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Simple Summary: Arbovirus-transmitting mosquitoes pose an omnipresent threat. Therefore, in-
sights into the underlying mechanisms of (i) mosquito behavior, (ii) species-specific behavioral traits,
and (iii) behavioral changes of arbovirus-infected mosquitoes are of great interest in vector research
and disease pathogenesis. Consequently, tools to enable immunohistochemical investigations of the
nervous system of mosquitoes are required to further elucidate the peculiarities of neuroanatomy and
neurotransmission across the spectrum of mosquito species. Accordingly, the present study aimed to
provide an immunohistochemical characterization of the nervous tissue of the widespread vector
Culex pipiens biotype molestus in direct comparison with the model organism Drosophila melanogaster.
Comparative immunohistochemical assessment of selected antisera presented immunomarkers for
the entire nervous tissue, for the neuropilar meshwork of axons, dendrites and synapses, and for
specialized neurons and/or glial cells.

Abstract: Arthropod-borne diseases represent one of the greatest infection-related threats as a result
of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral
changes whose underlying mechanisms are still largely unknown, but might help to develop control
strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about
neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses
on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus
in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmit-
ters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin,
tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and
Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar
staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in
both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel mark-
ers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine,
choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to
that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the
nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with
arboviruses in the course of vector research.

Keywords: Culex pipiens biotype molestus; Drosophila melanogaster; immunohistochemistry;
invertebrate; nervous system; neurotransmitter
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1. Introduction

Arthropod-borne diseases pose an increasing threat for many species including mam-
mals and birds [1,2] since globalization, urbanization [2,3] and climate change [4,5] result
in an enlarged vector population size and habitat [2,6]. Furthermore, a transmission of
pathogens to susceptible native insect populations may occur [7,8]. Emerging arboviral
diseases in Europe include Zika [9], chikungunya [10], dengue [11], Rift Valley fever [12],
Usutu [13], and West Nile [14]. More than 100 arboviruses are currently circulating world-
wide, capable of causing disease in mammals [15]. Similarly, a high number of insect species
may act as vectors including approximately 49 mosquito species in Germany alone [16].

Culex pipiens belongs to the family Culicidae of the order Diptera. This mosquito, also
known as the northern house mosquito, is native to temperate Europe and Asia, but has
spread to temperate zones worldwide [17]. In Germany, Culex pipiens belongs to one of
the most abundant mosquitoes [18]. These mosquitoes are known vectors for a variety of
pathogens, such as Rift Valley fever virus [19], West Nile virus [20], and Usutu virus [21],
which are harmful for animals and humans [22].

Although arboviruses replicate in both host and vector, no apparent detrimental ef-
fects are observed in the latter [23,24]. However, in addition to infection of the nervous
system [23,25–28], there is evidence that arboviruses alter vector behavior [29]. Arbovirus-
infected mosquitoes have repeatedly shown behavioral changes, including altered lo-
comotor activity, host-seeking or feeding behavior [23,24,30–33]. These factors indicate
virus-induced changes in the nervous system of vectors and/or an influence on neurotrans-
mitter synthesis, degradation, and distribution [23,24,30–32]. However, the underlying
mechanisms of infection-related behavioral changes are still largely unknown [31].

One factor contributing to the lack of knowledge represents limited information
about the neuroanatomy and neurotransmission of many mosquito species, irrespective of
extensive efforts to elucidate the structural and functional organization of their nervous
systems [34–41]. In fact, most studies focus on Aedes and Anopheles species, although
cross-species studies are highly important for understanding the underlying mechanisms
of species-specific behavioral traits [40,42].

Therefore, the aim of the present study was an immunohistochemical characterization
of the nervous system of Culex pipiens biotype molestus, including the distribution of neuro-
transmitters and neurotransmitter-related enzymes, as a basis for future investigations in
vector research. Results obtained were compared to those of Drosophila melanogaster as a
widely studied model organism [43]. The investigation includes markers for (1) nervous tis-
sue such as bruchpilot, embryonic lethal visual system (elav), futsch, gephyrin, horseradish
peroxidase, phosphosynapsin and reversed polarity (repo), (2) the neurotransmitters acetyl-
choline, γ-aminobutyric acid and serotonin, and (3) the neurotransmitter-related enzymes
choline acetyltransferase, glutamine synthetase and tyrosine-hydroxylase.

