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Abstract: In this paper, a synthetic aperture radar (SAR) change detection approach is proposed
based on a structural similarity index measure (SSIM) and multiple-window processing (MWP). The
proposed scheme is performed in two steps: (1) generation of a coherence image based on MWP
associated with SSIM and (2) gamma correction (GC) filtering. The proposed method is capable
of providing a high-quality coherence image because the MWP operation based on SSIM has high
sensitivity to the similarity measure for intensity between two SAR images. By finding an optimum
value of order of GC, the proposed method can considerably reduce the effect of speckle noise on the
coherence image, while retaining nearly all the information related to changed region involved in the
change detection map. Several experimental results are presented to demonstrate the effectiveness of
the proposed scheme.

Keywords: change detection; multiple-window processing; gamma correction; synthetic aperture
radar; structural similarity index measure

1. Introduction

The change detection (CD) technique has been widely applied in the evaluation of
monitoring and predicting trends in disasters that have occurred in the investigated area by
using synthetic aperture radar (SAR), which can operate day and night and during almost
any weather conditions [1–4]. The generation of a CD map (CDM), a kind of a binary
change mask corresponding to difference between two SAR images, is aimed at providing
the dynamic evolution of scene changes [5–7]. However, SAR images usually suffer from
the presence of speckle noise, which leads to the degradation of detection performance of
CD approach [8–10].

The SAR change detection methods can be divided into two groups: non-coherent
(NC)-based CD (NCCD) and coherent-based CD (CCD) approaches. The NCCD techniques
the subtraction and ratio operators (e.g., difference image (DI), log-ration difference (LRD),
logarithmic mean-based thresholding (LMT) and neighborhood-based ratio approach
(NRA)) have been successfully proposed. The DI [11] and LRD [12] are widely used for
generation of CDM. The binary classification of changed region between two SAR images
is presented in [13] using the LMT approach. The NRA is proposed in [14] considering the
gray level and spatial information of neighbor pixels caused by DI. A novel SAR image
CD method using saliency extraction and the shearlet transform (SEST) is proposed in [15].
In [16], the authors derive a statistical hypothesis approach based on bivariate gamma
distribution (BGD) for wavelength-resolution NCCD. On the other hand, CCD techniques
such as cross-correlation (CC) is successfully applied in handling the issue of SAR CD task.
The coherence image is calculated by the CC using a small sliding window of pixels across
the complex interferogram whose resulting phase information involves ground motion
and surface change with unprecedented spatial detail [17]. Compared with the classic CC,
the similarity measure operators such as Berger and universal quality index (UQI) [18] can
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decrease the influence of calibration and radiometric errors and is more suitable for the CD
of SAR images. The speckle noise of SAR images is multiplicative noise and the similarity
measure operation can not only transform multiplicative noise into additive noise but also
compress the value range of pixels in an SAR image. However, lack of coherence caused by
several decorrelation factors such as baseline, temporal, and rotational decorrelation has a
strong influence on the performance of the accurate CD result.

The main contribution of this paper is to present a novel framework for CDM genera-
tion using the multiple-window processing (MWP) associated with the structural similarity
index measure (SSIM) [19,20] and gamma correction (GC) [21–23]. The proposed method
is capable of providing high-quality coherence image since the MWP operation based on
SSIM has high sensitivity to the similarity measure for intensity between two SAR images,
compared to classical similarity measures [24,25]. Meanwhile, the detection performance
of the coherence image is dependent on the order p of GC [22]. The proposed method can
obtain various degrees of performances of the speckle noise reduction with changes in the
order p of GC. Thus, we analyzed the proposed method in terms of the image enhancement
and the speckle noise reduction, taking the value of p into consideration. It achieves a
superior quality of CDM by searching the value of p such as the global optimal solutions of
the optimization problem with the GC technique. In experimental results, several detection
quality metrics are employed to quantitatively evaluate the performance of CDM acquired
by the proposed method.

