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Stereo slant discrimination of planar 3D surfaces:
Frontoparallel versus planar matching
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Binocular stereo cues are important for discriminating
3D surface orientation, especially at near distances. We
devised a single-interval task where observers
discriminated the slant of a densely textured planar test
surface relative to a textured planar surround reference
surface. Although surfaces were rendered with correct
perspective, the stimuli were designed so that the
binocular cues dominated performance. Slant
discrimination performance was measured as a function
of the reference slant and the level of uncorrelated
white noise added to the test-plane images in the left
and right eyes. We compared human performance with
an approximate ideal observer (planar matching [PM])
and two subideal observers. The PM observer uses the
image in one eye and back projection to predict a test
image in the other eye for all possible slants, tilts, and
distances. The estimated slant, tilt, and distance are
determined by the prediction that most closely matches
the measured image in the other eye. The first subideal
observer (local planar matching [LPM]) applies PM over
local neighborhoods and then pools estimates across the
test plane. The second suboptimal observer (local
frontoparallel matching [LFM]) uses only location
disparity. We find that the ideal observer (PM) and the
first subideal observer (LPM) outperforms the second
subideal observer (LFM), demonstrating the additional
benefit of pattern disparities. We also find that all three
model observers can account for human performance, if
two free parameters are included: a fixed small level of
internal estimation noise, and a fixed overall efficiency
scalar on slant discriminability.

Introduction

Estimating the 3D shape of our surroundings is
essential for many everyday behaviors. The 3D shape
at any point on a smooth surface can be closely
approximated over a small neighborhood by a plane.
Thus, the most local and fundamental measure of shape
is local surface orientation. Local surface orientation
is often specified in terms of slant and tilt (Stevens,
1983). Slant is the angle between the surface normal
(the unit vector perpendicular to the surface) and the
frontoparallel plane (Figure 1A). Tilt is the orientation
of the vector formed by the projection of the surface
normal onto the frontoparallel plane (Figure 1B).

A common view of 3D shape perception is that
it begins with the estimation of the local slants and
tilts, which are then integrated into a representation
of the 3D shape. Thus, not surprisingly, there have
been a large number of studies directed at measuring
and understanding the perception of 3D slant and tilt
(e.g. see Howard & Rogers, 2012). Here, we focus on
perception of the 3D slant of planar surfaces.

Under natural conditions (without head or scene
movement), the image information available for 3D
slant estimation typically consists of the binocular cue
of disparity (the differences between the images formed
in the two eyes) together with various monocular
cues (e.g. linear perspective). The primary goal of the
current study was to measure slant discrimination
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Figure 1. Definition of slant and tilt. (A) Slant is the angle
between the surface normal (black vertical line segment) and
the frontoparallel plane. Here, the slant is varied while the tilt
remains at 90 degrees. (B) Tilt is the orientation of the vector
formed by the projection of the surface normal onto the
frontoparallel plane. Here, the tilt is varied while the slant
remains at 45 degrees.

under naturalistic conditions and to compare human
performance in our task with that of an ideal observer,
and several subideal observers, for slant estimation from
binocular-disparity cues.

A number of studies have measured slant-
discrimination performance from binocular disparity
using sparse random dot stereograms (Hibbard,
Bradshaw, Langley, & Rogers, 2002; Knill & Saunders,
2003; Hillis, Watt, Landy, & Banks, 2004; Girshick
& Banks, 2009; Burge, Girshick, & Banks, 2010). In
most of these studies, the stimuli were presented in two
temporal intervals. In natural viewing, it is probably
more typical for humans to be comparing the 3D
orientations of surfaces that are densely textured, and
that are located within the same scene at different
distances (Burge, McCann, & Geisler, 2016; Kim &
Burge, 2018; Kim & Burge, 2020). Here, we measured
slant discrimination performance for surfaces that
were textured with naturalistic noise (see Figure 2 in
Methods). The two planar surfaces were presented in a
single-interval task, where the smaller test surface was
in front of a surrounding reference surface by a distance
that varied randomly from trial-to-trial by a small
amount. The stimuli were accurately rendered, and
hence contained both monocular and binocular cues
to surface orientation. To reduce the usefulness of the
monocular cues, the texture contained few regularities
and the shape (i.e. silhouette) of the test surface was
jittered (see Methods). A control experiment confirmed
that the performance of our subjects was completely
dominated by the binocular cues (see Results). This
allowed us to focus on models of slant discrimination
from binocular disparity. Finally, to limit and compare
human and model-observer performance, we added

different (uncorrelated) samples of white noise to the
test region in each eye.

The modeling begins with the derivation of
an approximate Bayesian ideal observer for slant
discrimination of planar surfaces from binocular
disparity. Ideal-observer models reveal the fundamental
computational principles of the task, set a proper
benchmark to compare with human performance, and
can be used to evaluate the effectiveness of heuristic
(suboptimal) mechanisms (Green & Swets, 1966;
Geisler, 2011; Burge, 2020).

In the Bayesian framework, it is convenient to
divide the problem of estimating slant from binocular
disparity into two problems (e.g. Marr & Poggio, 1979).
The first is the “correspondence problem”: estimating
the points in the left image and the points in the right
image that correspond to the same points in the 3D
scene. Here, we define the transformation that maps
one image into the other as the “disparity” between
the two images. It is important to note that there are
multiple ways to describe the same transformation.
For example, a disparity might be most compactly
described as a global transformation with just a few
parameters, but can also be described by a list of the
vertical and horizontal translations of each point in one
image needed to align that point with the corresponding
point in the other image. Solving the correspondence
problem can be difficult because of false matches and
partial occlusions.

The second problem is to translate the estimated
disparity, or disparities, into an estimate of the 3D
surface orientation. Solving this problem requires
knowing or estimating the pose of the eyes (e.g.
vergence and version), which may be estimated from
image cues, oculomotor cues, head orientation cues, or
some combination of these cues.

The ideal and subideal observers described here
assume that the pose of the eyes is known and hence the
current focus is more on the correspondence problem.
This focus differs from related human vision literature,
which assumes that the correspondence problem has
been solved and focuses instead on the estimation of
surface orientation from cues in the matched binocular
images (such as the horizontal and vertical size ratio,
and disparity gradients), and from other eye-pose cues
(e.g. see Backus, Banks, van Ee, & Crowell, 1999).

For every possible slant and distance of the surface,
the ideal observer computes the predicted image in
one eye given the image observed in the other eye
and the rules of backward- and forward-projection
(see Methods). The estimated slant and distance are
the slant and distance pair that gives the smallest
prediction error. We will call this optimal model of
slant and distance estimation the “planar matching”
(PM) model. This observer is optimal because it uses
all of the available geometric information given planar
surfaces. By generating predictions via backward and
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Figure 2. Stimuli and task in the slant and depth discrimination experiments. (A) Example binocular stimulus (crossed). The actual
stimuli were presented in a stereo rig where orthogonally polarized left- and right-eye images alternated at 60 Hz, and were viewed
through polarization-selective filters. The rectangular reference plane was densely textured, had a central window/hole, and was
rendered at a distance of 102 cm. The central test plane was a trapezoid jittered in distance and aspect ratio to reduce the usability of
monocular perspective cues. On each trial, an independent sample of white noise was added to the window region in the left- and
right-eye images. (B) As illustrated in a top-down view, the subjects’ task was to judge whether the central test plane was more or less
slanted than the reference plane. Subjects had unlimited viewing time and responded by rotating a knob clockwise or
counterclockwise. (C) Top down view of the depth discrimination experiment. The reference plane was frontoparallel and the subject
judged whether the slanted test plane was near or far.

forward projection for every possible distance and
slant, the PM observer is considering exactly the set of
possible differences that can exist between the left and
right images for a given planar surface. It then picks
the distance and slant that best explains the difference
between the two images, and thus it simultaneously
solves the correspondence and slant-estimation
problems with the estimation of just two global
parameters.

Although, for simplicity, we assume that eye pose is
known and that the model observers compute absolute
slant and distance, we argue later that there are nearly
equivalent model observers that compute relative slant
and are robust to modest uncertainty in eye pose (see
Methods and Discussion).

In general, human performance deviates from
optimal performance. A principled approach for
generating plausible suboptimal models is to replace
one or more of the optimal computations with
simpler more biologically plausible computations,
to incorporate sources of internal noise, and/or to
incorporate other plausible biological limitations (e.g.
response nonlinearities, foveation, etc.).

One simplifying and more biologically plausible
computation is to perform PM locally to solve the local

correspondence problem, and then combine the local
slant and distance estimates over the whole test region
(Jones & Malik, 1992; Super & Klarquist, 1997; see
also Wildes, 1991). We will call this the “local planar
matching” (LPM) model. The LPM model represents
the correspondence between local image regions in the
two eyes as a “structural disparity”—a difference in the
location and spatial pattern between the corresponding
regions in the two eyes (location disparities and pattern
disparities). To be clear, in this paper, we regard
structural disparities as the result of an initial binocular
matching process, and not as second-level cues (like
horizontal and vertical size ratios) computed after the
correspondence problem has been solved.

