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Abstract

Glycogen phosphorylase (GP) catalyzes the breakdown of glycogen and largely contributes to hepatic glucose production
making GP inhibition an attractive target to modulate glucose levels in diabetes. Hereby we present the metabolic effects of
a novel, potent, glucose-based GP inhibitor (KB228) tested in vitro and in vivo under normoglycemic and diabetic
conditions. KB228 administration enhanced glucose sensitivity in chow-fed and obese, diabetic mice that was a result of
higher hepatic glucose uptake. Besides improved glucose sensitivity, we have observed further unexpected metabolic
rearrangements. KB228 administration increased oxygen consumption that was probably due to the overexpression of
uncoupling protein-2 (UCP2) that was observed in animal and cellular models. Furthermore, KB228 treatment induced
mammalian target of rapamycin complex 2 (mTORC2) in mice. Our data demonstrate that glucose based GP inhibitors are
capable of reducing glucose levels in mice under normo and hyperglycemic conditions. Moreover, these GP inhibitors
induce accommodation in addition to GP inhibition - such as enhanced mitochondrial oxidation and mTORC2 signaling – to
cope with the glucose influx and increased glycogen deposition in the cells, however the molecular mechanism of
accommodation is unexplored.

Citation: Nagy L, Docsa T, Szántó M, Brunyánszki A, Hegedűs C, et al. (2013) Glycogen Phosphorylase Inhibitor N-(3,5-Dimethyl-Benzoyl)-N’-(b-D-
Glucopyranosyl)Urea Improves Glucose Tolerance under Normoglycemic and Diabetic Conditions and Rearranges Hepatic Metabolism. PLoS ONE 8(7): e69420.
doi:10.1371/journal.pone.0069420

Editor: Laszlo Buday, Hungarian Academy of Sciences, Hungary

Received April 16, 2013; Accepted June 10, 2013; Published July 25, 2013

Copyright: � 2013 Nagy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Innovation Office (Baross program Seahorse grant; TéT_09-2010-0023), OTKA CNK80709,
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Introduction

Glycogen content of tissues and cells depend on the concerted

regulation of glycogen synthesis by glycogen synthase (GS) and

glycogen breakdown by glycogen phosphorylase (GP) through an

intricate network of signal transduction pathways related to

hormonal signaling [1]. These signal transduction pathways,

converging on GS and GP, exert their regulatory activity through

the posttranslational modification of these enzymes to meet the

energy demands of the organism [2–4].

GP activity is crucial in fine tuning hepatic glycogen content

and hepatic glucose homeostasis [5,6]. Glycogen breakdown by

GP is associated with fasting responses that lead to enhanced

hepatic glucose production (HGP) [7] that is reduced by GP

inhibition. Moreover, GP inhibition enhances glycogen build-up

in skeletal muscle and liver enhancing glucose uptake that

contributes to glucose clearance from blood [8,9]. Inhibition of

HGP and induction of glucose uptake together reduce blood

glucose that makes GP a promising pharmaceutical target to

manage serum glucose levels.

GP is a homodimeric enzyme existing in a phosphorylated

(GPa) and an unphosphorylated form (GPb) [10]. Phosphorylase

kinase phosphorylates GPb turning it to GPa, the active form [10].

Effectors influence GP activity by switching between the tense (T,

less active) and relaxed (R, more active) states of both GPa and

GPb. There are several effector binding sites on GP: the active site,

the allosteric (AMP binding) site, the new allosteric (indole-

carboxamide binding) site, the inhibitor (purin binding) site and

the storage site. [11]. GP has three isoforms named after the tissues

where it is dominantly expressed: liver (pygl), brain (pygb) and

muscle (pygm). Most GP inhibitors (GPi-s) are unselective and

inhibit all isoforms [10,11].

It is important to note that glucose is considered as a

physiological regulator of GP [12]. However, glucose 6-phosphate

exerts a similar effect on GP as glucose, although glucose and

glucose 6-phosphate bind to different sites [13] and their binding
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converts GPa to the T conformation making it more prone to

dephosphorylation [13].