The remainder of this paper is organized as follows. Section 2 presents some useful
concepts regarding in the MWP associated with SSIM. In Section 3, the optimization
task based on gamma correction is explained in detail. In Section 4, the computational
complexity of the proposed algorithm is analyzed in mathematical expression. The results
of several experiments are presented in Section 5 to testify to the performance of the
proposed method. Section 6 discusses the results in perspective of previous studies,
pointing out some future research directions. Finally, Section 7 presents our conclusions.

2. Analysis of MWP Associated with SSIM

Consider the case where we acquire two SAR images at different times but of the same
geographical area on the Earth’s surface [25]. The CD can be performed using the complex
CC between the master and the co-registered slave calculated locally over a small, namely
5× 5 or 10× 10, pixel window in the SAR image pair [3]. However, the CC approach often
fails to achieve excellent creation of the CDM due to the limitation of accuracy of similarity
measure in presence of several decorrelation factors.

In this paper, we focus on the behavior of the MWP based on SSIM in SAR im-
age, which is capable of outperforming CD ability more than CC in similarity measure-
ment. Because each pixel intensity in image is closely related to neighborhood and
represents dynamics of the scene being imaged, the proposed approach can exhibit a
simple structure and powerful detection performance. Let a pair of two co-registered
SAR images with a size of M× N, where M and N are the number of pixels in azimuth
and slant-range domain, respectively, be I1 = {i1(m, n)|1 ≤ m ≤ M, 1 ≤ n ≤ N } and
I2 = {i2(m, n)|1 ≤ m ≤ M, 1 ≤ n ≤ N }, respectively. The coherence image located at (y,
x) is calculated by SSIM using a small sliding window of pixels across both absolute images
(|i1(m, n)| and |i2(m, n)|) and can be expressed [19]:

γssim(y, x, M′, N′) =
(2αβ + c1)(2σαβ + c2)

(α2 + β
2
+ c1)(σ2

α + σ2
β + c2)

(1)

where

σα =

√
1

N′M′−1

N′
∑

n=1

M′
∑

m=1
(|i1(m, n)| − α)2, σβ =

√
1

N′M′−1

N′
∑

n=1

M′
∑

m=1
(|i2(m, n)| − β)

2
,
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σαβ = 1
N′M′−1

N′
∑

n=1

M′
∑

m=1
(|i1(m, n)| − α)(|i2(m, n)| − β),

α = 1
N′M′

N′
∑

n=1

M′
∑

m=1
|i1(m, n)|, β = 1

N′M′
N′
∑

n=1

M′
∑

m=1
|i2(m, n)|,

c1 = (k1D)2, c2 = (k2D)2,

M′ and N′ are the y-directional and x-directional window widths, respectively. The size of
the M′×N′ image segment is usually much smaller than the size of the M×N image. Note
that the local window with a size of M′ ×N′ is typically chosen as square in this paper. D is
the dynamic range of the pixel values. In addition, ki(i = 1, 2) is constant indicating scaling
factor. According to numerous computer simulation results with an exhaustive search
procedure for finding the best value of k1 and k2, it is preferable to optimize the SSIM using
the parameters k1 = 0.01 and k2 = 0.03 appropriate for providing the reliable performance
within the framework of the proposed method. Structural information is the idea that
the pixels have strong inter-dependencies especially when they are spatially close. These
dependencies carry important information about the structure of the objects in the visual
scene. Thus, it is more preferable to select the SSIM rather than conventional similarity
measures such as CC and UQI [24] owing to its ability to measure information loss in terms
of image similarity measurement. In the pursuit of similarity detail between two images,
the SSIM converges to 1 if both images are identical. The SAR image pair, contaminated by
a high frequency random speckle noise, has been filtered using a low-pass filter designed
by the windowing of SSIM operation. The low-pass filter will pass the signal through it
and suppress the high frequency speckle noises in SAR image. Thus, reliable reduction
in the speckle noise can be ensured in the configuration of SSIM operation. Meanwhile,
the resultant of SSIM associated with the multiple-window with different size of windows
can be added cumulatively to preserve the detail information such as edge of the changed
region. As shown in Figure 1, the MWP, obtained from the average of SSIM results for each
different window, can be derived as