A more simplifying assumption is to solve the
local correspondence problem by performing “local
frontoparallel matching” (LFM), which is essentially
equivalent to standard cross correlation (Tyler & Julesz,
1978; Cormack, Stevenson, & Schor, 1991; Banks,
Gepshtein, & Landy, 2004). The LFMmodel represents
the correspondence between local image regions in the
two eyes as only a “location disparity”—the difference
in the location of the corresponding regions in the
two eyes. This assumption is made by most models of
human stereo vision. The estimated surface slant is
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then computed by combining the distances specified
by the location disparities. Formally, this LFM model
is a special case of the LPM model where the local
slant is assumed to be zero (see Methods). Models
based on LFM have been successful in accounting
for many aspects of human disparity discrimination
(Tyler & Julesz, 1978; Cormack et al., 1991; Banks et
al., 2004; Filippini & Banks, 2009), and in explaining
the response properties of disparity-selective neurons
in visual cortex (Ohzawa, DeAngelis, & Freeman,
1990; DeAngelis, Ohzawa & Freeman, 1991; Ohzawa,
DeAngelis, & Freeman, 1997; Cumming & DeAngelis,
2001).

It has long been known that introducing an
orientation or scale difference between the left and right
images can produce vivid perceptions of surface slant
(Wheatstone, 1838; Ogle, 1938; Blakemore, 1970a).
These results seem to suggest that local structural
disparities are directly exploited by the visual system
to estimate 3D surface orientation. However, as
mentioned above, these structural disparities can also be
described in terms of the location disparities between
the corresponding points in each image. Thus, it has
been difficult to rule out the hypothesis that location
disparities are computed first and then later combined
to determine the 3D surface orientation (Fiorentini
& Maffei, 1971; Wilson, 1976; Mitchison & McKee,
1990; Cagenello & Rogers, 1993; Halpern, Wilson, &
Blake, 1996; Greenwald & Knill, 2009). One aim of
the current study was to discriminate between these
hypotheses.

In the current study, we measured slant
discrimination thresholds for the human and model
observers as a function of the reference slant and the
contrast of uncorrelated white noise samples added
to each eye’s image. As expected, we found that the
PM model had the lowest thresholds, followed by the
LPM model, the LFM model, and finally the human
subjects. All three models capture the qualitative
trends in the human thresholds, but none provide good
quantitative predictions of the trends, even when their
average sensitivities (d′ values) are scaled by an arbitrary
efficiency parameter. However, if we include another
plausible factor, a fixed level of internal estimation
noise, then all three models make good quantitative
predictions. Although the LPM observer does not
predict the pattern of human thresholds significantly
better than the LFM observer, its absolute performance
is substantially better and more robust across analysis
patch size (e.g. receptive field size), and thus there
may have been evolutionary pressure to incorporate
similar structural-disparity computations into the early
visual system. We also measured depth discrimination,
in addition to slant discrimination, with the same
stimuli and found that there was a trend for human
observers to be more efficient (relative to ideal) at slant
discrimination than at depth discrimination.

Methods

Subjects

Three experienced psychophysical observers (two
men and one woman) served as subjects. They each
had normal or corrected to normal spatial and stereo
acuity. Written informed consent was obtained for all
observers in accordance with The University of Texas
at Austin Institutional Review Board.

Apparatus

Stimuli were presented using a Planar PX2611W
stereoscopic display (Planar Systems, Beaverton,
OR, USA). This display consists of two monitors
with orthogonal linear polarization relative to each
other, separated by a polarization-preserving beam
splitter. Subjects wore passive linearizing filters to view
binocular stereo stimuli. In all experiments, subjects
used a forehead rest to maintain constant viewing
distance. Each monitor was gamma-corrected to
produce a linear relationship between pixel values and
output luminance. Luminance was measured with a
photometer (PR 655; Photo Research, Syracuse, NY,
USA) through the beam splitter and a polarizing lens.
The background luminance of the two monitors was
46.73 and 52.04 cd/m2. All experiments and analyses
were done using custom code written in MATLAB
using the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997).

Stimuli

The stimuli (Figure 2) were stereo images centered
on a display screen located at a distance of 100 cm
from the eyes. The stimulus consisted of two surfaces:
a relatively large rectangular surround reference plane
(with an angular central height of 9 degrees), and a
smaller central test plane (see Figure 2A). The slants
of both the reference and test planes were varied; the
tilts of the reference and test planes were always zero
(i.e. both surfaces were slanted about a vertical axis). In
3D space, the rectangular reference plane had a fixed
width (23 cm) and height (16 cm), and the center of the
reference plane was located at a distance of 102 cm (i.e.
2 cm behind the display screen). There was a “window”
(hole) in the reference plane that subtended 4.2 degrees
× 3.1 degrees in the right eye, independent of the slant
of the reference plane. Thus, the window size varied
in the left eye when the slant of the reference plane
was varied. The test plane was centered in the window
of the reference plane. On each trial, an independent
sample of spatial Gaussian white noise was added to
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the window regions of the left and right eye images.
The reference slant and additive noise contrast were
parametrically varied: reference slants = 0 degrees,
± 12.5 degrees, ± 25 degrees, and ± 50 degrees; root
mean square (RMS) noise contrasts = 5%, 17.5%, and
34%. The slant of the test plane was varied to obtain
psychometric functions for slant discrimination (see
below). The stereo images were rendered assuming an
interocular distance of 6.5 cm (the interocular distances
of the 3 subjects are 6.5, 6.5, and 6.2 cm).

When a planar surface is slanted, monocular slant
cues are created due to perspective projection. Our
main interest here was in the stereo cues, and thus steps
were taken to reduce the usefulness of the monocular
cues. The effectiveness of these steps was confirmed
with a monocular control experiment (see below). First,
we randomly varied the distance of the test plane from
99 to 101 cm across trials, thereby jittering its retinal
image size. Second, we fixed the width and central
height of the test plane in the right eye to 2.2 degrees of
visual angle and jittered the ratio of the left and right
edge heights of the test plane. This jitter creates 3D
test plane surfaces that are trapezoidal in shape. The
average edge-height ratio was set equal to what would
be expected for a rectangle having the same slant as the
reference plane. The range of the random jitter around
this ratio matched the range of ratios expected for a
rectangular test plane varying over the range of test
slants used to measure the psychometric function with
the steepest slant (50 degrees). This procedure strongly
reduces the usefulness of monocular shape cues to slant
estimation, while introducing a relatively small amount
of jitter. Even with the jitter, some monocular cues for
slant remained because the surface texture in the test
plane was accurately rendered.

The texture of the planes was generated by summing
59 sinewaves having spatial frequencies of constant
amplitude ranging between 0.1 and 3 cycles per
degree (cpd) in steps of 0.05 cpd, with the phase and
orientation of each sinewave randomly sampled from
a uniform distribution over all possible values (0 to
π ). The advantage of creating textures by summing
sinewaves is that it is possible to avoid interpolation
artifacts. For each pixel location, for each eye, there is
an exact formula for the real-valued gray level for each
sinewave component on any 3D planar surface. Given
these values, we then summed the gray levels for all the
components to obtain the exact real-valued gray level at
each image pixel location, and then gamma-compressed
and appropriately quantized them for presentation. The
textures on the reference and test planes were generated
separately, and both had an average RMS contrast of
14.7% before the addition of the uncorrelated white
noise.

One difference between the task used here and tasks
used in previous investigations of slant discrimination
is that this task is arguably more typical of natural

conditions. Typically, the two surfaces whose slants
are being compared are presented in two different
temporal intervals (Knill & Saunders, 2003; Hillis et
al., 2004; Girshick & Banks, 2009). Under natural
conditions, surfaces that are being compared are
often at different distances and are often viewed
simultaneously. In addition, in order to isolate
binocular disparity cues, many previous studies have
used sparse random-dot stereograms. However, most
natural surfaces have a dense irregular texture (e.g. tree
bark).

Procedure

The experiment was performed under free-viewing
conditions without a fixation point, although a chin
and head rest were used to fix the head position.
Observers were asked to indicate, in a forced choice
task, whether the test plane was more or less slanted
than the reference plane. To indicate their decision,
observers simply turned a knob (PowerMate wireless
controller; Griffin Technology, Irvine, CA, USA) in the
direction in which the test plane was rotated relative
to the reference plane. Observers found this method
of response much more intuitive than a keypress.
The stimulus was present until the observer made a
response. The average trial duration was 4.7 seconds.
The next stimulus appeared after a 1.5 second blank
interval.

Each observer completed eight experimental sessions,
where the magnitude of the reference slant was held
fixed at one of the four values (± 0 degrees, ± 12.5
degrees, ± 25 degrees, and ± 50 degrees). Each session
consisted of four blocks of trials. The first block was
a practice block where the number of trials was half
that of the other blocks and with feedback given on
each trial. Practice blocks were not included in the
data analysis. No feedback was given in the remaining
three experimental blocks (160 trials per block). In each
of these three blocks, the noise contrast was fixed at
one of the three values (5%, 17.5%, or 34%). Within a
session, the order of these blocks was either ascending
or descending, and in the later repeat of that session the
order of the noise contrasts was reversed. All 160 trials
in a block had a fixed reference slant magnitude, but the
sign of the reference slant was different for the first and
second halves of the trials in the block (e.g. 25 degrees
in the first half and −25 degrees in the second half). We
combined all trials having the same magnitude of slant
and hence there was a total of 360 trials per condition.

