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Abstract: Superpixel segmentation is one of the key image preprocessing steps in object recognition
and detection methods. However, the over-segmentation in the smoothly connected homogenous
region in an image is the key problem. That would produce redundant complex jagged textures.
In this paper, the density peak clustering will be used to reduce the redundant superpixels and
highlight the primary textures and contours of the salient objects. Firstly, the grid pixels are extracted
as feature points, and the density of each feature point will be defined. Secondly, the cluster centers
are extracted with the density peaks. Finally, all the feature points will be clustered by the density
peaks. The pixel blocks, which are obtained by the above steps, are superpixels. The method is
carried out in the BSDS500 dataset, and the experimental results show that the Boundary Recall
(BR) and Achievement Segmentation Accuracy (ASA) are 95.0% and 96.3%, respectively. In addition,
the proposed method has better performance in efficiency (30 fps). The comparison experiments
show that not only do the superpixel boundaries have good adhesion to the primary textures and
contours of the salient objects, but they can also effectively reduce the redundant superpixels in the
homogeneous region.

Keywords: superpixel segmentation; density clustering; image preprocessing; computer vision

1. Introduction

Superpixel segmentation is often used as an important preprocessing method for
image algorithms in different research fields, such as the image segmentation [1,2] and
object recognition [3,4]. The superpixel segmentation is used to improve the diagnostic
accuracy of medical images and the fruit and road recognition in agricultural automatic
systems. It can improve the accuracy and efficiency of computer vision algorithms. Since
the superpixel is used for image preprocessing by Ren [5], many well-known superpixel
segmentation methods have been proposed by scholars. Color-based clustering is the most
commonly used for superpixel segmentation, such as SLIC [6,7], LSC [8], ERS [9] and
SEEK [10]. The regular superpixels are segmented by the SLIC and LSC, and the irregular
superpixels are produced by the ERS and SEEK. Although the irregular superpixels make
the following image algorithms more easily, the boundary adherence is worse than the
ERS and SEEK. Their methods work well if the color gradient changes clearly between
the different scenes in an image. In addition, a large number of redundant superpixels are
produced in the smoothly connected region by those methods.

For improving the performance of the above methods, the DBSCAN [11,12] has been
optimized in the boundary adherence by irregular superpixels. The sizes of the irregular
superpixels in the smoothly connected region are larger by using the SEEDS [13] so that the
redundant superpixels are reduced. Even though the methods are optimized, the redundant
superpixels are abundant in superpixel images. Moreover, many useless boundaries, which
cannot describe the primary texture and contour features are extracted.

According to the superpixel boundary and shape, there are two main segmentation
results as Figure 1 shows. (1) The superpixel shapes are more regular and evenly distributed
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in Figure 1a–d [11], but the superpixel boundaries cannot describe the texture and contour
features well. (2) The boundary adherence in Figure 1e,f [9,13] are generally better than
Figure 1a–d, but the boundaries and shapes are complex and very irregular. In addition,
lots of redundant superpixels are produced by all of these methods.

Figure 1. The six typical superpixel segmentation results. (a) SLIC [6], (b) PB [14], (c) LSC [8],
(d) DBSCAN [11,12], (e) ERS [9], (f) SEEDS [13].

Currently, since the superpixel segmentation is used as a preprocessing step in image
processing, the classical and state-of-the-art superpixel methods focus primarily on how
to improve the boundaries adherence and less on computation. Therefore, the over-
segmentation and redundant superpixels in the smoothly connected region are often
ignored. As a result, the complex and useless secondary texture and contour features in
the image are extracted by superpixel boundaries. Those boundaries will increase the
complexity and difficulty of image processing, such as image segmentation and image
recognition.

This paper will focus on the superpixel segmentation whose superpixels can not only
reduce the superpixel redundancy in the smoothly connected region, but the complex and
useless background textures in an image can also be filtered so that the primary textures
and contours of the salient objects can be extracted better. In order to meet the above
requirements and successfully execute the described superpixel segmentation method, this
paper is organized as follows.

First of all, the image is preprocessed, and the grid feature points are extracted. On
this basis, the densities of all points are defined with color features in Section 2. Section 3
describes the superpixel segmentation method in detail. In Section 4, the superpixel
segmentation experiments are carried out with the Berkeley database BSDS500. The
effectiveness and superiority of the proposed method will be discussed in Section 5. Finally,
Section 6 concludes the study.