MWP(y, x) =
1
L

L

∑
i=1

γint
ssim(y, x, i, i), (2)

where γint
ssim(y, x, i, i) = interp[γssim(y, x, i, i), L, L], L is the number of windows at (y,

x). A function of interp returns interpolated values of γssim(y, x, i, i) at specific query
points related to original image size of M × N using interpolation method. After the
SSIM transformations were performed at each window size, the interpolation process
is applied to one of the SSIM images so that all images are registered at the same pixel
location. Then, after the interpolation is used to resample the SSIM image to provide
the pixel-level registration, the MWP associated with SSIM is performed to reconstruct
high-quality coherence images with the preservation of the detail information such as the
edge of the changed region. However, it is inevitable that the SAR images usually suffer
from the presence of the speckle noise [26,27]. The coherence image with the inclusion of
undesired speckle noise may create challenges in providing reliable detection performance
of CDM [28,29]; thus, there is a demand for a speckle noise reduction technique.
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Figure 1. Schematic diagram of the SSIM and MWP procedure.

3. Optimization Task Based on Gamma Correction

Before applying the gamma correction (GC) to reduce the speckle noise, we applied
the negative transformation (NT) in advance to reverse the intensity levels of an input
image to produce the negative image. The negative image x can be expressed as [22]

k = 1−MWP(y, x), (3)

where 0 ≤ k ≤ 1. The NT is suitable for enhancing dark detail (low coherence) embedded
in white regions (high coherence) of an image, especially when the white regions are
dominant in whole image such as coherence image.

The power-law transformation, called GC, can be defined as follows [23]:

y = akp, (4)

where k and y are the intensity levels of the pixels in the input and the output CDMs,
respectively. p is an arbitrary real number. a is a positive constant and is selected as 1 in
this paper. In GC filtering, the order p controls the slope of the transformation function.
The higher the value of p is, the steeper the transformation curve becomes. The steeper
the curve is, the more the corresponding intensities are spread, causing more increase in
contrast. Figure 2a demonstrates a plot of y with respect to k using the order p which
shows an increasing curve. Note that steeper the transformation curve will be obtained,
which will cause large decrease in speckle noise, as expected. Because the intensity of the
speckle noise in the CDM is usually smaller than that of the true changed region, the GC
filtering leads to a significant reduction in the speckle noise, while retaining nearly all the
information related to true changed region contained in the CDM, as shown in Figure 2a.
The GC can provide various degrees of performances of both image enhancement and
speckle noise reduction with changes in the value of p. Thus, the result obtained from the
GC can be extremely close in appearance to the noise-free CDM if it is available for the
proper selection of p. Because the performance of GC has a strong dependence on the value
of p, the heuristic approach, which suboptimally selects the best solution by optimizing an
average energy (AE) of CDM, is required to find a proper value of p. The GC uses different
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values of p for different images depending on the nature of the respective image according
to the AE of CDM. Then, the AE can be defined as

AE(p) =
1

NM

N

∑
n=1

M

∑
m=1

kp(m, n). (5)

Figure 2. (a) Illustration of the GC filtering, (b) AE versus value of p.

The AE decomposes into two main contributions: AEr corresponding to the changed
region and AEs corresponding to the speckle noise as follows:

AE(p) = AEr(p) + AEs(p). (6)

It is noteworthy that there inevitably exists a certain real number ν which leads to the
result that AEs distributed in CDM starts to converge to 0 in the limit as p→ ν , that is,

lim
p→ν

AEs(p) = 0. (7)

This is because the decreasing rate of AEs is generally larger than that of AEr with the
value of p increasing as shown in Figure 2a. Thus, this approach results in the removal
of the speckle noise in CDM due to kv

s � 1, where ks denotes the NT corresponding to
the speckle noise. Therefore, the AE has a tendency to converge to AEr(v) close to the
noise-free CDM as shown in Figure 2b, and then the following relationship holds true:

lim
p→ν

AE(p) = AEr(ν). (8)