Within each block, a psychometric function was
measured by varying the slant of the test plane relative
to the fixed reference plane. There were eight levels of
slant per psychometric function presented in a random
order. The texture of the test plane was different on
each trial. The texture of the reference plane was



Journal of Vision (2022) 22(5):6, 1–26 Oluk et al. 6

different in each block. All observers made judgments
for the same stimuli, with a different random order for
each observer.

Control experiments

We ran two control experiments in addition to the
main experiment. The first control experiment was
a slant-discrimination experiment where the viewing
was monocular. Measurements (a total of 160 trials
per white-noise level) were only made for the steepest
slant, because those stimuli contain the steepest
texture gradient, and thus the most reliable monocular
information (Knill, 1998; Hillis et al., 2004). The stimuli
were constructed using the same rules as those in the
main experiment, but observers viewed the stimuli with
a patch over the right eye. For all noise levels and slant
differences between the test and reference plane used in
the actual experiment, the three observers performed at
chance.

In the second control experiment, the three observers
were asked to discriminate the depth rather than the
slant of the test plane relative to the reference plane
(see Figure 2C). The reference plane was given a 0
degree slant and was rendered at a distance of 100
cm. The slant of the test plane was fixed at either −44
degrees or 44 degrees so that the near and far edges
of the test plane in 3D space were approximately 2
cm in front and behind the reference plane. The test
plane was slanted so that the effective disparity pedestal
values were similar to those in the main experiment.
Consider any pair of test surface points equidistant
from the center of the test surface. Assuming that the
test plane is perceived to straddle the reference depth,
discriminating whether the test plane is closer or further
requires determining whether the depth interval to
the reference plane for one of the points is greater
than or less than that to the other point. On average,
this pedestal is about 1 cm. In depth discrimination
experiments, it is known that thresholds tend to
increase with the magnitude of the disparity pedestal
(Blakemore, 1970b; Schumer & Julesz, 1984; Badcock
& Schor, 1985; Stevenson, Cormack, Schor, & Tyler,
1992). Thus, for comparing human efficiency in the two
tasks it is best to keep the range of disparities similar.

Depth discrimination of the test plane was measured
as function of a noise contrast. Each participant
completed two sessions, one in increasing order of noise
contrast and one in decreasing order. Each session
consisted of three pairs of blocks, one pair for each
noise contrast. The first block in each pair had half the
number of trials, and feedback was provided. There was
no feedback in the second block of each pair. There
were 80 trials in each no feedback block. The data from
the feedback blocks (40 trials) were not used in the
analysis. To measure psychometric functions, the depth
difference between the reference and test planes varied

within the block. There were eight depth difference
levels presented in random order. The observers’ task
was to report whether the center of the test plane
was closer or further than the reference plane. As
in the main experiment, different random textures
were generated for each trial, and all observers made
judgments for the same stimuli. The only difference was
that the order of the stimuli was randomly different for
each observer.

Analysis methods

For non-zero reference slants, the response data
was the percentage of “more-slanted” responses as
a function of the angular difference between test
and reference planes. For the zero reference slant
(frontoparallel reference plane), the response data was
the percentage of “slanted left” responses as a function
of test slant. For each combination of reference-slant
magnitude and noise contrast, we first merged
the psychometric data for the two reference-slant
orientations having the same magnitude (e.g. 50 degrees
and −50 degrees). The psychometric data for each
condition and subject was then fitted with a cumulative
Gaussian function using maximum likelihood:

p (”more slanted”) = �

(
�s − β

2σ

)
(1)

where �s is the test slant minus the reference slant, σ
is the standard deviation parameter, and β is the bias
parameter. The bias parameter corresponds to the 50%
point of the psychometric function, and the value of
the standard deviation was defined to be the threshold.
Note that the discriminability, d′, equals �s/σ . We
define threshold to be the value of �s for which d′ = 1.

Not surprisingly, given the well-known individual
differences in stereo acuity (Coutant & Westheimer,
1993; Bohr & Read, 2013), there were substantial
differences in the overall performance level between
the three observers. However, the three pair-wise
correlations between participants’ thresholds were quite
high (0.967, 0.973, and 0.962). Therefore, to better see
the average trends, we scaled the thresholds of two
of the observers so that their average threshold was
the same as the average threshold of the intermediate
performing observer. The scale factor for the more
sensitive observer was 0.68 and for the less sensitive
observer was 2.01. These same scale factors were also
used to scale the biases.

The control experiments were analyzed using the
same procedures. However, for the control experiment
on depth discrimination, the differences in overall
performance between observers were not as large, so
the data were averaged without scaling.
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Models

We consider an approximate ideal observer and
several suboptimal observers. In all cases, the input to
the model is the pair of left and right images produced
by the test plane. The left and right images in the test
region are described by the following two equations:

R (x, y) = Rt (x, y) + Rn (x, y) (2)

L (x, y) = Lt (x, y) + Ln (x, y) (3)

where Rt and Lt are the images of the sample of 3D
texture in the right and left eyes, and Rn and Ln are the
independent samples of white noise added to the right
and left images.

Approximate ideal observer: Planar matching

Derivation of the exact ideal observer was not
practical for our particular stimuli, because it would
require optimal local spatial-frequency filtering to
remove frequencies in the uncorrelated noise that
do not overlap with the frequencies in the projected
texture. We instead optimize a global filter by trial and
error, which should give a close approximation to ideal
performance. If we let f(x, y) be the optimal filtering
kernel in the space domain, then the filtered right and
left images are given by the following:

Rf (x, y) = ( f ⊗ Rt ) (x, y) + ( f ⊗ Rn) (x, y) (4)

Lf (x, y) = ( f ⊗ Lt ) (x, y) + ( f ⊗ Ln) (x, y) (5)

where ⊗ represents the operation of two-dimensional
cross correlation.

We derive the approximate ideal observer under the
assumptions that the imaging geometry is known, and
that the 3D surface geometry is described by parameters
θ = (θ1,���, θm). For planar surfaces, there are three
parameters: distance, slant, and tilt. In our experiment,
there are only two parameters: distance and slant (the
tilt was fixed at zero). The goal of the observer is to
estimate the surface geometry from the left and right
images. Even after filtering, the added noise remains
statistically independent across the two images and is
the dominant noise source. Thus, using Bayes rule, the
maximum posterior estimate of the surface geometry is
given approximately by the following:

θ̂ = argmax
θ

[
p (θ )

1(
2
√

πσ f
)n exp

(
− 1
4σ 2

f

∥∥∥L f − L̂ f
(
θ,R f

)∥∥∥2
)]

(6)

In this equation, p(θ) is the prior over surface
geometry, σ f is the standard deviation of the filtered
samples of white noise, n is the number of pixels in
the left image, Rf and Lf are the filtered right and left

images represented in vector notation, and L̂ f (θ,R f )
is the predicted left image given the right image and a
specific surface geometry. The predicted left image is
obtained by back projecting the right image to the 3D
surface specified by the parameters and then forward
projecting to the left eye. Note that one can also project
from the left image to the right image (or both ways),
but we have found that it makes little difference.

Maximizing the posterior probability is equivalent to
minimizing the negative of the log posterior and hence
we have the following:

θ̂ = argmin
θ

[
1

4σ 2
f

∥∥∥L f − L̂ f
(
θ,R f

)∥∥∥2 + ln p (θ ) − n ln
(
2
√

πσ f
)]

(7)

The squared quantity is the squared error between
the left image and the predicted left image. Thus, this
equation shows that the approximate ideal observer
minimizes the squared error while simultaneously
taking into account the prior over surface geometry.
Note that when estimated surface geometry matches
the true geometry, then the mean difference between the
left image and the predicted left image at each location
is zero, and the variance at each location is twice the
variance of the filtered white noise.

Because of its popularity, we also generated
predictions using a normalized-correlation error
measure rather than squared error. It performs very
similarly, but is computationally much slower. In
addition, for a simple absolute disparity estimation
task (not slant estimation), we found that these two
measures perform similarly and closely approximate
the exact ideal observer for that task (Oluk & Geisler,
2020). In other words, using normalized correlation
in Equation 7 is also approximately ideal.

The minimization in Equation 7 is over parameters
describing the surface geometry, and hence the
minimization simultaneously solves the correspondence
problem and the translation into an estimation of the
surface geometry. On the other hand, the parameters
in Equation 7 could also represent an arbitrary
mapping between the right and left images without
any direct connection to surface geometry. In that
case, the estimated parameter values only solve the
correspondence problem, and a second step would be
required to estimate surface geometry.