2. Image Preprocessing
2.1. The Feature Point and Color Feature Extraction

The color and brightness features are always different among the different scenes in
images. Generally, the contour and texture features can be extracted by the boundary lines
between two adjacent scenes or objects in an image. Therefore, the color and brightness
features can be used in the pixel clustering method. After that, the pixel blocks with
different shapes and sizes will be obtained. The boundaries of the pixel blocks are extracted
to use for superpixel segmentation.

Generally, the RGB color space is difficult to extract the brightness feature features;
therefore, the RGB color space will be converted into the Lab color space, which not only
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includes the brightness features, but also has a wide color gamut to improve the accuracy
of the color feature extraction. The conversion matrix of the RGB to Lab color space is
shown in the following Equations (1)–(3). X

Y
Z

 =

 0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

 R
G
B

 (1)


L = 116 f (Y/Yn)− 16
a = 500[ f (X/Xn)− f (Y/Yn)]
b = 200[ f (Y/Yn)− f (Z/Zn)]

(2)

f (t) =

{
t1/3

1
3 (

29
3 )

2t + 4
29

t > ( 6
29 )

3

t ≤ ( 6
29 )

3 (3)

The values of Xn, Yn and Zn are 0.9505, land 1.089, respectively. The image size is
320 × 240 (width × height) in this paper. The parameters R, G, B and L, a, b are the pixel
values in RGB and Lab color space, respectively.

In this paper, the pixels which meet the Formula (4) will be extracted as initial feature
points. The parameters h, w and r, c are the row and column coordinates of the feature
points and pixels in the image. R is the interval between any two adjacent feature points.{

h = Rr
w = Rc

r = 0, 1, 2, 3, · · · , 240/R
c = 0, 1, 2, 3, · · · , 320/R

(4)

The values of the color and brightness of the feature points can be computed with the
Formulas (5). The parameters L, a, and b are also the feature parameters of the points. The
color and brightness features will be used in the cluster.

L =

h+R/2
∑

i=h−R/2

w+R/2
∑

j=w−R/2
Li,j

R2 , a =

h+R/2
∑

i=h−R/2

w+R/2
∑

j=w−R/2
ai,j

R2 , b =

h+R/2
∑

i=h−R/2

w+R/2
∑

j=w−R/2
bi,j

R2 (5)

Li,j, ai,j and bi,j are the pixel values in the Lab color space, and i and j are the row and
column coordinates of the pixels, which is an R × R region around the feature points. In
fact, the Formulas (5) play the role of the image mean filtering, and the filter window is
R × R. The filtering can effectively smooth the image, reduce the complex and redundant
texture features and highlight the primary contour features. According to Figure 2a,c, the
spiculate margin of the leaves in the rectangular box and the shadows of the trunk in the
ellipse box are smoothed and filtered. The Lab color space image and the feature points
are shown in Figure 2b. The number of feature points is N = 320 × 240/R2. (R = 6 as an
example in this section).

Figure 2. Image preprocessing. (a) Original image, (b) Lab image and the grid feature points, (c) the
smoothed and filtered image.
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2.2. The Feature Point Density

The density-based clustering method is used in this paper [15]. The density schematic
diagram of each point is shown in Figure 3. The red center point is the point p whose
density will be calculated. The other red points in the K-neighborhood are the points whose
color and brightness features are similar to p. The density value of p is the sum of the red
feature points that in the K-neighborhood. Therefore, the greater the point density, the
more similar the color in its neighborhood.

Figure 3. The density schematic diagram of the point p.

The density ρ of the point p(h, w) is calculated by the Formulas (6) and (7). The
Formula (6) is used for extracting the feature points that the color and brightness features
are similar to p(h, w). The Formula (7) is used for extracting the feature points which are in
the K-neighborhood.

ρ = ∑√
(i−h)2+(j−w)2≤K

χ(
√
(Lij − Lhw)

2
+ (aij − ahw)

2 + (bij − bhw)
2
)

χ(x) =
{

0, x > ψ
1, x ≤ ψ

(6)

D =

√
(i− h)2 + (j− w)2 (7)

The parameters h and w, i and j are the coordinates of the center point p(h, w) and the
other red point p(i, j), respectively. The symbol ψ is the color threshold parameter. The
variable D describes the distance from the center point to any other feature point. Figure 3
shows that the number of the red feature points is 12, which means that the density of p is
12 and that ρ = 12.