Thus, the selection of the p parameter at the start of convergence of AE, namely p = ν,
can reasonably lead to a global optimum in terms of both image enhancement and speckle
noise reduction. Then, the reconstruction of desired CDM can be achieved by solving the
following optimization problem:

(P) : min p subject to
d

dp
AE(p) ≥ σ, (9)

where σ is small negative threshold value. It is necessary to construct approach to a sys-
tematic process in setting for the adaptive threshold selection. According to numerous
simulation results with an exhaustive search procedure of p parameter against thresh-
old σ, the mathematical expression of the threshold σ = AE′(p)|p=1 ×

[
log L2]/100 is

heuristically derived to achieve the global optimum within the SAR NC-CD framework,
regardless of the shape and size of changed region and the radar parameters. The initial
differential coefficient AE′(p)|p=1 is considered as the data-driven parameter to describe
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the proportion of the changed region in the original image. Finally, the CDM can be created
where clusters of pixels with intensity above a specified threshold represent the scattering
center locations on the changed region.

Additionally, we can consider a median filter with size of 3× 3 in the post-processing
step to accommodate the residual speckle noise reduction in the CDM. The overall flowchart
of the proposed method is shown in Figure 3.

Figure 3. Detailed processing workflow that is proposed in this study.

4. Analysis of Computational Complexity

The computational complexity of the SAR change detection for the proposed method
is analyzed in detail. We establish the computational efficiency of the proposed method
with regard to multiplications and divisions. Given N (N ≥ 2) SAR images with a size of
M× N, the total complexity of SSIM requires O(L ·M · N · (N − 1)) operations, where L is
the number of windows in the MWP procedure. Meanwhile, the computational complexity
of AE can be calculated as O(M · N). Therefore, the total complexity of the proposed
method can be approximated as O(L ·M · N · (N − 1) + M · N).

5. Experimental Results

In this section, we evaluate the performance of the proposed method discussed in
Section 2 for the reconstruction of CDM. We also compare the detection performance of the
propose method with that of conventional CD methods.

5.1. Description of the Data Sets

To verify the detection performance of the CDM via the proposed method, we used
three real SAR dataset (dataset 1, 2 and 3). Before applying the proposed method, it is
assumed that the motion compensation algorithm [30] is perfectly performed in advance
to generate well-focused SAR images whose phase coherence is well-preserved. Dataset1
consists of two SAR images with a size of 505× 494 acquired by the ERS-2 satellite over
the same region near the city of Bern, Switzerland, in April and May 1999 as shown in
Figure 4a,b, respectively. Dataset2 is comprised of two SAR images with a size of 350× 290
obtained from the RADARSAT sensor over the city of Ottawa, Canada, in May and August
1997 as shown in Figure 5a,b, respectively. In both Bern and Ottawa, the specific areas were
submerged by floodwater between those two dates, respectively. Dataset3 is pair of two
SAR images with a size of 3800× 4200 acquired by RADARSAT-2 at the region of Yellow
River Estuary in China in June 2008 and June 2009, as shown in Figure 6a,b, respectively.
These two images include vegetation areas (paddy field) and are with different levels
of strong noise and low coherence. The first image is with four looks and the second
image is with a single look. In order to facilitate the quantitative evaluation of creation
of CDM for detecting changed areas, reference maps (ground truth images), as shown in
Figures 4c, 5c and 6c, were obtained by using manual analysis based on integration of prior
information with photo interpretation.



Sensors 2021, 21, 6645 7 of 15

Figure 4. Multi-temporal SAR images of the city of Bern. (a) SAR image acquired in April 1999 before the flooding. (b) SAR
image acquired in May 1999 after flooding. (c) The reference map, called ground truth.

Figure 5. Multi-temporal SAR images of Ottawa. (a) SAR image acquired in July 1997 during the flooding. (b) SAR image
acquired in August 1997 after flooding. (c) The reference map, called ground truth.