Research efforts have identified an ample number of structurally

different, potent GPi-s (reviewed in [7,14]). Genetic or pharma-

cological inhibition of GP activity ameliorates glucose tolerance

supporting the possible applicability of GP inhibition in the

management of glucose handling disorders in diabetes [8,9,15–

18]. Indeed, a GP inhibitor, CP-316819 (Ingliforib), in clinical

study was able to reduce glucagon-induced hyperglycemia [11].

Our research group has been involved in the design of glucose-

derived and other GPi-s [19,20]. In the current study we have

characterized the metabolic effects of a novel glucose-based GPi

N-(3,5-dimethyl-benzoyl)-N’-(b-D-glucopyranosyl)urea (KB228)
in control, and diabetic mice and in cellular models.

Materials and Methods

Chemicals
Unless otherwise stated, all chemicals were from Sigma-Aldrich

(St. Louis, MO, USA).

Glycogen phosphorylase inhibitors TH (D-glucopyranosylidene-

spiro-thiohydantoin) [9], NV50 (N-(b-D-glucopyranosyl)-N’-(4-

nitrobenzoyl) urea) [21] and NV76 (N-(b-D-glucopyranosyl)-N’-

(2-naphthoyl) urea) [14,22] were synthesized in the laboratory of

Dr. László Somsák and were described in the literature indicated.

Preparation of N-(3,5-dimethyl-benzoyl)-N’-(b-D-
glucopyranosyl)urea
Preparation of acyl-isocyanates was adapted from literature

[23]: Oxalylchloride (1.1 equivalent) was added to a suspension of

3,5-dimethyl-benzamide 2 [24] (200 mg, 1.341 mmol) in anhy-

drous 1,2-dichloroethane (15 mL) and the mixture was heated at

reflux temperature for 1 day. The volatiles were distilled off under

diminished pressure and toluene (265 mL) was evaporated from

the residue to remove the rest of oxalylchloride. The crude acyl-

isocyanate 3 obtained in this way was mixed with a solution of b-
D-glucopyranosylammonium carbamate [25] (1, 320 mg,

1.341 mmol, 1 equivalent) in anhydrous pyridine (45 mL) and

the mixture was stirred at room temperature for 4 days. Pyridine

was distilled off under diminished pressure and evaporation of

toluene (2 6 30 mL) removed traces of pyridine. The crude

product was purified by silica gel column chromatography

(CHCl3-MeOH, 7:1) to give the target compound 4.

Yield: 214 mg (45%), yellow syrup. Rf = 0.21 (CHCl3-MeOH,

7:1) [a]D +7.1 (c = 0.310, DMSO) 1H NMR (DMSO-d6,

360 MHz) d (ppm) 10.70 (s, 1H, NH), 9.09 (d, 1H, J=9.1 Hz,

NH), 7.59 (s, 2H, ArH), 7.26 (s, 1H, ArH), 5.25 (d, 1H, J=5.4 Hz,

OH), 5.03 (d, 1H, J=4.6 Hz, OH), 4.94 (d, 1H, J=4.9 Hz, OH),

4.81 (t, 1H, J=9.0, 9.0 Hz, H-1), 4.53 (pseudo t, 1H, J=9.2,

8.9 Hz, OH), 3.65 (dd, 1H, J=12.1, 2.3 Hz, H-6a), 3.42 (dd, 1H,

J=12.1, 3.9 Hz, H-6b), 3.25-3.00 (m, 4H, H-2, H-3, H-4, H-5),

2.32 (s, 6H, 2xCH3).
13C NMR (DMSO-d6, 90 MHz) d (ppm)

169.2 (NHCOAr), 156.3 (NHCONH), 133.9, 129.1, 126.7, 122.9

Table 1. Primers used in RT-qPCR reactions.