2. Materials and Methods
2.1. Animal Samples and Tissue Processing

Adult female individuals of a laboratory-established Culex pipiens biotype molestus
line (Culex pipiens; courtesy of Department of Arbovirology, Bernhard Nocht Institute for
Tropical Medicine, Hamburg, Germany) and a laboratory strain of Drosophila melanogaster
(courtesy of Jean-Luc Imler, Institut de Biologie Moléculaire et Cellulaire; Université Luis
Pasteur, Strasbourg, France) were maintained at the Institute for Parasitology and the
Research Center for Emerging Infections and Zoonoses, University for Veterinary Medicine,
Hannover. For histological assessment, insects were anesthetized with carbon dioxide
and then fixed in 10% neutrally buffered formalin for 24 h. Subsequently, specimens were
embedded in paraffin wax to produce 2–4 µm thick sections in a transverse plane.

2.2. Selection of Antibodies and Multiple Sequence Alignment

Many of the antibodies used in the present study were originally developed for
Drosophila melanogaster or mammalians and were in part validated by Western blot analysis.
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Western blot analyses were available in the literature for bruchpilot [44,45], elav [46,47],
futsch [48], repo [49,50] and choline acetyltransferase [51]. To enable prediction of anti-
body reactivity, multiple protein sequence alignments were performed using the Clustal
Omega program (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 16 December
2021) [52], including sequences for Drosophila melanogaster and different mosquito species
if available. Chosen protein sequences included bruchpilot, elav, futsch, gephyrin and
phosphosynapsin as well as the neurotransmitter-related enzymes choline acetyltransferase,
glutamine synthetase and tyrosine-hydroxylase. The protein repo was excluded from this
alignment as no equivalent protein was available for mosquitoes. The neurotransmitters
acetylcholine, γ-aminobutyric acid (GABA), and serotonin, as well as the α1,3-linked fucose,
which is targeted by anti-horseradish peroxidase, were not included, since they are highly
conserved non-protein molecules. An overview of antibodies, including epitope, clonality,
host species, dilution, epitope retrieval, and secondary antibody are listed in Table 1.

2.3. Histochemistry and Immunohistochemistry

Morphological characterization of head ganglia was performed in Culex pipiens and
Drosophila melanogaster after determination of the sectional plane using routine hema-
toxylin and eosin-stained slides. Immunohistochemistry was performed as previously
described [26]. Sections were deparaffinized (Roticlear, #A538.3, Carl Roth GmbH and Co.
KG, Karlsruhe, Germany), rehydrated and incubated with 0.5% hydrogen peroxide (H2O2;
#9681.1, Carl Roth GmbH and Co. KG, Karlsruhe, Germany) in 85% ethanol to inactivate
the endogenous peroxidase. Antigen retrieval was achieved using either simmering citrate
buffer (pH: 6; #3958.1, Carl Roth GmbH and Co. KG, Karlsruhe, Germany) in a microwave
(800 W) for 20 min or a 0.03% solution of proteinase K (PK, #3115887001, Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany) at room temperature for 10 minutes or was not
performed at all. Thereafter, sections were treated with goat serum diluted 1:5 in phos-
phate buffered saline (PBS) to block non-specific binding sites. Incubation with primary
antibodies diluted in PBS and bovine serum albumin (Albumin Fraktion V, #0163.2, Carl
Roth GmbH and Co. KG, Karlsruhe, Germany) was carried out overnight at 4 ◦C. Negative
controls received ascites fluid from non-immunized BALB/c mice (1:1000; #BL CL8100,
Cedarlane®, biologo, Kronshagen, Germany) and rabbit normal serum (1:3000; #R4505,
Sigma-Aldrich Chemie GmbH, Tauffkirchen, Germany), respectively. Sections were then
incubated for 30 min at room temperature with biotinylated secondary antibodies according
to the host species of the primary antibody. Goat anti-mouse IgG (GAM; 1:200; #BA-9200,
VECTOR®, Biozol Diagnostica Vetrieb GmbH, Eching, Germany) was used for monoclonal
antibodies and goat anti-rabbit IgG (GAR; 1:200; #BA-1000, VECTOR®, Biozol Diagnostica
Vetrieb GmbH, Eching, Germany) for polyclonal antibodies. Signal amplification was
performed using the avidin-biotin-peroxidase complex (#PK 6100, Vectastain elite ABC kit,
Vector Laboratories, Burlingame, CA, USA) for 30 min, followed by visualization of the
antigen-antibody reaction by 3,3-diaminobenzidine tetrahydrochloride (DAB; #32750 25GF,
Sigma Aldrich Chemie GmbH, Taufkirchen, Germany). Finally, sections were counter-
stained with hematoxylin (#T865.2, Carl Roth GmbH and Co. KG, Karlsruhe, Germany). To
exclude non-specific binding of secondary antibodies, ABC Vectorstain Kit® and DAB, ad-
ditional experiments were performed as described above, omitting the respective reagents
in separate experimental runs. No cross-reactivity was observed in these controls.