3. Superpixel Segmentation with Density Peak-Based Clustering

In this section, there are two rules about the color and brightness features for the
superpixel segmentation method.

(1) The more similar the color and brightness features between two points, the more
similar the densities of them. In this case, the two feature points are easier to be segmented
into the same superpixel.

(2) If the color and brightness features are all different among the neighborhood points,
they will be segmented into different superpixels even if the densities of them are similar.
For example, as Figure 4a shows, the regions of the foliage, the sea and the beach have
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obvious differences in color and brightness features, so that the three regions would be
probability segmented into three superpixels, which are marked by 1©, 2© and 3©.

Figure 4. The probability distribution of the points. (a) The superpixel segmentation schematic
diagram. (b) The density peaks and the contour maps are used to describe the density distribution of
the other points.

There must be at least one feature point whose density is higher than the neighborhood
points; for example, the red points in Figure 4b are defined as density peaks in this paper.
The density peaks will be probability defined as the cluster center. According to the
densities, the other points could be distributed among the density peaks, and they can be
described as the contour maps. For example, pm is one of many other feature points, and if
the density of pm is close to p1 and the distance between them is also closed, the point pm
and p1 will be segmented in the same superpixel with high probability.

First of all, the densities of all the feature points must be calculated by the
Formulas (6) and (7), and the results are stored in a data set {ρm | 0 ≤ m ≤ N}, m is
the sequence number of the points and N is the total number of the feature points. Accord-
ing to the densities, all the points are sorted in descending order. {om | 0 ≤ m ≤ N} is the
result after rearrangement and om is the feature point. Dmn is the distance between any two
points om and on. Dmn can be calculated by the Formula (7).

In order to cluster the points, the membership grade between any two points must be
obtained. The membership grade parameter δm can be obtained by Formula (8).

δm =


min

m>0,n<m
{Dmn}

max{δn}
m=0,n>0

(8)

If m > 0 and n < m, δm is the minimum distance between om and on. Actually, δm means
the probability that om and on are in the same cluster or not. If m = 0, δ0 is the maximum of
all δ. The parameters δm and ρm are used to extract cluster centers. If δm and ρm both are
relatively large, it means that the point om would be a density peak and it will be defined
as the cluster center with great probability. If m = 0, o0 must be a cluster center.

To determine whether the point om is a cluster center or not, the δm and ρm should first
be normalized, and the values fall within the range of [0, 1]. The normalization formulas
are shown as follows.

ρ′m =
ρm − ρmin

ρmax − ρmin
, δ′m =

δm − δmin

δmax − δmin
(9)

P′ and δ′ are the normalized parameters, ρmax and ρmin are the maximum and mini-
mum values of ρ, δmax and δmax are the maximum and minimum values of δ. In order to
analyze how to extract the cluster center, Figure 2 is used as an example. The neighborhood
parameter K and the threshold parameter ψ are assigned firstly, with K = 1.3R and ψ = 13 as
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an example. Then the ρ′–δ′ coordinate system will show the distribution of all the feature
points in Figure 5.

Figure 5. The distribution of all the feature points in the ρ′–δ′ coordinate system.

It can be seen from Figure 5 that the larger the ρ′ and δ′ of the points are, the more
likely it is that the points are distributed in the upper right part of the coordinate system.
In other words, the points in the upper right part are the candidates for cluster centers. For
extracting the cluster centers from the points, the following two Equations (10) or (11) are
used to determine which ones are the cluster centers in this paper.

δ′ =
a
ρ′

(10)

λ = ρ′δ′ (11)

The Equation (10) is an inverse function and its function curve divides the points into
two parts, the upper right part and the lower left part. We take a = 0.005 as an example for
analysis in this section. The points ‘∆’ will be the cluster centers as shown in Figure 6 and
the set of the cluster centers is CM, and M is the total number of cluster centers. In this step,
the curve of the function can be changed by the parameter a, so that the different cluster
centers can be extracted to meet the requirement of the superpixel segmentation algorithm.
The method can extract the cluster centers well, but it is difficult to predict the number of
the cluster centers.

The parameter λ in Equation (11) is a comprehensive parameter of the ρ′ and δ′. The
greater the value of λ, the greater the probability that the points are the cluster centers. All
the points are shown in the m–λ coordinate system in Figure 7. The values of the m-axis
are the serial number of all the points. We take λ = 0.005, for example, and the points on
the upside of the function curve are the cluster centers.
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Figure 6. Extracting the cluster centers by inverse function. The triangle symbols are the center
points and the red dots are the other points.