For mathematical convenience in generating
predictions, we assume a zero vergence angle and an
image plane that is perpendicular to the optic axes
(standard camera geometry; see Figure 3). However, we
note that as long as the positions and orientations of
the eyes are known, then the information available for
estimating surface slant and distance remains largely
invariant. Thus, the performance of the models for
the geometry in Figure 3 is quite general. Of course,
the specific computations in the models depend on
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Figure 3. Schematic of the viewing and imaging geometry used for determining ideal and subideal observer performance. (A) The test
plane is a planar surface whose distance ζ and slant s are defined with respect to the cyclopean axis. The left (blue) and right (red)
images of the test plane are formed in the cyclopean image plane by perspective projection for nodal points separated by an
interocular distance of 2a. The ideal observer uses planar matching (PM). For each possible slant and distance of the test plane, the
observer predicts the left test image from the right test image (or vice versa) by back projection and then forward projection; for
example, the predicted gray level at (xL,yL)is the gray level at (xR,yR). The estimated slant ŝ and distance ζ̂ of the test plane are the
values that give the smallest prediction error (Equation 7). (B)In head-centric coordinates, all points in the test plane have the same
slant. The distance ζ of the test plane is the intercept of the plane, containing the test plane, with the cyclopean axis. The distance zi
of individual points in the test plane varies with location in the image plane. (C) In direction-centric coordinates the slant and distance
are in general different for different points in the test plane. Model performance is the same for the two coordinate systems, but for
simplicity we use head-centric coordinates.

the positions and orientations of the eyes, and on the
coordinate system used to describe the projection from
scene to image.

The surface geometry in our experiment is described
by two parameters the surface slant θ1 = s and the
intercept distance θ2 = ζ . Because the tilt was fixed in
our experiments, we assumed that the tilt is known.
The specific equations for the backward and forward
projection are given in the Appendix, for the case where
the planar surfaces can have arbitrary slant, tilt, and
distance. For present purposes, we assumed a uniform
prior over slant (±70 degrees) and over intercept
distance (100 cm ± 1 cm), which covers the full range
of possibilities in the main experiment.

In our experiment, the display was designed so that
the image of the test plane in the right eye always had
the same width (2.23 degrees), which is assumed to
be known by the model observers. To further simplify
computations, the predictions were generated for a
fixed height region (2.12 degrees) in the right-eye image,
which corresponds to the minimum height produced

in the experiments. This leaves out approximately 5%
of the informative pixels, but has a minor effect on the
predictions.

Recall that the test-plane and reference-plane
textures were a sum of random sine waves having a
maximum spatial frequency of 3 cpd, before rotation
about the vertical axis. The image spatial frequencies in
the test and reference planes can be higher because of
the surface slant. In the experiment, uncorrelated white
noise was added to the left- and right-eye test-plane
regions. As mentioned earlier, the ideal observer must
prefilter the stimuli before comparing the left and right
eye images; that is, it must filter out spatial frequencies
in the added white noise that do not overlap with
frequencies present in the signal. To approximate the
optimal prefiltering, we carried out a preliminary
analysis where we measured PM performance for
various values of the cutoff frequency of a low-pass
filter that ramped to zero over a span of 1 cpd. This was
done separately for each level of uncorrelated noise. We
found that the optimal cutoff frequencies for the 5%,
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Figure 4. Illustration of computations in three model observers (PM, LPM, and LFM), for the case where there is no uncorrelated white
noise added to the left and right images. In the experiments, the stimuli always included uncorrelated white noise (see Figure 2).

17.5%, and 34% noise contrasts are 16, 8, and 5 cpd,
respectively. Variation in these cutoff frequencies by
1 to 2 cpd had little effect on performance. We used this
same prefiltering for all model observers.

The first two images in the upper row of Figure 4
show example right and left images when the slant is
+60 degrees and the intercept distance is 99 cm. When
the estimated slant and distance are correct, then the
predicted image closely matches the left eye image.
Here, the estimate is very accurate because there is
no added uncorrelated noise. We note that because
the reference plane contained no uncorrelated noise,
its parameters were always estimated with very high
precision. This was also true for the other models. Thus,
we were able to simply assume the slant and distance of
the reference plane were known.

Local planar matching

It is not biologically plausible that PM is computed
in one step over the entire test region (especially if
the test region is larger than the current 2.13 degrees
width). Thus, we also consider a suboptimal version

where PM is computed over square right-eye patches
of some given width w. The computations for each
patch are basically the same as described above, except
now Equation 7 is applied to local patches within the
test region.

The only important difference is that we express the
surface geometry in terms of the slant si and distance
of the patch zi, rather than the slant si and intercept
distance ζ i (see Figure 5). In other words, in Equation 7,
we take θi = (si,zi) rather than θi = (si,ζ i). The reason
is that the estimates of slant and intercept distance
become more correlated the larger the horizontal
distance (xi) of the patch from the cyclopean axis (i.e.
changes in the estimate of slant cause changes in the
estimate of intercept distances). On the other hand,
slant and distance are nearly statistically independent
everywhere. The relationship between the intercept
distance and distance of the patch is given by ζ i = zi −
xi tan si, which can be substituted into the equations
in the Appendix to express the backward and forward
projections in terms of slant and distance.

Because the local slant and distance estimates
are relatively independent, it is then possible to
obtain two independent estimates of the global
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Figure 5. Local planar matching. Illustration of the difference
between intercept distance and distance. Local planar matching
uses estimates of local slant and distance. Local frontoparallel
matching uses estimates of local distance assuming the local
slant is zero.

slant, one by pooling the local distance estimates as
follows:

(
ŝz, ζ̂z

) = argmin
s,ζ

n∑
i=1

[ẑi − (ζ + xi tan s)]2 (8)

and one by pooling the local slant estimates as follows:

ŝs = argmin
s

n∑
i=1

[ŝi − s]2 (9)

Finally, the two slant estimates can be combined
using reliability-weighted cue combination, which is
optimal for bias-corrected statistically-independent cues
(Cochran, 1937; Clark & Yuille, 1990; Oruc, Maloney,
& Landy, 2003):

ŝ = rzŝz + rsŝs
rz + rs

(10)

where rz and rs are the reliabilities of the two estimates.
To measure the reliability of the slant estimates for
each cue, we computed slant estimates (for many test
patches) separately for each reference slant. From
these estimates we then computed the bias in the slant
estimates for each reference slant. Finally, the reliability
of the estimates was determined from the standard
deviation of a cumulative Gaussian fit to bias-corrected
slant estimates, as a function of test-patch slant. The
reliability of the slant estimates was taken to be one
over the square of this standard deviation (i.e. the
reciprocal variance).

The middle row in Figure 4 illustrates the LPM
observer. For each square patch in the right image, an
estimate of the left image patch is generated. When
the assumed slant and distance are correct then the
predicted left image patch will closely match the left
image patch, at least when the uncorrelated noise is
absent (as it is in the Figure). Thus, the predicted slant
for each patch will be the same and will be very close to
correct, as will the predicted distance. Finally, pooling
the slant and distance maps gives an estimate of the
slant of the whole surface and pooling the distance map
gives an estimate of the intercept distance of the whole
surface.

Local frontoparallel matching

The simplest model observer considered here is the
local frontoparallel matching model, which is a special
case of the local PM model where the local slant is
assumed to be zero (i.e. Equation 7) with θ = (0, zi),
which for the geometry in Figures 3 and 5 is equivalent
to horizontally translating each patch in the right eye to
find the best match in the left eye to obtain an estimated
disparity, and then computing the estimated distance
given the separation between the eyes. The estimated
slant and intercept distance of the test plane are then
obtained by applying Equation 8 to the set of estimated
distances. These computations are illustrated in the
bottom row of Figure 4. Note that there are errors in
the estimated local distances (visible as the lumpiness
in the ẑi map). These failures to perfectly solve the local
correspondence problem occur because of the model’s
assumption that the local slant is zero.

Estimation noise and overall efficiency scalar

The PM, LPM, and LFM models above have no
free parameters. We also considered suboptimal models
with two other limitations, each specified by a free
parameter: (i) a fixed level of internal noise σ 0 added to
the slant estimates, and (ii) an overall efficiency scale
factor ε that scales down all discriminability (d′) values.
Specifically, the discriminability of the model observers
with these two free parameters is given by the following:

d ′ (�s) = ε
�s√

σ 2 + σ 2
0

(11)

where �s is the mean difference in estimated slant
between the test and reference plane for a model
observer with no free parameters, and σ is the standard
deviation of these estimated slant differences. Note
that the efficiency scalar could correspond to scaling
down the numerator, scaling up the denominator,
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or some combination. Given threshold is defined as
a discriminability of 1.0, the slant-discrimination
threshold of the model observers is given by the
following:

�st = 1
ε

√
σ 2 + σ 2

0 (12)

Other obvious sources of intrinsic noise are photon
noise and neural noise in the retina and LGN. This
noise can be modeled as statistically independent
(uncorrelated) across the eyes, and thus has a similar
effect to the uncorrelated noise added to the left and
right images. However, its effect is similar to that of
the estimation noise so we do not show the predictions
here.