2.4. Evaluation of Results

Assessment of the staining results was performed independently by two pathologists
using a light microscope (OLYMPUS BX53; Olympus Europa SE & Co. KG, Hamburg,
Germany). Characterization of the nervous system with respect to the differential expres-
sion of immunoreactivity was carried out by comparing Culex pipiens with the known
staining properties of Drosophila melanogaster and classified as either positive (+) or negative
(−). Images of immunohistochemical stainings were taken using the microscope BZ-9000E
(Keyence Deutschland GmbH, Neu-Isenburg, Germany).

https://www.ebi.ac.uk/Tools/msa/clustalo/
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Table 1. Overview of antibodies used for characterization of the nervous system of Culex pipiens biotype molestus and Drosophila melanogaster including epitope,
clonality, host species, dilution, epitope retrieval and secondary antibody.

Primary
Antibody Epitope Clonality/Host

Species
Dilution

Epitope Retrieval Secondary
Antibody Source Reference

Culex Drosophila

Nervous Tissue

Brp Presynaptic active zone
assembly protein mc, mouse 1:50 1:50 heated citrate

buffer * GAM # nc82, DSHB [45]

Elav Neuronal protein mc, mouse - 1:50,000 heated citrate
buffer * GAM # 9F8A9, DSHB [53]

Futsch Microtubule-associated
protein mc, mouse 1:800 1:1600 none GAM # 22C10, DSHB [48]

Gephyrin
Postsynaptic neuronal
assembly protein, glial

cells
pc, rabbit 1:16,000 1:4000 heated citrate

buffer * GAR # PA5-29036,
Thermo Fisher [54]

HRP Fucosylated N-glycans pc, rabbit 1:25,000 1:20,000 heated citrate
buffer * GAR

# 323-005-021,
Jackson

Immunoresearch
[55,56]

Phosphosynapsin Synapsin 1 pc, rabbit 1:50 1:50 PK # GAR # PA5-38528,
Thermo Fisher [57]

Repo Glial homeoprotein mc, mouse - 1:1600 heated citrate
buffer * GAM # 8D12, DSHB [50]

Neurotransmitters

ACh Acetylcholine pc, rabbit - 1:100 PK # GAR # AB5522, Merck
Millipore [58]

GABA γ-aminobutyric acid pc, rabbit 1:6000 1:3000 none GAR # A2052,
Sigma-Aldrich [59]

5HT Serotonin pc, rabbit 1:60,000 1:6000 heated citrate
buffer * GAR # S5545,

Sigma-Aldrich [59]

Neurotransmitter-Related Enzymes
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Table 1. Cont.