Figure 7. Extracting the cluster centers by λ. The triangle symbols are the center points, and the red
dots are the other points.

Sometimes the number of the cluster centers must be obtained before superpixel
segmentation. For producing a specified number of cluster centers, the parameter λ will
be sorted in descending order λ0 > λ1 > λ2 > . . . > λm > . . . > λN−1 > λN. N is the total
number of the feature points, m is the serial number of the feature points. If the specified
number is M, the points whose λm are meet the condition {λm | 0 ≤ m ≤M} will be the
cluster centers, and the number of the cluster centers is M.

After obtaining the cluster centers, the other points om would be clustered to one of
them. According to the Formula (8), if δm = Dmn, it means that the points om and on would
be in the same cluster, and they will be expressed by om→on in this paper. According to
whether on is a cluster center or not, there are two cases about how to cluster the point om.

Case 1, if on is a cluster center, om will be a member of the cluster which include the on;
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Case 2, if on is not a clustered center, iterative and recurrence such as om→on, on→oh,
oh→oi, oi→oj, . . . , until the cluster center is found. In this case, it is easy to deduce that
om→oj, and if the point oj is a cluster center, the point om will be a member of the cluster in
which the oj is cluster center.

According to the above method, all the points om would be clustered, and the ensemble
of the clusters are represented by the set S. The key steps of the clustering method are
given as follows. Algorithm 1 [15] The key steps of the Density Peak-Based Clustering.

Algorithm 1. Density Peak-Based Clustering

Input: The set of the feature points On;
The set of the parameters δn;
The set of the parameters λn;
Output: Ensemble of clusters S;
1: Extracting the set of cluster centers from the feature points On with the help of the parameters
δn or λn.
The set of the cluster center is CM;
2: for each i∈[0, N] do
3: Iterative and recurrence formulas oi→oh, oh→oj, . . . , ok→oc,until the cluster
center oc is found;
4: oi→oc;
5: end for
6: for each i∈[0,M] do
7: for each j∈[0, N] do
8: if the point oj meet the condition oj→ci is true then
9: Si= Si∪oj;
10: end if
11: end for
12: end for
13: return S;

4. Superpixel Segmentation Experiment Results

The clusters in Section 3 are actually the pixel blocks, and they are used for superpixel
segmentation. The image in Figure 2a is used as an example for the superpixel segmentation
experiment. According to the method in Section 3, the initial value should be assigned to
the parameters R, K, ψ and a; for example, if R = 6, K = 1.3R, ψ = 13 and a = 0.005. The results
of the cluster are shown in Figure 8a with the color blocks. Actually, the blocks are the
superpixels. Figure 8b shows the boundaries of the superpixels, and the primary textures
and contours of the objects are drawn very well by the boundaries. In addition, the skyline,
the shoreline and the outline of the tree can be drawn with the red lines that are drawn
by concatenation of superpixel boundaries in Figure 8c. The image can be segmented into
four regions by the red lines representing the beach, the sea, the sky and the tree. Figure 8d
is a superpixel image, and it is clear that the image can not only draw the salient objects
well, such as the beach, the sea, the sky and the tree, but can also reduce the redundant
complex textures of the image, such as the spiculate margin of the leaves.

It is easy to conclude that the results of superpixel segmentation mainly depend on
these parameters R, K, ψ, a and λ. Generally, if there is a good segmentation result with a
set of parameter values such as K = 1.3R, ψ = 13, a = 0.005, λ = 0.005, the different superpixel
segmentation results can be obtained by changing the value of the parameter R without
other parameters changed.

In order to analyze the superpixel segmentation results with the proposed method,
the Berkeley database BSDS500 is used in this paper, and the sample images are resized
to 320 × 240. The experiments are performed when R = 4, 6, 8 and 10, respectively. The
superpixel segmentation results are shown in Figure 9. It can be seen from the segmentation
results that the smaller the R is, the better the boundaries adherence is, and the clearer the
textures and boundaries of the objects. It can be found that regardless of the value of R, the
superpixels can depict the salient objects every well, such as the eagle, starfish, flowers and
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people. (The method was tested on a computer with an Intel i5 @ 2.5 GHz processor with
4 GB RAM).

Figure 8. The results of the superpixel segmentation experiment. (a) The color blocks represent the
different superpixels, (b) the black lines show the superpixel boundaries, (c) The red segmentation
lines between the different salient regions, (d) The superpixel image.

