. Moreover, in the intestine,

the activated Farnesoid X Receptor (FXR) was able to enhance

fibroblast growth factor (FGF) 15/19 secretion, which has the

capacity to increase the production of TGR5 ligand and induce

the alterations of bile acid pool composition, thereby resulting in

white adipose tissue browning, BAT activation, and more

thermogenesis (41). These alterations are all favorable for

energy expenditure. Therefore, the reduction of bile acids

induced by gut dysbiosis in obesity, such as the decreased

Bacteroides and Lactobacillus (42), undermines energy

expenditure mainly by the inactivation of afore-mentioned bile

acids-mediated signaling pathways, thus exacerbating the

disease’s progression.
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SCFAs are converted from indigestible dietary fiber via the

fermentation process by the gut microbiota. They are

predominantly comprised of acetic acids, propionic acids, and

butyric acids. The concentration of SCFAs has increased in obese

subjects mainly owing to their elevated level of Firmicutes and

H2-utilizing methanogenic Archaea (24, 43). SCFAs also

participate in the regulation of energy expenditure, but its

function seems controversial. On the one hand, in the

presence of SCFAs, the secretion of fasting-induced adipose

factor (FIAF) from the gut is suppressed (44, 45). FIAF has

the capacity to increase the activity of AMP-activated kinase that

is extensively distributed in the skeletal muscle, liver as well as

colon, and further promote the catabolic process such as b-
oxidation (46), thus conferring protection against obesity. On

the other hand, butyrate, as the most significant component of

SCFAs, has the capacity to phosphorylate AMP-activated kinase

distributed in muscle and liver, as well as promote mitochondrial

uncoupled protein 1 and PPAR-g coactivator 1a expression in

BAT, thus enhancing thermogenesis and fatty acid oxidation

(47). Taken together, SCFAs seem a double-edged sword in

energy expenditure modulation, which warrants more in-

depth investigation.

To sum up, the altered gut microbiota contributed to

obesity’s progression partly through increasing digestible

energy intake and decreasing energy expenditure (Figure 1).

Excess digestible energy intake was attributed to abundant

nutrient transporters and various primary fermentation

enzymes in obese-enriched gut bacteria (37, 38), and to the

interspecies H2 transfer between bacteria and archaea (24),

which increased the efficiency of digestible energy uptake and

enhanced the production of SCFAs as energy substances. The

changed gut microbiota also altered the luminal contents

concentration by affecting their metabolism, including the

decrease of bile acids (42) and the increase of SCFAs (43). The

reduction of bile acids undermines energy expenditure via

the inhibition of TGR5/FXR-mediated signaling pathways in

adipose tissue (40, 41, 48). The increment of SCFAs can

decelerate metabolic processes by repressing FIAF (44, 45).In

addition, SCFAs also has the capacity to enhance fatty acid

oxidation and thermogenesis through phosphorylating AMP-

activated kinase and promoting mitochondrial uncoupled

protein 1 and PPAR-g coactivator 1a expression (47).

Therefore, the function of SCFAs in regulating energy

expenditure is controversial, and further investigation

is warranted.
3.2 Lipid synthesis and storage

The altered gut microbiota in obese subjects exerts influence

on lipid synthesis via multiple mechanisms. As mentioned

above, the concentration of bile acids has decreased in obese
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subjects owing to the reduced Bacteroides and Lactobacillus (42).