Primary
Antibody Epitope Clonality/Host

Species
Dilution

Epitope Retrieval Secondary
Antibody Source Reference

Culex Drosophila

ChAT Choline acetyltransferase mc, mouse - 1:1600 heated citrate
buffer * GAM # ChAT4B1, DSHB [60]

GS Glutamine synthetase pc, rabbit 1:8000 1:2000 heated citrate
buffer * GAR # PA5-28940,

Thermo Fisher [36]

TH Tyrosine-hydroxylase mc, mouse 1:80 1:80 heated citrate
buffer * GAM # 22941,

Immunostar [40]

-: no specific reaction; *: 20 min, microwave, 800 Watt; #: 0.03% solution of proteinase K, 10 min; 5HT: serotonin; ACh: acetylcholine; Brp: bruchpilot; ChAT: choline acetyltransferase;
Culex: Culex pipiens biotype molestus; Drosophila: Drosophila melanogaster; DSHB: Developmental Studies Hybridroma Bank; Elav: embryonic lethal abnormal vision; GABA: γ-aminobutyric
acid; GAM: goat anti-mouse; GAR: goat anti-rabbit; GS: glutamine synthetase; HRP: horseradish peroxidase; mc: monoclonal; pc: polyclonal; repo: reversed polarity homeodomain;
TH: tyrosine-hydroxylase.
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3. Results
3.1. Multiple Sequence Alignment

The in silico assay for protein homologs identified respective protein sequences for
Drosophila melanogaster and mosquito species such as Culex quinquefasciatus, showing ho-
mology between 39% to 65% and 40% to 71%, respectively. The homology to Culex pipiens
biotype molestus could not be assessed due to lack of available sequences for comparison.
Further details of the alignments are provided in Supplementary Materials S1, along with
percent sequence identity and highlighted target epitopes if provided by the manufacturer.

3.2. Visualization of the Nervous System

Prior to the immunohistochemical characterization of the nervous system, hema-
toxylin and eosin-stained slides provided a detailed anatomical overview, which facilitated
differentiation of various tissue structures, and allowed verification of the sectional plane.
An anatomical overview of the head ganglia of Drosophila melanogaster and Culex pipiens is
given in Figure 1 and a comparative overview of the staining results is shown in Table 2.
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Figure 1. Comparative illustration of head ganglia from Drosophila melanogaster (a) and Culex pipiens
(b), hematoxylin and eosin. Magnification ×20. e: esophagus; d: deutocerebrum; l: lamina; lc: lobula
complex; m: medulla; p: protocerebrum.

Table 2. Immunoreactivity of tested antibodies in Culex pipiens biotype molestus compared to
Drosophila melanogaster.

Primary Antibody Specificity Drosophila Culex

Neural Tissue

Brp + +

Elav + − *

Futsch + +

Gephyrin + +

HRP + +

Phosphosynapsin + +

Repo + − *

Neurotransmitters

5HT + +

ACh + − *

GABA + +
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Table 2. Cont.

Primary Antibody Specificity Drosophila Culex

Neurotransmitter-Related Enzymes

ChAT + − *

GS + +

TH + +
+: positive reaction; −: no reaction; *: false positive labeling; 5HT: serotonin; ACh: acetylcholine; Brp: bruch-
pilot; ChAT: choline acetyltransferase; Culex: Culex pipiens biotype molestus; Drosophila: Drosophila melanogaster;
Elav: embryonic lethal abnormal vision; GABA: γ-aminobutyric acid; GS: glutamine synthetase; HRP: horseradish
peroxidase; Repo: reversed polarity homeodomain; TH: tyrosine-hydroxylase.

3.3. Characterization of the Nervous System

Application of anti-horseradish peroxidase (HRP) resulted in strong and diffuse stain-
ing of the entire nervous tissue in Drosophila melanogaster (Figure 2a) and Culex pipiens
(Figure 2a’), including supra- and subesophageal ganglia as well as the optic lobes.

Microtubules of axons and dendrites were labeled using an antibody directed against
futsch in Drosophila melanogaster (Figure 2b) as well as Culex pipiens (Figure 2b’). Both insects
presented an immunopositive neuropil, especially within the optic lobes, and multifocally
in subcortical and neuropilar regions in the supra- and subesophageal ganglia.

Antibodies specifically targeting different synapse-associated proteins yielded an im-
munopositive signal in both insect species. Similar to Drosophila melanogaster (Figure 2c),
Culex pipiens presented immunolabeling of the neuropil with multifocal accentuation in
neuropilar regions such as the central complex or antennal glomeruli (Figure 2c’) with the
marker anti-bruchpilot (brp). The marker anti-phosphosynapsin exhibited diffuse immuno-
labeling of the neuropil in Drosophila melanogaster (Figure 2d) and Culex pipiens, with Culex
pipiens presenting multiple prominent immunopositive puncta within the protocerebrum as
well as optic lobes (Figure 2d’). Gephyrin was expressed as a strong granular cytoplasmic
immunolabeling of multiple cortical cells in the head ganglia of Drosophila melanogaster
(Figure 2e) and Culex pipiens (Figure 2e’).