Model predictions

The predicted slant-discrimination thresholds were
obtained by simulating the model-observer estimates of
the slant difference between test and reference planes.
On each trial, a model observer returns an estimate of
the slant difference between the test plane and reference
plane (which was assumed to be known). To obtain
predicted thresholds, slant-difference estimates were
generated for the specific test and reference plane slants
presented to the human observers. For each condition,
we computed the mean and the standard deviation
of the slant-difference estimates of the model being
fitted. From these means and standard deviations, we
computed the error rates predicted given any assumed
values of the internal noise and scale parameters.
The internal-noise and efficiency-scalar parameters
were estimated by the maximizing likelihood. The
predicted thresholds are calculated from fitted error
rates. An equivalent procedure was used for estimating
the predicted depth-discrimination thresholds,
except only the parameters ζ or z were varied. For
more details about the model predictions see https:
//github.com/CanOluk/Stereo-Slant-Discrimination.

Alternate versions and interpretations of model
observers

All the models described above assume that the
absolute slant and distance of the reference plane
are known. This is justified because all of our model
observers estimate the slant and distance of the
reference plane (which has no added noise) with
high precision. All the models also assume that slant
discrimination is performed by estimating the absolute
slant and distance of the test plane and comparing
the estimated absolute slant with the known absolute

slant of the reference plane. This approach was taken
for simplicity. However, largely equivalent predictions
would be obtained by directly using the estimated
location and pattern disparities from LPM observer,
or estimated location disparities from LFM observer,
to compute the difference in disparity and disparity
gradients for test and reference planes, without ever
estimating absolute slants and distances. As long as the
absolute distances of the of the test and reference plane
are not drastically different (which they were not in the
current study), then there is no need to directly estimate
absolute slant and distance. Furthermore, models that
use only disparity and disparity gradients perform
similarly even when there are modest levels of eye pose
uncertainty (see Discussion).

All the model observers described above assume that
the properties of the 3D scene (distance or distance and
surface orientation) are estimated by directly searching
for the scene properties that best predict the test image
in one eye from that in the other eye using backward
and forward projection (see Figure 4). However, the
matching computations in the LPM and LFM models
can also be regarded as different methods for estimating
the location disparities between pixels in the left and
right images. The set of possible backward and forward
projections define the set of transformations (location
and pattern changes) of a local image patch in one
eye that are explored to find the best matching local
image patch in the other eye. Thus, the difference in
the center-pixel locations of the best-matching patches
is the estimate of the disparity at the center of each
patch (there is a patch centered on each pixel). These
location disparities, and knowledge of the priors over
scene geometry, represent all the binocular-disparity
information used by LFM observer, and most of the
binocular-disparity information used by the LPM
observer. The additional information used by the LPM
observer is the specific pattern disparities between the
best matching patches. However, the pattern disparities
provide a somewhat less reliable slant estimate than the
location disparities (except when patch size gets quite
large). Thus, another version of the LPM observer
would be one where only the location disparities are
used. This version of the LPM observer still performs
substantially better than the LFM observer for planar
surfaces, especially for larger slants and larger sizes of
the local patches used in the matching. It also makes
very similar predictions (not shown here) to the full
LPM observer.

Finally, we note that none of the models are meant to
represent biologically plausible computations. Rather
they are meant to represent computational principles
that exploit the available disparity information in
different ways. Nonetheless, at least for the LFM and
LPM observers, these computational principles could
be implemented in biologically plausible ways (see
Discussion).

https://github.com/CanOluk/Stereo-Slant-Discrimination
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Results

Slant discrimination

Figure 6A shows the scaled slant discrimination
thresholds of the three observers (dotted curves)
and their average thresholds (solid curves). (The
psychometric functions of the individual observers
are given in the Appendix, see Figure A1.) As can be
seen, thresholds increased with the noise contrast (plot
color) and decreased with the absolute reference slant
(increasing along the abscissa). As noted earlier, the
individual human observers exhibited similar patterns
of slant-discrimination thresholds and biases, but the
thresholds differed substantially in overall sensitivity.
To better compare the threshold and bias patterns, we
separately scaled the thresholds of the most sensitive
and the least sensitive observer by an overall factor
to best match (in squared error) the thresholds of the
medium-sensitive observer; the biases were scaled by
the same factors (see Methods).

Figure 6B shows the biases. When the RMS contrast
of the noise was 34% (blue), the frontoparallel test
plane (slant of 0 degrees) was perceived as if its
right edge was slightly behind the left edge (95%
confidence interval: −5.33 to −1.04 degrees), and the
slanted test planes were perceived as slightly more

frontoparallel than their true slant (95% confidence
intervals of 3 degrees to 6.6 degrees, 2.3 degrees to 5.1
degrees, and 1.9 degrees to 3.3 degrees for reference
slants of 12.5 degrees, 25 degrees, and 50 degrees,
respectively). Similar, but weaker, frontoparallel biases
were found for 12.5 degrees and 50 degrees reference
slants when the RMS contrast of the noise was
17.5% (95% confidence intervals of 2.2 degrees to
4 degrees and 0.2 degrees to 1 degree, respectively).
A potential explanation for the frontoparallel bias
is that the visual system exploits knowledge of the
prior probability distribution of slants in natural
scenes, which have been found to peak at a slant
of zero (Burge et al., 2016). When the uncorrelated
noise levels are high, the slant estimates necessarily
become less reliable. When this occurs, it is rational
for the visual system to place more weight on the prior
probability distribution, causing a greater bias toward
zero slant (e.g. see Weiss, Simoncelli, & Adelson,
2002).

Figure 7 shows the absolute thresholds for the first
family of model observers along with the most sensitive
human observer on a log y-axis. The thresholds of the
three model observers are given by the colored symbols.
The PM model has no free parameters. The LPM and
LFM models each had a single free parameter: the
patch width w. The value of this parameter was set so as
to maximize the performance of the LFM model. The

Figure 6. The results of the slant experiment. (A) Mean thresholds are shown with solid lines and individual thresholds are shown
with dotted lines. Ninety-five percent confidence intervals are shown as shaded regions. They were computed from the average
psychometric functions by resampling each point 2000 times assuming that the number of “more slanted” responses is binomially
distributed. For each resampling, the threshold (and bias) was recomputed to obtain its estimated distribution. (B) Mean biases are
shown with solid lines and individual’s biases are shown with dotted lines. The individual subjects have similar shaped threshold
curves, but they differ in overall sensitivity. In this plot, the most sensitive and the least sensitive observer’s thresholds were each
scaled by a single factor to best match the medium sensitive observer’s thresholds. The biases were scaled by the same factors. The
two scale factors are 0.68 and 2.01.
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Figure 7. The absolute slant discrimination thresholds of three model observers and the best-performing human observer. The planar
matching (PM) model is near optimal and has no free parameters. The local frontoparallel matching (LFM) model is suboptimal. The
only parameter is the matching patch width (w), which was picked to give the best overall absolute performance (w = 0.5 degrees).
The local planar matching (LPM) model is also suboptimal. Shown here is the performance with the same patch width as the best
performing LFM model (w = 0.5 degrees). Shaded regions correspond to 95% bootstrapped confidence intervals. Note that in this
figure (unlike Figure 6) the thresholds are plotted on a logarithmic scale.

value of the patch-width parameter in the LPM model
was identical to the patch width in the best-performing
LFM observer. All three models outperform the
best-performing human participant in the experiment
(black symbols). As expected, the thresholds of the PM
observer (blue symbols) are lowest in all conditions. The
performance of the LPM model is similar to the LFM
model; however, if the patch width used for the LPM
observer is made larger, its performance improves, and
(of course) asymptotes to the performance of the PM
observer.

Figure 8 shows the thresholds of LPM and LFM
models for different patch width values when the
reference slant is either 12.5 degrees or 50 degrees
(solid and dashed lines). As patch width increases, the

LFM model thresholds become systematically worse
than those of the LPM and PM models, whereas
the LPM model thresholds either improve slightly
or remain stable. The LPM model is therefore more
robust to changes in patch width. As expected, the
LFM model performs particularly poorly when the
reference slant is high because it is the condition when
the implicit assumption of frontoparallel surfaces is
most inaccurate. Last, the difference between LPM
and LFM is smaller when the external noise is high,
probably because in high noise the effect of external
noise tends to exceed the effect of the differences in
specific computations.

Figure 9 shows the maximum-likelihood fits of
the three models (dashed curves) to the average

Figure 8. The change in absolute slant discrimination thresholds of LPM and LFM model observers as a function of patch width. The
patch width for the PM model was the full size of the target in the right eye (2.2 degrees). The solid lines correspond to 12.5 degrees
reference slant and dashed lines correspond to 50 degrees reference slant. Shaded regions correspond to 95% bootstrapped
confidence intervals. Note that the thresholds are plotted on a logarithmic scale.
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Figure 9. Model fits. For each model observer, the patch width (w), scale factor (ε), and estimation noise standard deviation (σ 0) were
estimated by maximizing the likelihood of the data. The patch width for the PM model was the full size of the target in the right eye
(2.2 degrees). Although the parameters were estimated by maximizing likelihood, the goodness-of-fit measure shown in the figure is
the RMSE, which is more intuitive.

thresholds in Figure 6A, when the patch width (w),
estimation-noise standard deviation (σ 0) and overall
efficiency scale factor (ε) were allowed to vary (only σ 0
and ε were allowed to vary for the PM model). Note
that although the fits were obtained by maximizing
likelihood, we report the root-mean-squared error
(RMSE) in the figure because it is more intuitive. The
predicted rate in fall-off in the thresholds with reference

slant is similar to that in the human observers. Note
that the best fitting values of σ 0 are quite small, on the
order of 1 degree to 1.5 degrees, and hence are in a
plausible range. Surprisingly, the predictions are about
equally good for the three models, so the data are not
sufficient to differentiate between the models.