Bile acids play significant roles in regulating lipid synthesis. The

activated FXR by the bile acid in the liver restrains liver receptor

homologue 1 expression in a small heterodimer partner-

mediated way, and further inhibits sterol regulatory binding

protein1c (SREBP1c) transactivation, which has an intimate

association with the genes involved in lipogenesis, thus

repressing hepatic de novo lipogenesis (49). Additionally, the

release of FGF19 induced by FXR in the intestine can activate

FGFR4 receptor on hepatocytes, and then inhibit SREBP1c

directly by repressing peroxisome proliferator-activated

receptor-g coactivator 1b and inducing signal transducer and

activator of transcription, and indirectly by enhancing SHP

expression (50). Therefore, the decreased bile acids are

conducive to hepatic de novo lipogenesis. Besides, the gut

microbiota brings more digestible energy absorption and

elevated serum glucose levels due to higher Glut2 expression

AS a result, it promotes two basic transcriptional factor

expressions, SREBP1 and carbohydrate response element

binding protein (ChREBP), thus inducing hepatic lipid

synthesis (51). Moreover, the increased SCFAs in obese

individuals can rapidly be assimilated into host lipids and

carbohydrates, especially acetates, which are identified as

precursors for fatty acid or cholesterol synthesis (52). Butyrate
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is also favorable for lipid synthesis from ketone body or acetyl-

CoA mainly by the activation of b-hydroxy-b-methylglutaryl-

CoA pathway (53). Consistently, the amounts of lipolytic

enzymes were decreased and the lipogenic genes expression

was enhanced in the offspring after maternal butyrate

supplementation (54). However, in another study, butyrate

was found to downregulate the activity and expression of

PPAR-g, which facilitated the conversion of lipogenesis into

lipid oxidation (55).

In addition, gut dysbiosis in obesity contributes greatly to

lipid storage. The altered gut microbiota in obese subjects brings

about higher lipopolysaccharide (LPS) concentration (20),

which triggers a series of inflammation responses and induces

metabolic endotoxemia (56, 57). In this context, the expression

of proinflammatory cytokines in adipose tissues is significantly

enhanced, including Interleukin (IL)-6 and tumor necrosis

factor (TNF)-a (58), which can result in insulin resistance

mainly via the inactivation of insulin receptor by

phosphorylating the serine on it (59). Insulin resistance is

favorable for excess lipid storage in adipose tissues and the

liver. Additionally, metabolic endotoxemia had the capacity to

increase adipocyte hyperplasia directly in CD14-dependent

manner, and promote activin A production, which facilitated

the proliferative process of adipocyte precursor cells (60). In a
FIGURE 1

Energy homeostasis disruption. Abundant nutrient transporters (CD36, Glut2) and various primary fermentation enzymes (a-amylases and
amylomaltases) caused by altered gut microbiota in obesity improve the efficiency of digestible energy uptake and promote monosaccharides
and SCFAs production. Moreover, the production of SCFAs was also enhanced by the interspecies H2 transfer between bacteria and archaea.
The produced monosaccharides and SCFAs in the gut tract can be absorbed by the host. The decrease of Bacteroides and Lactobacillus in
obesity leads to the reduction of bile acids, which inactivates TGR5/FXR-mediated signaling pathway in brown adipose tissue, thus reducing
uncouple mitochondrial function, thermogenesis, and white adipose tissue browning. Additionally, the presence of SCFAs suppresses FIAF
secretion in the intestine, which then inhibits catabolic process, such as b-oxidation. Taken together, the altered gut microbiota in obesity
results in more energy uptake and less energy expenditure, which contributes to the progression of obesity. SCFAs, short-chain fatty acids;
TGR5, Takeda G protein-coupled receptor 5; FXR, Farnesoid X Receptor; FIAF, fasting-induced adipose factor.
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recent study, the gut microbiota induces fat mass storage by

inhibiting the expression of Gcg and Bdnf, which encode body

fat-suppressing neuropeptides, and by inducing leptin resistance

mediated by Socs3 (61). Furthermore, in obese mice induced by

HFD, some researchers have found that L. paracasei had the

capacity to induce ANGPTL4 expression in the liver, which

resulted in the inhibition of lipoprotein lipase (LPL) (62). LPL

can assist the transport of triglycerides from the liver to

systematic circulation, and then fat cells absorb them. Herein,

it seems plausible to speculate that the reduction of L. paracasei

in obese individuals contributes to lipid storage by releasing the

inhibition of LPL.