Gene Forward primer Reverse primer

b-actin Human 59-GACCCAGATCATGTTTGAGACC-39 59-CATCACGATGCCAGTGGTAC-39

Murine 59-TGGAGAGCACCAAGACAGACA-39 59-TGCCGGAGTCGACAATGAT-39

Cyclophylin Human 59-GTCTCCTTTGAGCTGTTTGCAGAC-39 59-CTTGCCACCAGTGCCATTATG-39

Murine 59-CAAGGTCATCCATGACAACTTTG-39 59GGCCATCCACAGTCTTCTGG-39

36B4 Human 59-CCATTGAAATCCTGAGTGATGTG-39 59-GTCGAACACCTGCTGGATGAC-39

Murine 59-AGATTCGGGATATGCTGTTGG-39 59-AAAGCCTGGAAGAAGGAGGTC-39

UCP2 Human 59-CTACAAGACCATTGCCCGGAG-39 59-ACAATGGCATTACGAGCAACA-39

Murine 59-TGGCAGGTAGCACCACAGG-39 59-CATCTGGTCTTGCAGCAACTCT-39

PYGL Human 59-GTGCCCCAAGAGGGTATATTAC-39 59-AAGAAGCAGGCAGCAAGTCTC-39

Murine 59-CCCCGTGCCTGGATATATGA-39 59-TGTTTCAGCCGCAACTCCTT-39

PYGM: Human 59-GGACCCCAAGAGGATCTACTACC-39 59-CCTCGTCACAGGCATTCTCTA-39

Murine 59-CCCAAGAGGATCTACTACCTGTC-39 59-ACTCATAGCGGATCCCATAGC-39

PYGB Human 59-AGCCATCTATCAGTTGGGGTTAG-39 59-TGCCAGCCATTGACAATCTTC-39

Murine 59-CACTTATCAGTTGGGGTTGGAC-39 59-GCCAGTCATCAGCTTCTTCAAC-39

doi:10.1371/journal.pone.0069420.t001

Figure 1. Synthesis of KB228. N-(3,5-dimethyl-benzoyl)-N’-(b-D-
glucopyranosyl)urea (KB228), a GP inhibitor was prepared as described
in the Materials and Methods section.
doi:10.1371/journal.pone.0069420.g001
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Figure 2. Characterization of the in vivo applicability of KB228. (A) C57/Bl6J male mice (n = 3/3, 3 months of age) were administered KB228,
or vehicle (physiological saline, 1% DMSO) i.p., then blood glucose levels were determined using an Accu-Check glucometer (Roche). (B-C) Chow-fed
C57/Bl6J male mice (n = 7/7, 6 months of age) were sacrificed 2 hours post treatment with KB228 (90 mg/kg) then (B) glycogen content and (C) the
expression the liver, brain and muscle isoforms of GP (pygl, pygb and pygm, respectively) were determined using RT-qPCR. (D-E) HFD-fed C57/Bl6J
male mice (n = 9/9, 6 months of age) were sacrificed 2 hours post treatment with KB228 (90 mg/kg) then (D) glycogen content and (E) the expression
of the indicated genes were measured by RT-qPCR. * indicate statistically significant difference between vehicle and KB228-treated groups at p,0.05.
doi:10.1371/journal.pone.0069420.g002

Figure 3. The impact of KB228 on in vivo glucose metabolism. (A-B) Chow-fed C57/Bl6J male mice (n = 7/7, 6 months of age) underwent
vehicle or KB228 treatment, then (A) oxygen consumption and (B) RQ were determined in indirect calorimetry chambers. (C) The same cohorts of
mice were subjected to an ipGTT test. (D) Chow-fed C57/Bl6J male mice (n = 4/4, 6 months of age) were subjected to a glucose uptake experiment as
described in Materials and Methods. (E-F) HFD-fed C57/Bl6J male mice (n = 9/9, 6 months of age) underwent vehicle, or KB228 treatment, then (E)
oxygen consumption and (F) RQ were determined in indirect calorimetry chambers. (G) The same cohorts of mice were subjected to an ipGTT test. *
and *** indicate statistically significant difference between vehicle and KB228-treated groups at p,0.05, or p,0.001, respectively.
doi:10.1371/journal.pone.0069420.g003
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(Ar), 82.1 (C-1), 78.9, 78.1, 75.1, 71.7 (C-2–C-5), 63.0 (C-6), 22.3