Figure 6. Multi-temporal SAR images of Yellow River Estuary in China. (a) SAR image acquired in June 2008. (b) SAR
image acquired in June 2009. (c) The reference map, called ground truth.
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5.2. Detection Quality Metrics

We made a direct comparison between each pixel in the result and the reference map
to measure the detection quality metrics [13] such as false alarm (FA), detection rate (DR),
and kappa index (κ).

True positive (TP) is the number of changed pixels detected correctly and its rate
is pTP = TP/(M · N). True negative (TN) is the number of unchanged pixels detected
correctly and its rate is pTN = TN/(M · N). False positive (FP) is the number of changed
pixels detected incorrectly as unchanged, also known as misdetections and its rate is
pFP = FP/(M · N). False negative (FN) is the number of unchanged pixels detected
incorrectly as changed pixels and its rate is given as pFN = FN/(M · N). Furthermore, the
kappa statistic index, which is a measure of agreement or accuracy based on the difference
between the chance agreement and error matrix, was calculated to evaluate the validity
and reliability of the CDM, defined as [13]

κ =
A− B
1− B

, (10)

where A = 1− pFP− pFN and B = (pTP + pFP) · (pTP + pFN)+ (pTN + pFN) · (pTN + pFP).
The higher the value of kappa, the better is the detection performance. Furthermore, FA
and DR are defined as (FP + FN)/(M · N) and TP/CR, where CR is the number of
pixels as changed region in the reference map, respectively. The final accuracy was
evaluated by the proportion of correct detection (PCD), which can be calculated by
(TP + TN)/(TP + FP + FN + TN).

5.3. Analysis of CDMs Generated by the Proposed Method

Under the aforementioned experimental setup, the CC [1], LMT [13], NRA [14],
SEST [15], BGD [16], and the proposed method are carried out to compare the detection
performance of each CDM. Note that the experiments were conducted to compare the
performance of the six CD algorithms in two aspects: (1) before and (2) after post processing.
We adopted the median filtering in the post-processing step, which is one of the most
popular speckle noise reduction methods, to improve the performance of the CD technique.

The CC, LMT, NRA, SEST, and BGD images are obtained, followed by the application
of constant false alarm rate (CFAR) detection to generate the CDMs. Meanwhile, the
number of window for the MWP was chosen as L = 4 to exploit the preservation of the
detail edge of the changed region. Each value of σ for solving the problem of optimiza-
tion were chosen as −0.002 for dataset 1, −0.015 for dataset 2, and −0.023 for dataset 3,
respectively. The main features of the changed regions, such as the flooded areas and the
reclaimed paddy fields, are extracted in Figures 7–9. It can be easily recognized that the
CDM results obtained by the proposed method (depicted in Figures 7f, 8f and 9f) were
nearly a match for the reference maps in terms of visual inspection. To provide a quan-
titative evaluation, the detection performance values of each algorithm are compared in
Tables 1–3. The FA of the CDM obtained by the proposed method has the smallest value
among the six approaches in each case (Tables 1–3). Furthermore, all the values of kappa
and PCD measured for the proposed method were considerably greater than those of the
other five methods. On the other hand, Figures 10–12 show the final CD results obtained by
the CC, LMT, NRA, SEST, BGD, and the proposed method, respectively, after the median
filtering in the post-processing step. The background of the results obtained using the
median filtering is clearer than those of the unfiltered CD results shown in Figures 7–9. The
detected changed portions in the CD image obtained using the proposed method show
good agreement with those of the ground truth map (see Figures 4c, 5c and 6c), as shown in
Figures 10f, 11f and 12f. The performances attained by all the methods after the median
filtering were described in Tables 4–6. The FA of the CD image obtained by the proposed
method has the smallest value in each dataset among the six algorithms. Furthermore, the
DR and PCD measured by the proposed method are especially better than those of the CC,
LMT, NRA, SEST, and BGD. The outstanding performance of the CD image obtained by
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the proposed algorithm exhibits a significant improvement over other five algorithms in
terms of all metrics of detection quality after median filtering in the post processing step.
Therefore, the quality of the CDM image obtained by the proposed method was the best
in terms of quantitative detection quality measurements in this experiment. In summary,
we can conclude that the undesired speckle noises involved in CDMs are successfully
suppressed; thus, the CDM quality and detection performance is significantly improved
using the proposed method.