In summary, the gut microbiota promotes lipid synthesis

and storage via multiple mechanisms (Figure 2). The reduction

of bile acids contributes to hepatic de novo lipogenesis through

promoting SREBP1c transactivation via the inactivation of FXR

(49, 50). SCFAs can be regarded as precursors for fatty acid or

cholesterol synthesis (52). Elevated levels of LPS-induced

proinflammatory cytokines and metabolic endotoxemia

correlate with insulin resistance and the proliferation of

adipocytes and adipocyte precursor cells, resulting in excessive

lipid storage (58–60). Besides, the gut microbiota is also

favorable for lipid storage via the induction of leptin resistance

and the inhibition of fat-suppressing neuropeptides (61).

Moreover, the reduction of L. paracasei in obese individuals
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putatively contributes to lipid storage by releasing the inhibition

of LPL according to an animal study (62).
3.3 Central appetite and feeding
behavior

3.3.1 The gut-brain axis
The gut can interact intimately with the central nervous

system to transmit nutritional status information via multiple

mechanisms, such as the gut endocrine system, the gut nervous

system, and the vagus nerve (63).The complicated, continuous,

and bidirectional crosstalk between the brain and gut is termed

the gut-brain axis. In the wake of a more in-depth

comprehension of the gut microbiota, many researchers have

noticed that it played a crucial role in such a bidirectional

communication, which is known as the microbiota-gut-brain-

axis. Mounting studies have been accumulating that the

microbiota-gut-axis was closely related to various

gastrointestinal and nervous system diseases, including

irritable bowel syndrome and Parkinson’s disease (64, 65).

Given that the gut-brain axis participated in the modulation of

central appetite and feeding behavior (66–71), the gut dysbiosis

in obese subjects might exert influence on food intake, thus

contributing to obesity’s progression.
FIGURE 2

Lipid synthesis and storage. The reduction of bile acids in obesity inhibits FXR in hepatocytes, which ultimately induces the transactivation of
SREBP1c mediated by SHP, thus contributing to hepatic de novo lipogenesis. Decreased bile acids are also unfavorable for FGF15/FGF19
secretion in the intestine, which then inactivates FGFR4 on hepatocytes and promotes SREBP1c transactivation indirectly by inhibiting SHP, and
directly by inducing PGC1b and repressing STAT3, ultimately enhancing hepatic lipogenesis. Moreover, the SREBP1 and ChREBP expression can
also be promoted by elevated glucose level which correlates with higher Glut2 expression induced by altered gut microbiota in obesity. In
addition, the increased SCFAs in obesity, especially acetates and butyrates, can act as precursors for FA or cholesterol synthesis. The reduced L.
paracasei in obese individuals putatively contributes to lipid storage by releasing the inhibition of LPL induced by ANGPTL4. Furthermore,
elevated levels of proinflammatory cytokines and metabolic endotoxemia induced by LPS correlate with insulin resistance and the proliferation
of adipocytes and adipocyte precursor cells, which all make contributions to lipid storage. FXR, Farnesoid X Receptor; SREBP1c, sterol regulatory
binding protein1c; SHP, small heterodimer partner; FGF, fibroblast growth factor; PGC1b, peroxisome proliferator-activated receptor-g
coactivator 1b; STAT3, signal transducer and activator of transcription; ChREBP, carbohydrate response element binding protein; SCFAs, short-
chain fatty acids; FA, fatty acids; LPL, lipoprotein lipase; LPS, lipopolysaccharide.
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3.3.2 The role of gut microbiota in regulating
central appetite and feeding behavior

The gut microbiota takes part in central appetite and feeding

behavior modulation by influencing the production of bacterial

metabolites, intestinal hormones as well as neurotransmitters.