The texture complexity of different images is often different, so that the number and
the size of superpixels are different from one image to another. As Figure 9a shows, the
textures and contours of the building, bird and branches are relatively simple, and there
are large smoothly connected homogenous regions, so that the satisfactory segmentation
results can be obtained with fewer and larger superpixels. However, in Figure 9b, more and
smaller superpixels must be segmented to extract the complex textures and contours of the
mountain, people, starfish and flowers. Experiments showed that small and larger value of
the parameter R can be taken in Figure 9a,b respectively. Therefore, the appropriate values
of the parameter R can be taken for producing satisfactory superpixels according to the
texture complexity. Furthermore, even if the value of the parameter R remains the same,
the numbers and the sizes of the superpixels are always different so that the segmentation
method can adapt to the different images. The segmentation results clearly show that the
method can not only reduce the redundant superpixels in smoothly connected homogenous
regions, but the textures and contours of the salient objects in the image can also be depicted
very well by the superpixel boundaries. In addition, the contours between different objects
in the image are extracted well by the boundaries. The boundary recalls of the salient
objects are shown in Table 1.

Table 1. Boundary Recall (%).

Object
R

10 8 6 4

building 69 82 88 92
eagle 73 82 87 93

mountain 71 81 89 94
people 68 72 80 91
starfish 77 87 89 96
flower 78 89 92 95
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Figure 9. The superpixel segmentation results. The segmentation results are obtained with the
different R. (a) The images which include the large smoothly connected homogenous regions are
segmented by fewer and larger superpixels. (b) The images which include the complex textures and
contours are segmented by more and smaller superpixels.
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It can be seen from Table 1 that the smaller value of the parameter R, the better
Boundary Recall, and that means the better boundary adherence. Otherwise, there is not
much difference in Boundary Recall in the superpixel segmentation in different images
with the same value of the parameter R. This means that the method could work well
whether the texture features are simple or complex in different images. Therefore, it is
further proved that the proposed method has good adjustability.

In the process of superpixel segmentation, the algorithm efficiency must be considered.
The relationship between the superpixel number M and the segmentation efficiency are
shown in Figure 10.

Figure 10. The superpixel segmentation time-consuming with different values of R.

Figure 10 shows that the efficiencies are determined with the parameters R = 4, 6, 8
and 10, respectively. Obviously, the larger the parameter values, the more efficient the
method. Although the superpixel numbers increase with the increase in texture complexity,
the efficiency is almost constant when the value of the parameter R remains unchanged.
Therefore, it can be concluded that the method efficiency mainly depends on the parameter
R, and it is almost independent of the number of superpixels. The segmentation results
in Figure 9 show that if the R = 8 and 10, the primary texture and contour features of the
salient objects in an image can be extracted well, and the average times are 13.8 ms and
33.2 ms, respectively. This means that the proposed method has good efficiency under the
condition that the segmentation results are satisfactory.

5. Discussion

According to the shape and size of the superpixels, the superpixel methods can be
divided into two cases. For example, the typical and well-known methods, such as the
Lattice, ERS, SLIC and LSC, could produce regular superpixels. The irregular superpixels
with sawtooth boundaries would be obtained by methods such as SEEDS, EneOpt1, quick
shift and ERS. The segmentation results of them [8,16] are shown in Figure 11a–h. The
number of the superpixels in the upper left and lower right parts in image are approximately
400 and 200, respectively. In order to obtain the similar segmentation results, we take R = 4
and 8 for segmentation, and the results of the proposed method are shown in Figure 11i.
The numbers of superpixels are M = 162 and M = 66 in the upper left and lower right parts.
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Figure 11. The segmentation results comparison of the different superpixel methods. (a) Lattice [17], (b) Ncuts [5],
(c) SLIC [6], (d) LSC [8], (e) SEEDS [13], (f) EneOpt1 [18], (g) quick shift [19], (h) ERS [9], (i) ours.