(CH3). Anal. Calcd for C16H22N2O7 (354.36): C, 54.23; H, 6.26;

N, 7.91; Found: C, 54.37; H, 6.15; N, 8.03.

Biochemical Measurements
GP kinetic studies were performed as described in [26].

Determination of glycogen was as in [9].

Animal Studies
All animal experiments were carried out according to the

national, EU and NIH ethical guidelines and were authorized by

the Institutional Animal Care and Use Committee at the

University of Debrecen (7/2010 DE MÁB). C57/Bl6J male mice

(Charles River, Wilmington, MA, USA) had ad libitum access to water

and chow (10 kcal% of fat) (SAFE, Augy, France) or hypercaloric

high-fat diet (HFD, 60 kcal% of fat) (Research Diets, Inc., New

Brunswick, NJ, USA), and were kept in a 12 hr dark/light cycle

(light 7 a.m. –7 p.m., night 7 p.m. –7 a.m.). All measurements took

place 2 hours after injecting 90 mg/kg KB228 in a single

intraperitoneal (i.p.) bolus unless otherwise stated. Intraperitoneal

glucose tolerance test (ipGTT) and intraperitoneal insulin toler-

ance test (ipITT) was described in [27].

Indirect Calorimetry
Indirect calorimetry experiments were performed in a CLAMS

system (Columbus Instruments, Columbus, OH, USA). Mice were

habituated to the new environment of the cages for 24 hours.

Then at 8 a.m. mice received a bolus i.p. injection of KB228

(90 mg/kg) or vehicle then were returned to the measurement

cages and for the following six hours oxygen consumption and

carbon dioxide release was recorded.

Glucose Uptake Experiments
In glucose uptake experiments mice were injected with

120 mCi/kg 14C-2-deoxyglucose and 20 U/kg insulin through

the jugular vein under halothane anaesthesia. The incision above

the vein was closed with a suture. Blood glucose levels were

monitored at the time of the suture, 15 and 30 minutes post

intervention. Mice were sacrificed by cervical dislocation 30

minutes post intervention and the indicated organs were removed.

Carefully weighed pieces of these tissues were solubilised in 0.5 ml

Figure 4. Metabolic effects of KB228 treatment in HepG2 cells. (A–C) In vehicle or KB228-treated HepG2 cells (n = 3/3) under normoglycemic
conditions (A) the expression of GP isoforms, (B) glycogen content and (C) cellular oxygen consumption (OCR) were determined (n = 47/47). (D–F) In
vehicle or KB228-treated HepG2 cells (n = 3/3) under hyperglycemic conditions (D) the expression of GP isoforms, (E) glycogen content and (F) cellular
oxygen consumption (OCR) were determined (n = 47/47). (G–H) In vehicle, or KB228-treated HepG2 cells (n = 4/4) under normoglycemic and
hyperglycemic conditions UCP2 (G) mRNA and (H) protein levels were determined by RT-qPCR and Western blotting, respectively. Error is given as SD
throughout the figure. * and *** indicate statistically significant difference between vehicle and KB228-treated groups at p,0.05, or p,0.001,
respectively.
doi:10.1371/journal.pone.0069420.g004
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1 M NaOH at 70uC for 60 minutes. Lysates were mixed with

Aqualight HIBEX (Personal Life Sciences) scintillation liquid and

were measured in a Wallac scintillation counter (Perkin Elmer,

Waltham, MA, USA).