Bifidobacterium and Lactobacillus can produce lactate, which

serves as a substrate for neuron cells, thus prolonging

postprandial satiety (72). Acetates and butyrates are produced

by bacterial fermentation from indigestible dietary fiber. Acetate

is able to activate the citric acid cycle in the hypothalamus and

further shift the expression profile of neuropeptides which

regulate satiety (73). Butyrate can affect host appetite and

feeding behavior by activating the vagus nerve and

hypothalamus, as butyrate has the capacity to cross blood-

brain barrier (74). The gut hormones, such as peptide YY

(PYY) and glucogen-like peptide 1 (GLP-1), are secreted by

enteroendocrine cells extensively distributed throughout the gut

epithelium (75, 76). Bile acids, SCFAs, and indoles are intimately

associated with the secretion of these gut hormones from

enteroendocrine cells (77, 78). GLP-1 and PYY belong to

potent anorexigenic hormones, which can impact host appetite

and feeding behavior by binding to their receptors locally

distributed in enteric neurons, vagal afferents, hypothalamus

and brain stem (79, 80). The gut microbiota also leads to

neurotransmitters production, including g-aminobutyric acid

(GABA) and serotonin (66), which correlate with central

appetite control (67, 68). More specifically, GABA, as the

predominant inhibitory neurotransmitters of the host nervous

system, has the capacity to stimulate feeding (68). Serotonin can

mainly suppress appetite by regulating melanocortin neurons,

which contribute to maintaining of body weight homeostasis

(81, 82).

In addition, the gut microbiota also affects central appetite

and feeding behavior via the regulation of mood and reward

pathways. The gut microbiota alters mood by producing

microbial metabolites, activating immune responses, and

stimulating the vagus nerve (69). When the psychological

pressure of the host increases, the hedonic signaling pathways

will be activated, thus increasing the host’s intake of high-calorie

food (70). Herein, it seems reasonable to speculate that the gut

microbiota affects mood, which then affects the brain circuits

associated with feeding behavior. In a human imaging study, the

increasing amount of propionate produced by bacteria

fermentation, is related to the reduction of anticipatory reward

response to high-calorie food mainly by striatal pathways (71),

thus affecting feeding behavior.

In summary, the gut microbiota modulates central appetite

and feeding behavior via a variety of mechanisms. On the one

hand, the gut microbiota affects the production of bacterial

metabolites, intestinal hormones, and neurotransmitters, which

act as significant messengers in the interaction of the gut and

brain, and further regulate host appetite and feeding behavior

(66–68). On the other hand, the gut microbiota also takes part in
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the regulation of mood (69, 70) and reward pathways (71),

which putatively affect the brain circuits associated with feeding

behavior. It may be safe to draw a conclusion that the gut

microbiota is closely related to the pathogenesis of obesity owing

to its crucial function in regulating central appetite and

feeding behavior.
3.4 Chronic inflammation

Chronic low-grade inflammation is generally regarded as

one of the fundamental characteristics of obesity, which is

mainly triggered by LPS (56, 57). LPS belongs to one kind of

endotoxin, and is released by Gram-negative bacteria. The

overgrowth of Gram-negative bacteria in obese individuals,

such as Veillonella, can lead to a higher dose LPS in the

intestine (20). The increment of LPS can destruct the gut

barrier via the activation of the TLR4/MyD88/IRAK4 signaling

pathway in the intestinal epithelial cells, which further brings

about the translocation of LPS from the intestine to the

systematic circulation (83). Moreover, the decrease of

Akkermansia muciniphila also contributes to the translocation

of microbial byproducts owing to its function in maintaining gut

barrier integrity (84). Furthermore, HFD is favorable for the

incorporation of LPS into chylomicrons, thus promoting the

absorption of LPS in the gut and its transport to the systematic

circulation through the lymphatic fluid (85). The afore-

mentioned pathways result in elevated LPS levels in circulation.