Figures 10A and 10B are plots of goodness-of-fit
measures (RMSE and negative log-likelihood,
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Figure 10. Results of the model fitting procedure. (A) Root-mean squared error (RMSE) for the three models as a function of patch
width. The arrows indicate the smallest RMSE for the LFM and LPM models. The parameters were actually estimated by maximizing
likelihood (minimizing negative log likelihood). (B) Negative log likelihood for the three models as a function of patch width. For the
LFM model the RMSE and negative log likelihood are minimal at the same patch width. For the LPM model the RMSE is minimal at
0.75 but the negative log likelihood is minimal at 0.25. (C) Estimated scale factor and estimation-noise standard deviation for the
three models. For the LPM and LFM models, increasing symbol size represents increasing patch width (0.25, 0.5, 0.75, and 1 visual
degree, respectively). Error bars are 68% bootstrapped confidence intervals.

respectively) as a function of patch width. The
arrows in Figure 10A indicate the patch widths of
the predictions shown in Figure 9. They correspond
to the best fits in terms of RMSE. Both plots
show that including the estimation-noise parameter
greatly improves model predictions (shaded regions
are 68% confidence intervals). Figure 10C shows
the maximum-likelihood-parameter estimates of
each model (symbol color) for each patch width
(symbol size). The estimated noise and scalar
parameters are largest for the LFM model, smaller

for the LPM model, and smallest for the PM
model.

In a control experiment, participants performed
the slant discrimination experiment with the right eye
covered to determine the usefulness of monocular cues.
The tested slant was 50 degrees because this was the
largest slant magnitude in the main experiment and
because perspective (monocular) cues are strongest
in this case (Knill, 1998). Psychometric functions
were measured for all three noise levels. It was not
possible to estimate thresholds, because the slopes of
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the psychometric functions were always near zero.
We conclude that the human slant discrimination
thresholds were based entirely on binocular (stereo)
cues.

Depth discrimination

Figure 11A shows the depth discrimination
thresholds of the three observers (dotted curves) and
their average (solid curve), and Figure 11B shows
the biases. The individual differences were less in this
experiment than in the slant-discrimination experiment,
and hence there is no scaling of the thresholds for
the least and most sensitive participants. As can be
seen, human thresholds increase with noise contrast.
When the noise is highest (34% RMS), there is also
a small bias in two of the subjects to see the test
plane slightly farther than the reference plane (the
95% confidence interval of the average bias is 3.9 to
19.8 arc sec).

Similar to the slant experiment, the depth
discrimination thresholds of the optimal PM model
are better than those of the LPM and LFM models
(1.3 seconds of arc better on average). Thresholds
of LPM and LFM models are generally similar but
the performance of LPM is considerably better than
LFM in the low noise condition for 0.75 degrees and
1 degree patch widths (0.5 and 1.5 seconds of arc better,
respectively).

The maximum likelihood fits of the three models to
the data revealed similar results to the slant experiment.
Without the estimation noise parameter, the three

models do not fit the thresholds well (RMSE = around
30 seconds of arc, or 2.2 mm). When the estimation
noise parameter had a standard deviation of 5 to 7
seconds of arc (0.3–0.5 mm), all three observer models
fit the thresholds quite well (RMSE = approximately 1
second of arc or 0.07 mm).

Recall that in the depth experiment the slant of
the reference plane was zero, but the test plane was
slanted at 44 degrees. This was done so that the
range of disparity values was similar to those in
the main experiment, making it easier to compare
human efficiency for slant and depth discrimination.
The PM observer is approximately ideal for both
slant and depth discrimination. Thus, it is possible
to compare absolute efficiencies in the two tasks (no
internal noise in the model observers). The efficiency
scale factors for aligning the PM thresholds with each
participant’s thresholds in high noise (with reference
slant of 50 degrees for slant discrimination) are shown
in Figure 12A. We only considered the high-noise
condition because sampling effects, and machine
accuracy limits, made it difficult to generate accurate
predictions for depth discrimination at lower noise
levels. For two participants (P1 and P2), there is a
trend for human efficiency to be higher in the slant
discrimination experiment.

It is also possible to estimate the efficiency scale
factors for the LFM model. For all participants, the
efficiency is higher in the slant experiment, and the
confidence intervals do not overlap (Figure 12B).
Overall, humans appear to be more efficient (relative to
ideal) at estimating relative surface slant than relative
surface distance.

Figure 11. The results of the depth experiment. (A) Mean thresholds are shown with solid lines and individual thresholds are shown
with dotted lines. Ninety-five percent confidence intervals are shown as shaded regions (see Methods for details). (B) Mean biases
are shown with solid lines and individual’s biases are shown with dotted lines. Ninety-five confidence intervals are shown as shaded
regions (see Methods for details).
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Figure 12. The efficiency scale factors estimated from two different experiments. (A) Using the PM model, for three participants, scale
factors are estimated by maximizing the likelihood of the data of the highest noise condition either for the slant (50-degree reference
slant condition) or the depth experiment. The 68% bootstrapped confidence intervals are shown with error bars. (B) Using the LFM
model observer, for three participants, scale factors are estimated by maximizing the likelihood of the data of the highest noise
condition either for the slant (50-degree reference slant condition) or the depth experiment. The 68% bootstrapped confidence
intervals are shown with error bars.

Discussion

We derived the approximate binocular ideal observer
for discrimination of the 3D orientation and distance
of textured planar surfaces viewed in the presence of
additive white noise that is uncorrelated across the two
eyes. This PM observer first filters the left and right
images, based on the known frequency content of the
texture, to remove irrelevant frequency components
due to the white noise. Using projective geometry, the
PM observer then generates a predicted left image
from the right image (or vice versa) for each possible
3D orientation and distance of the test plane. The
estimated surface orientation and distance are the
values that make the most accurate prediction of the
left image (i.e. the smallest squared error, given the
prior). We also considered two suboptimal observers
that also pre-filter the left and right images. The LPM
observer uses the same fundamental computations as
the PM observer, but it makes multiple local estimates
of the 3D orientation and distance in local image
regions, and then combines those local estimates to
obtain a single estimate of the 3D orientation and
distance of the entire test plane. The LFM observer
uses projective geometry to estimate the distance of
local image regions under the assumption that the local
surface slant is zero. It then combines those estimates to
obtain an estimate of the 3D orientation and distance
of the test plane. Each of the three model observers has
two free parameters: an overall efficiency parameter

and a parameter representing a fixed level of internal
estimation noise. All the model observers assumed
standard camera geometry in cartesian coordinates, but
the predictions would be the same for other coordinate
systems and eye orientations, as long as they are
known.

In terms of absolute performance, the PM observer
performs substantially better than the LPM and
LFM observers, because it optimally combines all the
disparity information over the approximately 2 degrees
× 2 degrees test plane. The LPM observer performs
better than the LFM observer, especially for larger
patch sizes and slants, and it is also less affected by
patch size and surface slant (it is more robust) than the
LFM observer.

We compared the performance of these model
observers with human observers in a stereo
slant-discrimination experiment. Human thresholds
were measured as a function of the reference slant and
the noise contrast of separate samples of white noise
added to the left eye and right eye images. Human
thresholds decreased with the slant of the reference
plane and increased with the level of uncorrelated
noise. The pattern of thresholds was consistent across
the three human observers. In control experiments,
we found that the human thresholds were based on
stereo cues alone, and that there is a trend for humans
to be more efficient at slant discrimination than depth
discrimination. All three models were able to predict
the measured thresholds with approximately equal
quantitative accuracy.
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Limitations and extensions of model observers

An obvious omission from the model observers
is the intrinsic noise that occurs prior to binocular
interaction. As mentioned earlier, it has a similar effect
to the uncorrelated extrinsic noise added to the left
and right images. In addition, its effect on predictions
for the current experiments is similar to that of the
estimation noise and so, to keep the number of free
parameters down, it was not included. However, more
plausible models should include both early uncorrelated
noise and late estimation noise. We also note that the
existence of intrinsic uncorrelated noise implies that the
prefiltering step in the model observers is always useful
in real visual systems, even when there is no extrinsic
uncorrelated noise.

A limitation of the model observers is that they
assume eye pose is known exactly. As mentioned earlier,
this was done to simplify the implementation of all the
model observers. However, it is certain that eye pose
cannot be known exactly in the human visual system.
Eye pose appears to be estimated by a combination
of oculomotor cues (probably efference copy signals)
and image cues (e.g. see Backus et al., 1999). One way
to generalize the current models would be to assume
that the average eye pose is known, but the actual pose
randomly varies around that average. This vergence
and version noise would inject noise into the predicted
images (see Figure 4) and hence into the estimated slant
and distance. Alternatively, the visual system could have
knowledge of its own eye pose estimation noise and
accept matches within the uncertainty range determined
by the noise. The effect of eye-pose uncertainty would
apply to all the model observers, and hence, as long as
the eye-pose estimation noise is modest, the pattern of
thresholds and the relative performance of the model
observers should remain about the same.