Cell Culture
HepG2 human hepatocarcinoma cells and C2C12 myoblasts

were obtained from ATCC (Manassas, VA, USA) and were

cultured in DMEM, 10% FCS, 1 g/L or 4.5 g/L glucose, as

indicated. C2C12 cells were differentiated in DMEM, 2% horse

serum 1 g/L glucose for 2 days as described in [27,28].

Cellular Oximetry
Oxygen consumption rate (OCR) of HepG2 cells were measured

using an XF96 oxymeter (Seahorse Biosciences, North Billerica,

MA, USA) similarly to [29]. Briefly, HepG2 cells were seeded in

96-well assay plates. After recording the baseline OCR cells

received a single bolus dose of 3 mM KB228 or other GPi-s, as

indicated. Then, OCR was recorded every hour to follow the

effects of GPi-s. Final reading took place at 8 hours post-treatment.

OCR was normalized to protein content and normalized readings

were displayed.

cDNA Preparation, qPCR
Total RNA preparation, reverse transcription, and RT-qPCR

were performed as in [30]. Expression was normalized to the

geometric mean of three control genes (b-actin, cyclophylin,

36B4). Primers are summarized in Table 1.

Protein Extraction and Western Blotting
Western blotting experiments were performed as described in

[28]. Blots were probed with the following antibodies: UCP2

(Abcam, Cambridge, UK, 1:1000), Akt-2 (Cell Signalling, Danvers,

MA, USA, 1:1000), phospho-Akt-2 (473Ser) (Cell Signaling, 1:2000),

GSK3b (Sigma-Aldrich, 1:2000), phospho-GSK3b (9/21Ser) (Cell

Signaling, 1:1000) and actin (Sigma-Aldrich, 1:10000).

Figure 5. Other GPi-s also induce UCP2 expression in HepG2 cells. (A) Three GPi-s TH, NV50 and NV76 were tested on HepG2 cells. (B–C)
HepG2 cells (n = 3) kept under normoglycemic conditions were treated with the inhibitors at the indicated concentrations for 8 hours, then (B)
glycogen content and (C) UCP-2 expression was determined as described in Materials and Methods. Error is given as SD throughout the figure. * and
*** indicate statistically significant difference between vehicle and GPi-treated groups at p,0.05, or p,0.001, respectively. VEH – vehicle, other
abbreviations are in the text.
doi:10.1371/journal.pone.0069420.g005
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Statistical Analysis
Significance was determined using unpaired t-test for unequal

sized samples where p,0.05 was considered as significant. Error

bars represent SEM unless stated otherwise.

Results

Preparation of N-(3,5-dimethyl-benzoyl)-N’-(b-D-
glucopyranosyl)urea (KB228)
The glycogen phosphorylase inhibitor KB228 (N-(3,5-dimethyl-

benzoyl)-N’-(b-D-glucopyranosyl)urea 4) was prepared according

to a previously published procedure [31] as shown in Fig. 1.: by

treatment with oxalylchloride, 3,5-dimethyl-benzamide (2) was

transformed into the corresponding acyl-isocyanate 3 which was

reacted with b-D-glucopyranosylammonium carbamate (1) to

yield the target compound 4.

Biochemical and Physiological Characterization of KB228
KB228 displayed mixed type inhibition on purified rabbit

muscle glycogen phosphorylase and the Ki of the inhibitor was

calculated to be 0.9360.05 mM. Next, we set out to find an

appropriate dose and administration of KB228 for in vivo studies.