In systematic circulation, LPS is able to initiate immune

responses in adipose tissue and liver. LPS first binds to the LBP,

and then forms a complex with CD14 (56). This complex then

induces the expression of activator protein 1 and nuclear factor

kappa B (NF-kB) by activating TLR4 expressed on macrophage

and adipose tissue, which contributes to the secretion of

proinflammatory cytokines and chemokines, including TNF-a,
IL-6 as well as monocyte chemoattractant protein (MCP)-1 (56,

57). These cytokines can act on adipocytes and stimulate them to

secrete more cytokines and chemokines via an autocrine and

paracrine way (52). Moreover, the overexpression of MCP-1 in

adipose tissue has been confirmed to be related to increased

macrophage infiltration in rodents (86).

Of note, SCFAs act as another critical linkage between

inflammatory responses and the gut microbiota, which exhibit

potent anti-inflammation properties, especially butyrate (47, 87–

90). Butyrate can protect the gut against inflammation by

stimulating IL-18 secretion and promoting regulatory T cells

and IL-10-producing T cells differentiation mediated by G

protein coupled receptor (GPR) 109a (87, 88). Besides,

butyrate is also able to upregulate PPAR-g and repress NF-kB

activation induced by LPS (89, 90), thus exerting its anti-

inflammation effects.

In conclusion, gut microbiota alterations in obese subjects

result in higher luminal LPS concentration (20), which leads to
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gut barrier disruption and facilitates bacterial byproducts

translocation from the gut to the systematic circulation (83).

LPS activates TLR4 on macrophage and adipose tissue, thus

contributing to proinflammatory cytokines and chemokines

secretion, including TNF-a, IL-6 and MCP-1 (56, 57).

However, the increased butyrate in obesity exerts anti-

inflammation effects by inhibiting NF-kB activation (89, 90)

and inducing anti-inflammatory cytokines production (87, 88).

It remains unknown whether the anti-inflammatory effects of

SCFAs can partly counteract the chronic inflammation induced

by LPS, which warrants further study.
4 Long noncoding RNA: Linking the
gut microbiota to obesity?

Long noncoding RNA (lncRNA) is identified as a critical

regulator in a variety of physiologic and pathologic processes,

which has the capacity to control large-scale gene expression

programs by interacting with chromatin at numerous different

sites, and can modulate the gene expression profile by exerting

influence on the stability of mRNA (91–94). The transcription of

lncRNA occurs in an independent manner and affects protein-

coding genes expression according to the computational

analyses (95, 96). In an animal study, the gut microbiota was

confirmed to have an intimate association with the constitutive

expression of lncRNA in a variety of tissues, such as the gut,

muscle, liver and adipose tissues (97). Moreover, the absence of

gut microbiota led to the dysregulation of multiple intergenic

lncRNAs, indicating that the gut microbiota took part in

modulating the epigenetic control of gene expression (97).

Furthermore, some researchers have found that fecal

microbiota transplantation was able to retain the expression

profile of lncRNA in the host (98). Conversely, the lncRNA

signatures were conducive to the discrimination of mice with

different transplanted microbiota (99).

Many studies have suggested that lncRNA was intimately

related to the development of obesity (100–103). The lncRNA

dysregulation led to the reduction of leptin, which undermined

the afferent signal in the negative feedback loop associated with

the maintenance of adipose tissue mass homeostasis, thus

resulting in the leptin responsive-obesity (100). In obese mice,

the b-cell function and apoptosis regulator, an islet-enriched

lncRNA, was significantly downregulated in the islet, which

correlated with the dysfunction and apoptosis of b-cell in

obesity (101). Besides, several studies have also indicated that

the lncRNA played an important role in regulating the

inflammatory pathways related to obesity (102). Furthermore,

the BAT enriched lncRNA 10 had the capacity to facilitate the

browning of white adipose tissue and the activation of BAT,

which could fight against obesity to some extent (103).
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Taken together, the gut microbiota correlated with the

expression profile of lncRNA, and lncRNA participated in the

progression of obesity. However, whether the altered gut

microbiota in obesity contributes to the disease’s progression

partly by regulating lncRNA remains largely unknown, which

needs more intensive investigations.
5 Potential therapies based on gut
microbiota restoration as treatment
for obesity