All the model observers directly compute the absolute
slant and distance of the test surface and reference
surfaces. However, as noted earlier (see Methods),
nearly equivalent LPM and LFM observers could be
obtained by directly using the estimated location and
pattern disparities from LPM observer, or estimated
location disparities from LFM observer, to compute
the differences in disparity and disparity gradients
for test and reference planes, without ever estimating
absolute slants and distances. The performance of these
models would be more robust to eye-pose uncertainty.
Therefore, if the human visual system is performing the
slant discrimination task using disparity and disparity
gradient computations (Wardle & Gillam, 2016), then
it will also be relatively robust to eye-pose uncertainty.
If so, then our modeling assumption of known eye
pose has relatively little effect on the predictions for our
experiments.

Human performance varies depending on the
proximity of the test and reference surfaces in space

and time (Gillam, Flagg, & Finlay, 1984; van Ee, Banks,
& Backus, 1999). Specifically, humans are most precise
at computing differences in the slant and distance of
surfaces (which is why we used the stimuli illustrated
in Figure 2). What the current models do not predict
are changes in performance with increased separation
in space and time between the test and reference.
To make plausible predictions for such experiments
would require including other factors, such as memory
limitations, disparity contrast mechanisms, and reduced
spatial resolution in the periphery. The importance of
the proximity of the test and reference surfaces may
explain the surprising observation that humans appear
to be more efficient at slant discrimination than distance
discrimination (see Figure 12). In the slant task, the
depth information (relative to the reference plane) is
concentrated near the edges of the test plane; whereas,
for depth discrimination the relative depth information
is uniformly distributed across the test plane. If humans
are better able to integrate information near the
reference plane, then their efficiency (relative to the
model observers) should be higher in the slant task.

Solving the binocular correspondence problem

The three model observers solve the correspondence
problem in different ways. The PM observer finds the
distortion and translation that minimizes the difference
between the entire left and right test images, given
planar surfaces. The LPM observer finds, for each pixel
in one eye, the distortion and translation that minimizes
the difference between the patch surrounding that pixel
and one of the potential patches in the other eye, given
planar surfaces. The LFM observer finds, for each pixel
in one eye, the translation that minimizes the difference
between the patch surrounding that pixel and one of
the potential patches in the other eye.

The LFM and LPM observers are both biologically
plausible in that they involve local binocular
comparisons that could potentially be implemented
with binocular receptive fields. The LFM observer is
consistent with the hypothesis that early receptive fields
are explicitly coding binocular differences in horizontal
phase and location (location disparities), and that these
are integrated in later areas to yield receptive fields
sensitive to distance and surface orientation.

The LPM observer is consistent with the hypothesis
that early binocular receptive fields are explicitly
coding both the location and pattern disparities that
are produced by the backward and forward projection
of planar surfaces. For example, Figure 13 shows the
binocular receptive fields that would respond best to
a sinewave textured surface at 100 cm, with a slant
of 60 degrees, for five different tilts. To emphasize
the shape differences between left and right receptive
fields, the imaging plane was set to the same distance
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Figure 13. Hypothetical binocular receptive fields tuned to surface orientation and distance. (A) Examples: right eye receptive field
(RE), left eye receptive field (LE), difference between right and left eye receptive fields. (Note that the gray scale for differences is 40%
of the gray scale for the receptive fields.) (B) Energy of the difference between right and left receptive fields as a function of tilt, for
several different slants.

as the surface (100 cm). If the imaging plane was
instead set at plus or minus 17 mm (the location of the
retinas), then the left and right receptive fields would
also differ in location. When the surface tilt is 0 degrees
(see Figure 1B), the left and right receptive fields differ
primarily in preferred frequency. When the surface tilt
is 90 degrees the left and right receptive fields differ
primarily in preferred orientation. For other tilts, there
are frequency, orientation, and shear differences (see
also Figure A3). The third column shows the differences
between the left and right receptive fields. Figure 13B
shows how the total energy of the difference between
the left and right receptive fields varies with slant and
tilt. The energy tends to increase with slant and decrease
with tilt, although this latter effect is quite small for low
slants.

Although the LPM and the PM observers
demonstrate that pattern disparities provide substantial
additional information for slant discrimination and
estimation (see also, Jones & Malik, 1992; Devernay
& Faugeras, 1994; Super & Klarquist, 1997; Li &
Zucker, 2005; Ogale & Aloimonos, 2005; Vidal-Naquet
& Gepshtein, 2012), there remains uncertainty about
the extent to which pattern disparities are explicitly
encoded in the early visual system.

Single unit recordings in the primary visual cortex of
monkeys and cats have found populations of neurons
with binocular receptive fields that are consistent with
pattern disparity in orientation (Bridge & Cumming,
2001) and spatial frequency (Sanada & Ohzawa,
2006). However, modeling with generalized versions
of the disparity energy model originally introduced
by Ohzawa et al. (1990) showed that most of the
useful disparity information is captured by standard
location-disparity detectors (Bridge, Cumming, &
Parker, 2001; Nienborg, Bridge, Parker, & Cumming,
2004). Nonetheless, these models do not consider all of
the pattern disparities associated with planar surfaces
(see Figure 13) and do not quantify how much the
reliability of location-disparity estimates increases
when pattern disparities are estimated simultaneously
(see Figure 4). In addition, the possible benefits of
including pattern-disparity information may better
emerge in models of population decoding that pool
efficiently over all the relevant neurons and hence large
spatial areas (Bridge & Cumming, 2008; Greenwald &
Knill, 2009; Kato, Baba, Sasaki, & Ohzawa, 2016).

To be more concrete, consider a binocular neuron
having any common receptive field shape and location
in one of the eyes (e.g. a vertical Gabor receptive field).
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For any surface orientation, distance, and eye pose,
the corresponding receptive field in the other eye can
be determined by back-projecting that the receptive
field to the surface and then forward projecting to the
other eye. Most of the differences between the receptive
fields in the two eyes will be modest and described
to good approximation by differences in location,
spatial frequency, and orientation (e.g. see Figure 13).
Hence, the variation in left and right eye receptive
fields measured in V1 is likely to cover a substantial
fraction of the range in variation produced by typical
variations in surface orientation, distance, and eye
pose (keep in mind that there are thousands of V1
neurons covering each image location). If cortical
circuits combine these V1 responses efficiently (perhaps
together with efferent-copy signals), they would be
using the information captured by the LPM observer.
On the other hand, if cortical circuits simply average
(pool) the responses over all the V1 neurons at a
given location having a given preferred horizontal
disparity, then they would be using the information
captured by the LFM observer. This information
would be substantially poorer for V1 neurons having
membrane-potential receptive fields (receptive fields
prior to the spiking nonlinearity) larger than 0.5 degrees
(see Figure 8), which is true for some V1 neurons in the
fovea, many neurons in the parafovea, and probably
most neurons in the near periphery (Tsao, Freiwald,
Knutsen, Mandeville, & Tootell, 2003; Nienborg et
al., 2004; Palmer et al., 2012; Chen, Ko, Zemelman,
Seidemann, & Nauhaus, 2020).

Psychophysical studies have also not yet provided a
clear picture of the role of pattern disparities. Studies
that have focused on pattern disparities have revealed
that it is difficult to reject simple LFM type models
(Halpern et al., 1996; Hibbard & Langley, 1998; Heeley,
Scott-Brown, Reid, & Maitland, 2003; Greenwald
& Knill, 2009). Studies that have either reported
evidence for LFM-type computations (Banks et al.,
2004; Filippini & Banks, 2009; Allenmark & Read,
2011; Goutcher & Hibbard, 2014) or for LPM-type
computations (Hibbard et al., 2002), generally have
not directly compared the models. Thus, although the
LFM-type models are more parsimonious because of
their simplicity, there does not appear to be compelling
evidence either for or against the visual system’s use of
pattern disparities.

Finally, it is important to note that whereas the
PM model is approximately optimal for estimating the
slant and distance of planar textured surfaces (with
uncorrelated image noise), it is not optimal under
real-world conditions, where many surfaces (except
the ground plane) are non-planar and where there are
half occlusions (points with no corresponding point in
the other eye). More sophisticated computations are
required in natural 3D scenes (Scharstein & Szeliski,
2002; Hirschmuller & Scharstein, 2007). The human

visual system is likely to be much more sophisticated
than the models considered here. It may be possible
to generalize the Bayesian framework described in
the Methods to handle non-planar surfaces and half
occlusions.