KB228 was administered to C57/Bl6J mice as a single i.p.

injection in a 90 mg/kg dose (lower doses were ineffective – data

not shown). KB228 treatment reduced blood glucose levels 30

Figure 6. UCP2 induction by KB228. Chow-fed (n = 7/7, 6 months of age) and HFD-fed (n = 9/9, 6 months of age) C57/Bl6J male mice underwent
vehicle or KB228 treatment. 2 hours post-treatment livers and gastrocnemius muscles were removed and homogenized. (A, B) In liver homogenates
from chow-fed (A) or HFD-fed (B) mice UCP2 mRNA and protein levels were assayed in RT-qPCR reactions and Western blotting. (C, D) In skeletal
muscle homogenates from chow-fed (C) or HFD-fed (D) mice UCP2 mRNA levels were measured in RT-qPCR reactions. (E) Differentiated C2C12
myoblasts were treated with 3 mM of KB228 for 8 hours then UCP2 expression was determined in RT-qPCR reactions. Error is given as SD on panel E. *
and *** indicate statistically significant difference between vehicle and GPi-treated groups at p,0.05, or p,0.001, respectively.
doi:10.1371/journal.pone.0069420.g006

Figure 7. KB228 induced mTORC2 in mice. Chow-fed (n = 7/7, 6
months of age) and HFD-fed (n = 9/9, 6 months of age) C57/Bl6J male
mice underwent vehicle or KB228 treatment (90 mg/kg). 2 hours post-
treatment livers were removed and homogenized. From liver homog-
enates of chow-fed (A) and HFD-fed (B) mice Akt and phospho-Akt
(473Ser) levels were determined by Western blotting.
doi:10.1371/journal.pone.0069420.g007
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minutes post treatment and the reduction was maintained for 6

hours (Fig. 2A) that coincided with an increment in hepatic

glycogen content (Fig. 2B) without change in the expression of GP

isoforms (Fig. 2C) suggesting that KB228 treatment was effective.

We induced glucose intolerance and hampered insulin sensitivity

(tested in ipGTT and ipITT, data not shown) by HFD feeding (3

months feeding). Significant increase in hepatic glycogen content

confirmed the efficiency of GP inhibition (Fig. 2D). In that case we

observed the induction of brain isotype GP (pygb), while other

isoforms of GP did not change (Fig. 2E). The data validated the

applicability of KB228 under normal and diabetic conditions in

mice.

Effect of KB228 on Energy Balance
Given the long lasting effect of KB228, we performed indirect

calorimetry experiments on C57/Bl6J mice that were on chow diet

or HFD. Surprisingly, KB228 treatment enhanced oxygen

consumption in chow-fed mice (Fig. 3A) suggesting an increased

oxidative metabolism; and this result coincided with the higher

respiratory quotient (RQ) found in chow-fed mice (Fig. 3B)

indicative of higher glucose oxidation rates. In line with these data,

KB228-treated mice displayed better glucose tolerance in ipGTT

assays (Fig. 3C). Glucose uptake assays suggested that the main

organ responsible for glucose excursion is the liver (Fig. 3D).

KB228 treatment in HFD-fed animals had similar effects to chow-

fed animals in terms of oxygen consumption and glucose tolerance

(Fig. 3E–G). However, the improvement of their metabolic

properties was less pronounced as compared to the chow-fed

animals. There was only a slight increase in RQ on HFD instead

of the significant enhancement on chow, furthermore ipGTT

showed a weaker improvement (Fig. 3E–G), that was in line with

the lower potency of KB228 to inhibit GP in hyperglycemic mice.

KB228 Treatment Induces UCP2 Expression and mTORC2
Activity
Our in vivo data suggested metabolic rearrangements in liver;

therefore, we explored the in vitro metabolic effects of KB228 on

HepG2 cells under normoglycemic (5.5 mM glucose in the

medium) and hyperglycemic conditions (25 mM glucose in the

medium). The expression of GP isoforms were unaltered both

under normo and hyperglycemia (Fig. 4A, D) and KB228

treatment induced glycogen build-up (Fig. 4B, E) suggesting

effective GP inhibition in both conditions. The administration of

KB228 to HepG2 cells enhanced mitochondrial oxidation under

normoglycemia (Fig. 4C). Treatments under hyperglycemia

exerted negligible effects on mitochondrial oxidation (Fig. 4F).