5.1 Probiotics

According to WHO, probiotics are defined as the “living

microorganisms that provide the host with beneficial effects

when administrated in sufficient quantities” (104). Currently,

probiotics have been extensively utilized in the prevention and

treatment of various diseases, ranging from periodontal diseases

to gastrointestinal infections, especially Lactobacillus and

Bifidobacterium species (105, 106) . As commensal

microorganisms in the human gut, probiotics putatively exert

its beneficial effects by competing with pathogenic bacteria,

strengthening gut barrier function, and modulating immune

responses (107).

Recently, many animal and human studies have also found

that probiotics had the capacity to ameliorate metabolic

disorders, inflammation conditions, as well as weight gain in

obese subjects (108–112). When administrated with

Bifidobacterium pseudocatenulatum CECT 7765, the

inflammatory cascade reaction in obese mice induced by HFD

was markedly mitigated compared to the controls (108). And the

administration of Akkermansia muciniphila has been proved to

confer protection against obesity in mice by ameliorating

dyslipidemia, insulin resistance, and fat mass development

(109). The probiotic VSL#3 encompasses Lactobacillus strains

and Bifidobacteria, which could be used to treat obesity in mouse

models by improving insulin resistance, reducing food intake, as

well as suppressing body weight gain (110). Similarly, the

administration of VSL#3 in human subjects also improved

insulin sensitivity and lipid profiles in a randomized controlled

trial (111). The probiotic powder L. plantarum Dad-13 was able

to alter the composition of gut microbiota in a double-blind,

placebo-controlled trial, including decreasing Firmicutes

abundance and increasing Bacteroidetes abundance, and it also

reduced body weight and BMI significantly (112). In another

double-blind, randomized trial, the supplementation of the

probiotic mix (Bifidobacterium, Lactococcus as well as

Lactobacillus) in overweight and obese individuals, increased

antioxidant enzyme activity and reduced abdominal adiposity.

However, a recent meta-analysis of randomized controlled

human studies has reported that the relationship between
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weight loss and probiotics treatment was insignificant (113).

Moreover, which bacterial species and their respective optimal

quantity and duration can improve obesity effectively also

warrants further investigations.
5.2 Prebiotics

Prebiotics refer to indigestible ingredients selectively utilized

by host microbiota, which provide beneficial effects for the host

mainly via alleviating gut dysbiosis (114). Several studies have

also shown that prebiotics could improve metabolic disorders,

gut dysbiosis and chronic inflammation in obesity (115–118). In

obese rats, the administration of prebiotics (oligofructose and

inulin) led to secretion of satiety hormones, like PYY and GLP-1,

and gut microbiota restoration, including the reduction of

Firmicutes abundance and the increment of Bacteroidetes,

Lactobacillus and Bifidobacteria abundance (115). The

prebiotic treatment in genetically obese mice was also proved

to have a correlation with weight loss, improved glucose

tolerance and inflammation condition, increased Bacteroidetes

and decreased Firmicutes phylum (116). Similarly, in a double-

blind, placebo-controlled trial, the oligofructose-enriched inulin

supplementation in overweight or obese children significantly

reduced the serum IL-6 level and body weight of such

individuals (117). Another randomized, placebo-controlled

trial analyzed the components of fecal samples from obese

individuals who consumed Inulin-type fructans, and found

that Bifidobacterium abundance was increased and fecal

calprotectin (a marker of gut inflammation) concentration was

reduced compared to the controls (118). The afore-mentioned

animal and human researches indicate that prebiotics putatively

represent a new avenue for obesity treatment, and further studies

are still warranted.
5.3 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is defined as an