Application of anti-elav and anti-repo resulted in a distinct visualization of neurons
and glial cells in Drosophila melanogaster, respectively (Figure 2f,g). In contrast, there was
no specific expression pattern in the head ganglia of Culex pipiens. However, Culex pipiens
displayed a strong granular false-positive bilaterally symmetric cytoplasmic signal within
the protocerebral cortex with both antibodies, and strong diffuse background staining of
neuropil and neurons with anti-elav (Figure 2f’,g’).

3.4. Neurotransmitters and Neurotransmitter-Related Enzymes

Application of the two antibodies targeting cholinergic neurons, anti-acetylcholine
and anti-choline acetyltransferase, resulted in clear, granular, cytoplasmic labeling of
numerous neurons. Moreover, these antisera visualized the innervation of neurons within
the neuropil in Drosophila melanogaster (Figure 3a,b), with a prominent signaling pattern in
the neuropil of the protocerebrum, deutocerebrum, and optic lobes. Surprisingly, the use of
anti-acetylcholine resulted in diffuse immunolabeling of the cortex and neuropil in Culex
pipiens, whereas immunostaining for the enzyme choline acetyltransferase was restricted to
the neuropil (Figure 3a’,b’).
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Figure 2. Immunoreactivity of antibodies directed against nervous tissue of Culex pipiens in com-
parison with Drosophila melanogaster. Anti-HRP visualizes the entire nervous tissue (cortical cells:
arrowheads, neuropil: arrows) in Drosophila melanogaster (a) and Culex pipiens (a’), whereas anti-futsch
(b,b’), anti-brp (c,c’) and anti-phosphosynapsin (d,d’) mark the neuropil (arrows) in both insects.
Note the more defined presentation of axon tracts with anti-futsch in comparison to anti-HRP, anti-brp
and anti-phosphosynapsin. Anti-gephyrin (e,e’) presents multifocally immunopositive cell bodies
(arrowheads) in Drosophila melanogaster (e) and Culex pipiens (e’). While the antibody anti-repo labeled
glial cells (arrowheads) in Drosophila melanogaster (f), Culex pipiens displayed a false positive bilateral
symmetric strong cytoplasmic signal within the protocerebral cortex (f’). Application of anti-elav
resulted in a distinctive visualization of neurons (arrowheads) within the ganglial cortex and optic
lobes in Drosophila melanogaster (g). In contrast, head ganglia as well as optic lobes in Culex pipiens
displayed a false positive bilateral symmetric strong cytoplasmic signal within the protocerebral
cortex (g’). Magnification ×20, magnification inserts ×40. Brp: bruchpilot; elav: embryonic lethal
abnormal vision; HRP: horseradish peroxidase; repo: reversed polarity homeodomain.
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Figure 3. Immunoreactivity of antibodies directed against neurotransmitters and neurotransmitter-
related enzymes in Culex pipiens in comparison to Drosophila melanogaster. A cell body (arrowheads)
and neuropil-associated (arrows) immunolabeling was observed for ACh and ChAT in Drosophila
melanogaster (a,b). In contrast, application of anti-ACh resulted in a diffuse immunosignal of cortex
and neuropil in Culex pipiens (a’), while ChAT-immunoreactivity was restricted to the neuropil (b’). GS-
immunoreactivity was multifocally present in cortical cell bodies in Drosophila melanogaster (c), while
it was detected as a cell layer surrounding and extending short projections into the neuropil in Culex
pipiens (c’). GABA-immunoreactive neurons (arrowheads) as well as innervations within the neuropil
(arrows) were visible in Drosophila melanogaster (d) and Culex pipiens (d’). Note the species-specific
distribution of TH-positive neurons (arrowheads) and their extensive arborization within the neuropil
(arrows) in Drosophila melanogaster (e) and Culex pipiens (e’). Multifocal immunolabeling of cortical
cells (arrowheads) was observed with anti-5HT in Drosophila melanogaster (f), whereas 5HT-positive
neurons (arrowheads) and their arborization within the neuropil (arrows) were shown in Culex pipiens
(f’). Magnification ×20, magnification insert ×40. 5HT: serotonin; ACh: acetylcholine; ChAT: choline
acetyltransferase; GABA: γ-aminobutyric acid; GS: glutamine synthetase; TH: tyrosine-hydroxylase.
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Immunoreactivity for glutamine synthetase was shown for both Drosophila melanogaster
and Culex pipiens. In Drosophila melanogaster, immunopositive cells were multifocally visible
within the cortex (Figure 3c). In contrast, Culex pipiens presented strong granular labeling
in the cytoplasm of cortical cells surrounding and extending short projections into the
neuropil (Figure 3c’).