In RT-qPCR reactions we have observed that the expression of

uncoupling protein-2 (UCP2) was enhanced upon KB228

treatment in HepG2 cells. UCP2 mRNA and protein levels were

induced by KB228 in a time-dependent manner (Fig. 4G–H).

Induction of UCP2 expression and protein levels were not as

pronounced in hyperglycemic conditions as in normoglycemia

(Fig. 4G–H). UCP2 is a likely candidate to explain enhanced

catabolism upon KB228 treatment.

We tested other potent GPi-s (TH, Ki = 5.1 mM [9], NV50,

Ki = 3 mM [21] and NV76, Ki = 0.47 mM [14,22]) (Fig. 5A) on

HepG2 cells cultured under normoglycemic conditions. These

GPi-s efficiently inhibited GP as demonstrated by increases in

cellular glycogen content (Fig. 5B). Furthermore, the treatment of

cells with these GPi-s led to a ,2 fold induction of UCP2

expression (Fig. 5C) similarly to KB228. These data demonstrate

that the induction of UCP2 is not limited to KB228 only but can

be elicited by other inhibitors too. Furthermore, potency of the

drugs to induce UCP-2 expression correlated with their respective

Ki’s.

Similarly to our findings in cellular models, KB228 induced

UCP2 mRNA and protein content in the liver of chow and HFD-

fed (diabetic) mice (Fig. 6A, B). However, the induction of UCP2

protein content was reduced in the diabetic mice when compared

to the chow-fed control group. We assessed the expression of

UCP2 in skeletal muscle samples. Although we did not detect

changes in UCP2 expression in chow-fed mice (Fig. 6C), we have

observed 2-fold induction in UCP2 mRNA levels in HFD-fed mice

(Fig. 6D). Interestingly in C2C12 myoblasts a much larger, 6-fold

enhancement of UCP2 expression was observed (Fig. 6E).

To assess further metabolic rearrangements triggered by

KB228, we examined the activity of certain protein kinases

involved in energy homeostasis, such as mTORC2 (assessed by

detecting phosphorylation of Akt2 on 473Ser) and Akt2 (assessed by

detecting phosphorylation of GSK-3b on 9/21Ser) in mice. While

we failed to detect changes in the phosphorylation of GSK-3b
(data not shown), Akt2 phosphorylation on 473Ser was enhanced

upon KB228 treatment in control and diabetic mice despite lower

Akt2 protein content (Fig. 7A, B) highlighting marked activation of

mTORC2.

Discussion

In the present study we characterized the metabolic effects of a

novel, potent GPi, KB228. As expected from previous studies with

other GPi-s [8,9,15–18,32], KB228 reduced serum glucose levels

and increased hepatic glycogen content under both normoglyce-

mic and insulin resistant, hyperglycemic conditions. Surprisingly,

glucose clearance was primarily attributed to the liver. Prior

studies have suggested the involvement of skeletal muscle in GPi-

induced glucose clearance [8], however upon KB228 treatment we

did not detect increased glucose uptake in skeletal muscle,

suggesting that KB228 action was rather restricted to the liver.

However, it must be noted that we have observed the induction of

UCP2 in murine gastrocnemius muscle and C2C12 cells despite

the lack of enhanced glucose uptake. Our data point to the

involvement of skeletal muscle in the glucose oxidation providing a

likely explanation for the phenotype observed by Baker and co-

workers [8].

The potency of KB228 to reduce glucose levels and to influence

downstream molecular events was reduced under hyperglycemic

conditions. GP effectors act through several binding sites on the

enzyme [33,34]. KB228 displayed a mixed type inhibition

suggesting the concurrent binding of the inhibitor to multiple

sites, among them probably to the catalytic site. It is likely that the

glucose moiety of KB228 competes with glucose for binding to the

catalytic center of GP, therefore high glucose levels may reduce

KB228 affinity to GP. Other glucose-based GPi-s were described

to behave similarly under high glucose concentrations [9].