Table 1. Comparison of results from all the six methods using dataset 1 before median filtering.

Method FP FN FA (%) DR (%) κ PCD (%)

CC 601 5918 4.820 67.71 0.164 92.21
LMT 515 5687 3.463 68.22 0.187 93.16
NRA 583 4210 2.966 68.86 0.385 94.45
SEST 479 3786 2.544 69.45 0.534 95.10
BGD 433 3115 2.231 68.02 0.601 94.85

Proposed 378 1643 1.228 65.63 0.794 95.32

Table 2. Comparison of results from all the six methods using dataset 2 before median filtering.

Method FP FN FA (%) DR (%) κ PCD (%)

CC 3263 4015 18.38 69.55 0.677 89.23
LMT 2977 3737 14.64 71.58 0.698 90.10
NRA 2645 3475 11.27 76.79 0.734 91.44
SEST 2712 3615 12.23 78.36 0.749 91.78
BGD 2885 3688 12.72 78.89 0.776 92.21

Proposed 2103 2985 9.668 84.24 0.796 93.43

Table 3. Comparison of results from all the six methods using dataset 3 before median filtering.

Method FP FN FA (%) DR (%) κ PCD (%)

CC 3622 93462 32.69 8.664 0.155 69.74
LMT 3109 80942 24.60 12.57 0.197 75.97
NRA 2279 73947 17.52 16.66 0.288 84.83
SEST 2061 69246 16.41 18.80 0.301 85.45
BGD 1894 67175 15.43 23.78 0.325 86.31

Proposed 1644 63620 14.30 27.44 0.354 87.68

Table 4. Comparison of results from all the six methods using dataset 1 after median filtering.

Method FP FN FA (%) DR (%) κ PCD (%)

CC 564 5491 3.371 70.36 0.204 95.46
LMT 480 5074 2.244 71.15 0.228 97.77
NRA 542 3987 1.830 72.94 0.448 98.12
SEST 503 3451 1.114 73.54 0.635 98.34
BGD 424 2542 0.938 72.27 0.723 98.86

Proposed 319 1359 0.678 68.70 0.848 99.32

Table 5. Comparison of results from all the six methods using dataset 2 after median filtering.

Method FP FN FA (%) DR (%) κ PCD (%)

CC 2771 3523 6.389 74.86 0.735 92.30
LMT 2581 3102 5.670 76.95 0.748 94.43
NRA 2294 2835 5.119 80.10 0.776 94.94
SEST 2018 2621 4.804 82.44 0.782 95.12
BGD 1994 2357 4.676 84.02 0.806 95.46

Proposed 1920 2151 4.062 87.67 0.828 96.01
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Table 6. Comparison of results from all the six methods using dataset 3 after median filtering.

Method FP FN FA (%) DR (%) κ PCD (%)

CC 2844 81102 23.20 12.78 0.205 76.41
LMT 2521 74302 18.05 15.55 0.243 80.96
NRA 1897 64482 11.43 19.34 0.318 88.57
SEST 1675 63680 11.21 25.05 0.356 88.89
BGD 1563 60268 10.97 31.31 0.392 89.64

Proposed 1367 58482 10.32 39.53 0.429 90.68

Figure 7. CDMs using dataset 1 obtained by six CD algorithms before median filtering in the post processing step. (a) CDM
reconstructed by the CC. (b) CDM reconstructed by the LMT. (c) CDM reconstructed by the NRA. (d) CDM reconstructed
by the SEST. (e) CDM reconstructed by the BGD. (f) CDM reconstructed by the proposed method.