The marker directed against GABA presented GABAergic neurons in large numbers
with a strong, granular signal throughout the cortex and neuropil of the supra- and sub-
esophageal ganglia in Drosophila melanogaster (Figure 3d) and Culex pipiens (Figure 3d’).

Application of the antibody targeting tyrosine-hydroxylase resulted in strong, granular,
cytoplasmic labeling of specialized neurons and their extensive arborization in the neuropil
in both Drosophila melanogaster (Figure 3e) and Culex pipiens (Figure 3e’).

Serotonin-immunoreactive neurons were multifocally labeled in clusters of 1–3 cells in
Drosophila melanogaster (Figure 3f) and Culex pipiens (Figure 3f’) by a granular, cytoplasmic
signal, with additional labeling of their arborization in Culex pipiens.

4. Discussion

Comparative immunohistochemical assessment of selected antisera presented im-
munomarkers for the entire nervous tissue, for the dense neuropilar meshwork of axons,
dendrites and synapses, as well as for specialized neurons and/or glial cells.

Anti-HRP is known to bind against the plant glycoprotein horseradish peroxidase,
but also cross-reacts with glycoproteins, such as the α1,3-fucosylated N-glycan, expressed
by nervous tissue in Ecdysozoa [61]. In Culex pipiens and Drosophila melanogaster, anti-
HRP visualized the entire nervous tissue. This is in accordance with previous studies
demonstrating this labeling in whole mount specimens of Drosophila melanogaster, Aedes
aegypti and Anopheles gambiae [36,55,61].

Similar to Drosophila melanogaster, anti-futsch and anti-brp were expressed in the
neuropil of Culex pipiens. While immunolabeling for bruchpilot in Culex pipiens seemed
more likely with a homology of approximately 65% in the closely related Culex quinque-
fasciatus, the distinct immunolabeling for anti-futsch with a homology of only 40% was
rather surprising. Nonetheless, these results are consistent with earlier studies in other
mosquito species [36], rendering those markers also suitable for Culex pipiens. Synapsins
are highly conserved synaptic vesicle-associated proteins that play a crucial role in neu-
rotransmission [62]. The marker anti-phosphosynapsin is directed against the human
phosphorylated protein synapsin 1, which is 39% and 40% homologous with Drosophila
melanogaster and Culicinae mosquitoes, respectively. In the present study, the neuropil
was labeled with anti-phosphosynapsin in both dipterans, comparable to immunolabeling
with other synapsin markers in similar studies [36]. Thus, anti-phosphosynapsin likely
represents a novel antibody for the study of synapses in insects. In summary, the complex
organization of axon and dendrite bundles as well as synapses within the neuropil can be
visualized in Culex pipiens and Drosophila melanogaster with the antibodies used.