When we continued to uncover the molecular rearrangements

and cellular effects induced by KB228 we found two parallel

events that help the metabolic accommodation of cells to GPi

treatment: induction of UCP2 expression and mTORC2 activity.

UCP2 is a mitochondrial inner membrane protein that uncouples

mitochondrial proton gradient from ATP production [35]. Higher

level of uncoupling may induce the flux of the electron transport

chain [36] therefore induction of UCP2 expression explains higher

oxygen consumption. What could be the benefit from the

induction of UCP2 expression? Excess glucose influx has been

shown to produce hydroxyl radicals of mitochondrial origin due to

the stalling of the mitochondrial electron transport chain [37].

UCP2 is capable of releasing that blockade therefore its induction

Glycogen Phosphorylase Impacts on UCP2 and mTORC2
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is considered to protect against oxidative stress [38,39]. It is

presumable that UCP2 activation by KB228 treatment may have

the same rationale, whereby UCP2 neutralize the excess glucose

influx-induced mitochondrial free radical production analogously

to the situation of enhanced hepatic fatty acid accumulation and

catabolism [40,41]. Furthermore, it is possible that UCP2

expression might have contributed to the glucose lowering effect

of KB228 through enhancing energy expenditure in liver. In fact,

long term GPi application was reported to have adverse effects

characterized by hepatic lipid and glycogen deposition [42]. UCP2

overexpression, however may have beneficial effects over these

adverse effects that could be exploited to counteract hepatic lipid

and glycogen accumulation upon long term GPi treatment.

mTOR, which was also found to be induced by KB228

treatment, is a conserved Ser/Thr protein kinase functioning as a

master regulator of metabolism existing in two distinct complexes

called complex 1 (mTORC1) and complex 2 (mTORC2) [43].

The defining component of mTORC2 is Rictor (rapamycin-

insensitive companion of mTOR) that may serve to recruit

substrates to mTORC2. Little is known to date on the upstream

inputs and functions of mTORC2, however it seems that

mTORC2 is insensitive to nutrient levels, but it is activated in

response to insulin and growth factor receptor activation [44]. Yet

two targets of mTORC2 have been identified, Akt2 and SGK

[44]. 473Ser phosphorylation of Akt2 seems to be an mTORC2

specific site. Phosphorylation of 473Ser Akt2 leads to a restricted-

type activation of Akt2, whereby Akt2 can phosphorylate only a

limited set of its downstream targets (such as FOXO1 and

FOXO3) in contrast to phosphorylation and activation by

mTORC1 [45]. In liver, mTORC2 activation induces nutrient

storage (glycogen and fatty acid synthesis) and glycolysis [46,47].

Therefore, mTORC2 activation may contribute to glycogen

synthesis. Moreover, mTORC2 activity has been implicated in the

hormonal rearrangement, termed hepatic satiety [47], a puzzling

effect that could be investigated in relation to GP activity in the

future.

The molecular events through which KB228 treatment leads to

mTORC2 activation is unknown, but in any case, it is intriguing.

That process can be termed retrograde signaling, as the inhibition

of GP, an enzyme lying downstream of Akt2, in fact, leads to the

activation of mTORC2 or alterations in insulin signaling, both

lying upstream of Akt2. However, it cannot be excluded that

simply glucose influx rearranges mTOR signaling, whereby cells

sense glucose plenitude and turn towards storage that is glycogen

build-up.

In summary, our data highlight that GP inhibition by KB228

treatment exerts more effects than a simple inhibition of catalytic

activity. Our data show that glycogen metabolism interacts with

mTORC2 and mitochondrial signaling. Recent research have

shown that appropriate glycogen catabolism is a vital part of

cellular glucose metabolism that is indispensable in sustaining cell

cycle [48,49] or preventing cellular senescence [49]. Taken

together with the data presented hereby strongly suggests that

GP might be involved in a complex metabolic regulatory network

that could be exploited in the management of diabetes, metabolic

diseases or anti-Warburg strategies.
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