Generally, the primary textures and contours of the image are the features that we care
about in superpixel segmentation. Those are benefits to improve the accuracy of image
segmentation and object recognition. According to the comparison results, although the
more regular superpixels can be obtained in Figure 11a–d and they can help to reduce the
complexity of the image recognition methods, a large number of redundant superpixels
are produced in the smoothly connected homogenous regions. The texture and contour
features are extracted very well, and the boundaries have good adhesion in Figure 11e–h.
That will help for extracting the target objects in the image more accurately. However,
not only are most of the secondary textures extracted, which does not help with object
recognition, but the extremely irregular and redundant superpixels are also produced in
the smoothly connected homogenous regions. Normally, that will improve the complexity
and reduce the efficiency of the image recognition algorithm. Compared to Figure 11a–h,
the smoothly connected homogenous regions are segmented by fewer superpixels, and
the superpixels are sketched by fewer jagged boundaries in Figure 11i. In addition, the
primary textures and contours of the salient objects in the image can be extracted accurately
by the proposed method. In comparison with the other methods, the proposed method
can greatly reduce the redundant superpixels, and that could improve the efficiency of the
superpixel algorithm.

Moreover, with the decrease in R and the increase in the number of superpixels, the
superpixel boundaries will become smoother, and the boundary adherence will be better as
well. In order to analyze the effectiveness of the proposed method, the Boundary Recall (BR)
and Achievement Segmentation Accuracy (ASA) of ours and the state-of-the-art superpixel
segmentation methods are shown in Figure 12.
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Figure 12. (a,b) Boundary Recall and Achievement Segmentation Accuracy of the superpixel methods
on the BSDS500 dataset. The SEEDS, SLIC, ERS and LSC are examples of the classical methods.
CSGBA [20], ISF [21], RISF [22] and SNIC [23] are the examples of the state-of-the-art methods.

A comparison of each superpixel segmentation method is proposed in Figure 12. It is
clear that the BR and ASA of the proposed method have good results. Specifically, the BR
can achieve satisfactory results with a smaller number of superpixels (M = 300), and it is
more than 90%. That is better than most of the classical and the state-of-the-art superpixel
segmentation methods and it is 95.0% when M = 600. If the number of superpixels is too
small, the results of the ASA are inferior to other methods. However, as the number M
increases, the results of the ASA improve quickly. The ASA is 96.3% when M = 600, and it
is better than most of the methods.

It is well-known that the efficiency of a superpixel method is very important for real-
time image processing. The segmentation results in Figures 9 and 11 show that the primary
texture and contour features of the salient objects in the image can be extracted well by
the superpixels, in which the parameter R = 8. In addition, the superpixel boundaries
have good adhesion to the textures and contours. Therefore, the efficiency of the proposed
method would be analyzed by R = 8. To be clearer, the numeric values of the metrics are
listed when the number of superpixels M ≈ 400. The computational time and BR of the
segmentation methods are summarized, and they are shown in Table 2.

Table 2. The comparison of the efficiency and BR (M ≈ 400).

Methods Average Time per Image(s) Boundary Recall (%)

SEEDS 0.059 88.6
SLIC 0.087 86.1
ERS 0.798 92.0
LSC 0.255 93.2

CSGBA 0.146 93.0
ISF 0.151 88.5

RISF 0.082 89.4
SNIC 0.064 88.5
Ours 0.033 92.5

It can be seen from Table 2 that the efficiency of the proposed method is superior to
the classical and state-of-the-art methods. The speed of the superpixel segmentation is
nearly 30 fps, and it indicates that the method has better real-time performance. Moreover,
the BR is 92.5% with the same condition, and it is better than most of the classical and
state-of-the-art methods. This means that the proposed method has good comprehensive
performance both in efficiency and accuracy.
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6. Conclusions

The proposed superpixel segmentation method in this paper is based on the density
peak of the feature points. The shape and size of the superpixels depend on the density
values and their distribution in the image. The density values are larger in the smoothly
connected homogenous regions. Therefore, the larger size of superpixels would be pro-
duced and the redundant superpixels can be reduced. Moreover, the secondary complex
texture features would be effectively filtered and smoothed in the superpixel images. The
superpixel boundaries also have good adhesion to the primary textures and contours. That
allows the boundaries of the salient objects in an image to be described well, which would
be helpful for the following image process, such as object segmentation and image recog-
nition. On the premise of the satisfying results of superpixel segmentation, the efficiency
of our method is almost the best among the classical and state-of-the-art methods. In
conclusion, the proposed method has good comprehensive performance both in efficiency
and accuracy, especially the images which include the salient objects and lots of smoothly
connected homogenous regions.

In future work, the parameters a and λ will be researched to optimize the proposed
method so that the algorithm efficiency and accuracy can be improved with the small value
of parameter R.
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