The antibody targeting human gephyrin shares homology with an analogous protein
in Drosophila melanogaster and Culicinae mosquitoes of approximately 39% and 41%, respec-
tively. Application of anti-gephyrin resulted in immunostaining in Drosophila melanogaster
and Culex pipiens comparable to that observed in mammals [63,64], indicating a neural
function of gephyrin in insects. On the one hand, this protein is involved in the biosynthesis
of the molybdenum cofactor (Moco) in eukaryotes, which also takes place in glial cells of
the nervous system [54,64]. Consequently, anti-gephyrin might represent an interesting
candidate to investigate Moco synthesis or allow visualization of a subset of glial cells
in Diptera. However, this observation should be interpreted with caution and requires
further investigation, as no information is yet available on the reactivity of this protein in
the nervous system of insects. On the other hand, gephyrin is an important scaffolding
protein at inhibitory postsynaptic sites by connecting glycinergic and GABAergic receptors
to the cytoskeleton and is thus indirectly responsible for the strength of inhibitory neuro-
transmission [65]. However, no corresponding immunostaining in the form of multiple
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puncta of <1 µm [63] was detected in the neuropil of insect species examined. Therefore,
anti-gephyrin does not appear to be suitable for the study of glycinergic or GABAergic
postsynaptic sites and thus inhibitory neurotransmission in insects.

Investigated monoclonal antibodies directed against the elav protein localized in neu-
ronal nuclei [53] and the homeoprotein repo in the nuclei of glial cells [50], showed a clear
signal in Drosophila melanogaster, but not in Culex pipiens. This observation renders these
antibodies non-specific for investigations with Culex pipiens, despite homology for elav be-
tween Drosophila melanogaster and Culicinae mosquitoes of 70%. However, cross-reactivity
for polyclonal elav and repo markers has recently been demonstrated in mosquitoes [36,38].
Therefore, the lack of adequate cross-reactivity is probably attributable to the binding of
monoclonal antibodies to small epitopes with few amino acids, whereas polyclonal anti-
bodies have a broad affinity for isoforms of target proteins [66]. Interestingly, the present
results indicate that glutamine synthetase and gephyrin may represent valid alternatives to
label subsets of glial cells in the nervous system of Culex pipiens.

Behavioral changes following a stimulus or a viral infection are likely to be based
on the species-specific distribution of specialized neurons and the associated distribu-
tion of various neurotransmitters or neurotransmitter-related enzymes [36,40,42]. In the
present study, the antibody for the neurotransmitter-related enzyme glutamine synthetase
yielded a clear immunopositive signal in cell bodies of the nervous system in Drosophila
melanogaster and Culex pipiens, similar to the immunoreactivity of earlier studies [36,67]. Glu-
tamine synthetase is found in both vertebrates and invertebrates [36,67,68], with Drosophila
melanogaster and Culicinae mosquitoes showing 65% and up to 70% homology with the
human analog, respectively. This enzyme is responsible for the simultaneous metaboliza-
tion of the excitatory neurotransmitter glutamate and ammonia to glutamine [69,70]. In
contrast to vertebrates, glutamate was believed to be less abundant in the central nervous
system and of higher significance in the peripheral nervous system [71–74]. Neverthe-
less, this neurotransmitter is still involved in numerous processes in the central nervous
system [74–78] and is even reported to act as an inhibitory transmitter in the antennal
lobe [79]. Furthermore, glutamine synthetase is indirectly involved in the synthesis of the
inhibitory neurotransmitter GABA [80]. Thus, glutamine synthetase represents an attractive
candidate for the investigation of glutamate and GABA. Interestingly, the expression of
glutamate-related genes was increased in arbovirus-infected mosquitoes, suggesting altered
synthesis and/or distribution, in which the involvement of glutamine synthetase cannot be
excluded [23]. Finally, the presence of glutamine synthetase in glial cells [36,67–69] also
allows visualization and thus targeted studies of these cells and their interaction in the
nervous system of Culex pipiens.

GABA is an important inhibitory neurotransmitter involved in multiple processes
within the peripheral and central nervous system [72,81–83]. Accordingly, GABAergic neu-
rons were labeled in large numbers in all neuropilar regions in both Drosophila melanogaster
and Culex pipiens. Results obtained were similar to previous investigations in Drosophila
melanogaster [74,77,83,84] and other insects [75,77,82,85–91]. These results are highly in-
teresting since GABA is involved in locomotor activity [23,30], regulation of the circa-
dian clock [92], olfaction, and olfactory learning [83,93–96]. In particular, the significant
role of GABA in olfaction is of interest in vector research considering that it is impor-
tant for mosquito behavior [39,97,98]. Interestingly, behavioral changes related to olfac-
tion [23,31,32] and locomotion [23,30] have already been described in arbovirus-infected
mosquitoes, for which an influence on GABA is possible. Furthermore, GABA has been
reported to facilitate arboviral infections of mosquitoes by modulating the gut antiviral
immunity [99], denoting this antibody as a valuable tool for behavior and pathogenetic
studies.