There are additional research approaches that could
be useful for discriminating between the different
models described here. One approach is to vary stimulus
parameters, such as the size and spatial-frequency
content of the test patches and the range of test slants
and tilts, to find those parameter values where the
models make the biggest differences in the predicted
pattern of slant thresholds. Testing with these
parameter values should better differentiate between
the models. Another approach is to consider what
specific computations are optimal for natural images.
For example, Burge and Geisler (2014) used accuracy
maximization analysis (AMA) of natural images to
determine the set of vertically oriented binocular
receptive fields that are optimal as a population for
estimation of local disparity (Geisler, Najemnik, &
Ing, 2009; see also Burge & Jaini, 2017, and Jaini &
Burge, 2017). The receptive fields in this population
share many properties with receptive fields measured
in the visual cortex. It should be possible to perform a
similar analysis to determine the optimal population
of binocular receptive fields for estimating surface
slant or surface slant and distance of natural images.
This type of normative analysis could be used to guide
investigations of receptive field properties in the cortex
that may capitalize upon the pattern disparities that
result from binocularly viewed slanted surfaces.

Coordinate systems and the representation of
surface orientation

Throughout this paper, estimates of surface
orientation and distance were made in a head-centric
coordinate system, with gaze direction parallel to the
cyclopean axis. Keeping the same eye pose, the matching
computations could also be used to make estimates in
direction-centered coordinate systems. For example, the
direction-centered coordinate system for each image
location could be defined as one aligned with the axis
passing through that image location and the origin.
Direction-centered coordinate systems are illustrated
in Figure 3C. A plausible hypothesis is that local surface
orientation and distance are initially estimated in local
direction-centric coordinates. These estimates might
be used when the observer is tasked with reporting
local surface slants with respect to a direction (without
changing gaze). These local measurements might then
be mapped into head-centric coordinates, where they
are grouped into 3D surfaces. Importantly, the grouping
rules are often simpler in head-centric coordinates than
in direction-centric coordinates. For example, with



Journal of Vision (2022) 22(5):6, 1–26 Oluk et al. 21

the representation in Figure 3B, one can use simple
similarity grouping to group estimated local slants into
a 3D plane, but similarity grouping would not work
for the representation in Figure 3C. In addition, as
Backus et al. (1999) note, mapping into head-centric
and body-centric representations are important for
implementing motor behaviors.

Conclusion

Stereo slant discrimination performance was
measured for accurately rendered textured surfaces
designed so that performance is dominated by
binocular-disparity cues. We compared human
performance with model observers (PM and LPM)
that simultaneously estimate distance and surface
orientation without directly estimating disparities
and with a model observer (LFM) that first directly
estimates disparities and then combines those to
estimate distance and surface orientation. We found
that the pattern of human slant-discrimination
thresholds was predicted equally well by all three
models. However, even though the LFM model is
the simplest and most parsimonious, we find that the
LPM models perform substantially better at slant
discrimination; hence, there may have been evolutionary
pressure to incorporate similar computations into the
early visual system. We also mention additional research
approaches that may better differentiate between the
models.

Keywords: stereo slant discrimination, 3D surface
orientation, ideal observer, cross correlation
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Appendix

Projection of planar surfaces

Here, we derive the exact equations for mapping a
point in the right image to the corresponding point in
the left image given a planar surface at an intercept
distance of ζ , with a slant of s and a tilt of τ , for

the imaging geometry illustrated in Figure 3. The
equations are shown in Figure A2. These equations are
for arbitrary slant, tilt, and distance, but for the current
experiments the tilt was set to zero.

The planar matching (PM) is implemented by
applying these equations to all the points in an image
patch in the right eye for each possible intercept
distance, slant, and tilt of the planar surface. In other
words, the predicted image value (e.g. gray level) at the
predicted left image location (x̂L, ŷL) is the image value
at (xR,yR): ÎL(x̂L, ŷL|s, ζ ) = IR(xR, yR). The estimate
of distance and surface orientation are the values of
distance, slant, and tilt that give the most accurate
prediction of the left-eye image (smallest mean squared
error).

For the PM model the image patch is the whole
right image of the test plane. For local planar matching
(LPM) and local frontoparallel matching (LFM),
the right image patch is a smaller fixed-size image
patch. In addition, for the LPM and LFM models,
the equations are expressed in terms of distance z
rather than intercept distance ζ (see Figure 5). The
equations in Figure A2 can be expressed in terms of
distance by setting ζ = z − x tan s cos τ + y tan s sin τ .
Note that in the present experiment, where tilt is zero,

Figure A1. Psychometric functions from slant and depth discrimination experiments, for the three observers (S1, S2, and S3). The
smooth curves were fitted by maximum likelihood and were used to determine the thresholds and biases reported in Figures 6 and 11.
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Figure A2. Equations for projecting a point in the right image to a point in the left image given a planar surface at an intercept distance
of ζ having a slant of s and a tilt of τ . The distance of the image plane to the nodal point of each eye/camera is zf and the separation
between the nodal points is 2a. The predicted image value (e.g. gray level) at left image location x̂L, ŷL is the image value at xR,yR.

ζ = z − x tan s, and that for the LFM model ζ = z,
because of the assumption that s = 0.

The equations in Figure A2 are standard projective
geometry, but are derived here to provide compact
equations that are easy to apply. To derive the equations
in Figure A2, we first note that if the nodal point is at
the origin in 3D Euclidean space (as in Figure 3), then
the standard equations for perspective projection are

x′ = x
z f
z

(A1)

y′ = y
z f
z

(A2)

where zf is the distance from the nodal point to the
image plane, and (x′, y′) is the point in the image plane.
If the nodal point is shifted to the left by a distance of a
(left eye point in Figure 3), then the point in the image
plane (xL,yL) is given by

xL = (x + a)
z f
z

− a (A3)

yL = y
z f
z

(A4)

Equations A3 and A4 are the equations in the right
panel of Figure A2. If the nodal point is shifted to the
right, then the point in the image plane is given by

xR = (x − a)
z f
z

+ a (A5)

yR = y
z f
z

(A6)

The slant, tilt, and distance at a surface point (x, y, z)
are defined here in global Euclidean coordinates as the
slant, tilt, and intercept distance (s, τ , ζ ) of the plane
passing through that surface point (Figure 3), where the
slant, tilt, and distance are with respect to the cyclopean
axis. The intercept distance ζ is the intercept of the

plane with the cyclopean axis. The slant s is defined
as the magnitude of the angle (0–90 degrees) between
the surface normal and the cyclopean (or optic) axis,
and the tilt τ is defined as the direction (−180 degrees
to –180 degrees) around that axis in which distance is
changing most rapidly (the counter-clockwise angle of
the parallel projection of the surface normal vector;
see Figure 1). Using these definitions, the equation of
the plane is

z = x cos τ tan s + y sin τ tan s + ζ (A7)
Specifically, the textbook definition of the equation

of a plane is n · (x − xp) = 0, where n is the normal
vector at locationxζ = (0, 0, ζ ). The normal vector
is obtained by rotating the unit normal vector of the
frontoparallel plane, (0, 0, −1), around the vertical (y)
axis by angle s, and then rotating the resulting vector
around the distance (z) axis by angle τ . Substituting
the rotated normal vector into the equation for a plane
gives Equation A7.

To derive the equations for back projection, we first
rearrange Equations A5 and A6:

x = z
z f

(xR − a) + a (A8)

y = z
z f

yR (A9)

Substituting Equation A7 into Equation A8 we have

x = cos τ tan sx + sin τ tan sy + ζ

z f
(xR − a) + a (A10)

Subtracting a from both sides of Equation A8 and
then taking the ratio with Equation A9 we get

y = (x − a)
yR

(xR − a)
(A11)
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Figure A3. Image differences in Cartesian coordinates. (A). Viewing geometry. (B) A square image patch in the right eye view (red) and
the back projection of its boundary to the left eye (blue), in Cartesian coordinates centered on the cyclopean eye. For any planar
surface, a square region in one eye projects to a parallelogram in the other eye. (C) Stereo pair of surfaces and patches in each eye.
Fuse images to see a surface with a slant of 60 degrees and a tilt of 45 degrees (uncrossed pair: left and center, crossed pair: center
and right).

Substituting Equation A11 into Equation A10 gives

x =
ζ + x cos τ tan s + (x − a) yR

(xR−a) sin τ tan s
z f

(xR − a) + a (A12)

Simplifying this equation gives the expression for x
in Figure A2,

x = (xR − a) ζ − ayR sin τ tan s + az f
z f − (xR − a) cos τ tan s − yR sin τ tan s

(A13)

Next substitute Equation A7 into Equation A9

y = cos τ tan sx + sin τ tan sy + ζ

z f
yR (A14)

Rearranging Equation A11 gives

x = y
xR − a
yR

+ a (A15)

Substituting Equation A15 into Equation A14 and
simplifying gives the expression for y in Figure A2:

y = yRζ + yRa cos τ tan s
z f − (xR − a) cos τ tan s − yR sin τ tan s

(A16)

Finally, substituting Equations A13 and A16
into Equation A7 and simplifying gives

z =
(
xRζ + (

z f − ζ
)
a
)
cos τ tan s + yRzp sin τ tan s

z f − (xR − a) cos τ tan s − yR sin τ tan s
+ ζ (A17)

EquationsA13, A16, andA17 are the back-projection
equations in Figure A2.

Figure A3 illustrates the backward and forward
projections for a surface with a slant of 60 degrees and
a tilt of 45 degrees. Note that a square region in one
image always projects to a parallelogram in the other
image.