engraftment of the fecal suspension from healthy donors in

patients’ gut tract, which aims to reconstitute the gut microbiota

and treat related diseases (119). Unlike probiotics, FMT can

provide the recipients with the complete gut microbiota and its

byproducts from healthy donors, making it a more effective

therapeutic intervention (120). Moreover, the spectacular

success of FMT in Clostridium difficile infections treatment

indicates that FMT is emerging as a potential therapeutic

candidate for multiple diseases associated with gut dysbiosis,

such as chronic constipation, irritable bowel syndrome and

ulcerative colitis (107). An animal study has found that,

following the administration of FMT from healthy donors, the

metabolic profiles of the obese mice induced by HFD were

markedly ameliorated, and that the advantageous effects of
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exercise and diet could be transferred by FMT (121). Similarly,

in a preliminary human study, the peripheral insulin sensitivity

of nine obese individuals with metabolic syndrome was

significantly improved after transplanted with fecal microbiota

from lean donors (13). However, in several recent randomized

clinical trials, FMT did not exert significant influences on

metabolic profiles and weight loss (122, 123). These

controversial reports warrant further investigation.

Furthermore, a few studies have reported several FMT-related

detrimental events, including vomiting, constipation, diarrhea,

and abdominal discomfort (124), raising concerns about

FMT’s safety.

In summary, substantial animal and human studies have

suggested that probiotics, prebiotics, and FMT could be potential

therapeutic interventions for obesity via the restoration of the

gut microbiota (13, 111, 112, 117, 118, 121). Probiotics

ameliorated metabolic disorders, inflammation conditions and

weight gain in obese individuals (111, 112). Prebiotics was

related to reversing gut dysbiosis and alleviating inflammatory

responses (117, 118). FMT had the capacity to alter metabolic

profiles and transfer the advantageous effects of exercise and diet

from the donor to the recipient (13, 121). Although there are

some controversial results concerning the effects of these

interventions, they still confer novel insights on the treatment

of obesity.
6 Conclusion

Currently, obesity has emerged as a serious socioeconomic

and public health problem worldwide (2). Owing to its global

prevalence and increasing incidence rate, it is urgent to seek for

more effective therapeutic interventions (1). An accumulating

body of evidence have found that the gut microbiota, as an

environmental factor, has been gaining ground as a critical

contributor to the etiology of obesity (6–9). The diversity and

composition of the gut microbiota have changed significantly in

obese subjects compared to the controls. Overall, the gut

microbiota in obese subjects exhibits lower diversity, higher

Firmicutes abundance, and increased Firmicutes/Bacteroidetes

ratio (19, 20). The altered gut microbiota affects the metabolism

of luminal contents, such as SCFAs, LPS and bile acids (20, 24,

42, 43). They participate in the pathogenesis of obesity via

mult iple mechanisms, including disrupting energy

homeostasis, increasing lipid synthesis and storage, regulating

central appetite and feeding behavior, as well as triggering

chronic low-grade inflammation. Due to the critical role of the

gut microbiota in obesity, some therapeutic interventions based

on gut microbiota restoration seem to become potential

candidates for obesity treatment, including probiotics,

prebiotics and FMT (13, 111, 112, 117, 118, 121).

However, there are still some problems to be solved. Most

studies concerning gut microbiota and obesity are mainly carried
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out in animal models. Although animal models are useful tools

to confer insights into underlying disease mechanisms, it

remains largely uncertain for them to show human

equivalency. Moreover, the paradoxical effects of SCFAs in the

development of obesity are another important problem worthy

of in-depth investigation. Besides, whether the altered gut

microbiota in obesity contributes to the disease’s progression

partly by regulating lncRNA remains largely unknown.

Furthermore, the safety and efficacy of FMT still need further

rigorously evaluations despite its current great potential in the

treatment of obesity. Therefore, in the future, more attention

should be paid to further exploring the critical bacterial strains

affecting obesity and their pathogenic mechanisms. These

studies may provide potential clinical value for more precise

treatment of obesity, the resolution of current controversial

issues, and the formulation of the optimal management based

on gut microbiota restoration for obese individuals.
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