Figure 8. Cont.
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Figure 8. CDMs using dataset 2 obtained by six CD algorithms before median filtering in the post processing step. (a) CDM
reconstructed by the CC. (b) CDM reconstructed by the LMT. (c) CDM reconstructed by the NRA. (d) CDM reconstructed
by the SEST. (e) CDM reconstructed by the BGD. (f) CDM reconstructed by the proposed method.

Figure 9. CDMs using dataset 3 obtained by six CD algorithms before median filtering in the post processing step. (a) CDM
reconstructed by the CC. (b) CDM reconstructed by the LMT. (c) CDM reconstructed by the NRA. (d) CDM reconstructed
by the SEST. (e) CDM reconstructed by the BGD. (f) CDM reconstructed by the proposed method.

Figure 10. Cont.
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Figure 10. CDMs using dataset 1 obtained by six CD algorithms after median filtering in the post processing step. (a) CDM
reconstructed by the CC. (b) CDM reconstructed by the LMT. (c) CDM reconstructed by the NRA. (d) CDM reconstructed
by the SEST. (e) CDM reconstructed by the BGD. (f) CDM reconstructed by the proposed method.

Figure 11. CDMs using dataset 2 obtained by six CD algorithms after median filtering in the post processing step. (a) CDM
reconstructed by the CC. (b) CDM reconstructed by the LMT. (c) CDM reconstructed by the NRA. (d) CDM reconstructed
by the SEST. (e) CDM reconstructed by the BGD. (f) CDM reconstructed by the proposed method.

Figure 12. Cont.
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Figure 12. CDMs using dataset 3 obtained by six CD algorithms after median filtering in the post processing step. (a) CDM
reconstructed by the CC. (b) CDM reconstructed by the LMT. (c) CDM reconstructed by the NRA. (d) CDM reconstructed
by the SEST. (e) CDM reconstructed by the BGD. (f) CDM reconstructed by the proposed method.

6. Discussion

The main novelty of the proposed method is two-fold: (1) adoption of the MWP
approach based on the SSIM of SAR image with no consideration for the well-preserved
interferometric phase, and (2) application of GC in SAR CD framework in order to provide
various degrees of performances of both image enhancement and speckle noise reduction
with changes in the value of p. Because each pixel intensity in the image is closely related
to the neighborhood and represents the dynamics of the scene being imaged, the proposed
approach can exhibit a simple structure and powerful detection performance. Furthermore,
another attractive attribute of the proposed method is that the GC filtering leads to a
significant reduction in the speckle noise while retaining nearly all the information related
to the true changed region contained in the CDM. In addition, the median filtering can
be considered to improve the CD performance in the post processing step. The proposed
method is capable of providing a high-quality coherence image since the SSIM operation
has high sensitivity to the similarity measure for intensity between two SAR images.
Meanwhile, the detection performance of the coherence image is dependent on the order p
of GC. The proposed method can provide various degrees of performances of the speckle
noise reduction with changes in the order p of GC. Thus, we analyzed the proposed method
in terms of the image enhancement and the speckle noise reduction, taking the value of p
into consideration. In experimental results, several detection quality metrics are employed
to quantitatively evaluate the performance of CDM acquired by the proposed method. The
most important issue in the paper is a superior quality of CDM reconstruction by searching
the global optimal solutions of the optimization problem with a MWP associated with
SSIM and GC, compared with state-of-the-art CD-based methods.

7. Conclusions

In this paper, a new framework for NC-CD is proposed for successful CD performance
in multi-temporal SAR images. The processing sequence for generation of CDM is im-
plemented as follows: the coherence image is obtained by the MWP associated with the
SSIM, followed by optimization procedure of GC. The proposed scheme concentrates on
the behavior of the SSIM to measure fine variation of intensity between two SAR images
within multiple-windows in order to provide reliable generation of high-quality coherence
images. The detection performance of the proposed method is dependent on the order p of
the power-law function, called GC. The detailed explanation to select the optimum value p
which plays the lead role in producing the noise-free CDM. The experimental results show
that the proposed scheme provides excellent detection performance in terms of several
detection quality metrics.
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