Tyrosine-hydroxylase and serotonin were both demonstrable in specialized neurons
in Culex pipiens. As an important, rate-limiting enzyme in the synthesis of dopamine,
tyrosine-hydroxylase is located in dopaminergic neurons. Therefore, immunolabeling
of tyrosine-hydroxylase corresponds to the presence of dopamine [100]. The protein
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sequence of Rattus norvegicus targeted with anti-tyrosine-hydroxylase is approximately 50%
homologous with Drosophila melanogaster and Culicinae mosquitoes. Nevertheless, and
similar to previous reports, specifically labeled dopaminergic neurons were shown in both
Drosophila melanogaster and Culex pipiens [40,101–103]. Since dopamine is involved in many
behavioral patterns including learning, olfaction, and locomotion [98,100,104–107], which
are reported to be altered in arbovirus-infected mosquitoes [23,30–32], the antibody used is
advantageous for investigating neurotransmission and thus behavioral alterations among
mosquito species and in pathogenetic studies.

In the present study, serotonin expression was demonstrated in Drosophila melanogaster
and Culex pipiens, which is consistent with the results of former investigations [36,108,109].
Analysis of serotonergic neurons represents an interesting approach in arbovirus-related
research, since serotonin is involved in aggression, feeding behavior and regulation of
salivary gland secretions of mosquitoes [100,110]. A change of these behavioral traits has
been observed in arbovirus-infected mosquitoes [24,32,33], which raises the presumption
that this could arise from changes in the neurophysiology of 5HT, as has been postulated
for La Crosse virus infections in Aedes triseriatus [32].

Acetylcholine is the leading excitatory neurotransmitter in the nervous system of
insects and is particularly abundant in specialized neurons within the insect visual sys-
tem [74,106]. Two antisera were used to localize cholinergic neurons in the nervous system
of Culex pipiens. The first antibody was directed against the acetylcholine molecule itself.
The second marker targeted choline acetyltransferase, an enzyme essential for the synthesis
of acetylcholine [72] that shows a homology between Drosophila melanogaster and Culicinae
mosquitoes of up to 71%. Surprisingly, the reactivity for both antibodies differed immensely
between Drosophila melanogaster and Culex pipiens. Consistent with previous studies, both
markers yielded a clear, immunopositive signal for cholinergic neurons in Drosophila
melanogaster, illustrating the widespread expression in head ganglia [74,77,111–114]. In
contrast, Culex pipiens displayed an unexpected immunoreactivity. The observed diffuse dis-
tribution of acetylcholine-positive neurons in the head ganglia along with immunoreactivity
for choline acetyltransferase restricted to the neuropil would be an aberrant observation
that has not been described to this extent in any other insect [58,74,77,111,114–118]. Similar
results were described only in one study of the locust Schistocerca gregaria, where choline
acetyltransferase immunoreactivity was predominantly restricted to sensory neuropil and
only occasionally associated with cell bodies in the nervous system [117]. Accordingly,
there are two possibilities that could explain this unexpected reactivity of acetylcholine
and choline acetyltransferase. Either (1) acetylcholine plays a much larger, more complex
or different role in mosquitoes than expected; or (2) both antibodies are not specific for
either epitope in formalin-fixed and paraffin-embedded mosquitoes. The significance of
this observation remains to be investigated.

5. Conclusions

The present study provides a comparative immunohistochemical characterization of
the nervous system of Culex pipiens and the model organism Drosophila melanogaster. All
antisera-tested labeling neural structures, neurotransmitters or neurotransmitter-related
enzymes, were suitable for investigations in Drosophila melanogaster. Interestingly, most
antibodies also proved valuable for immunolabeling in Culex pipiens.

Taken together, most of the investigated antibodies are suitable for subsequent analyses
in Culex pipiens and facilitate further cross-species studies of neuroanatomy and neuro-
transmission in mosquitoes. This provides new possibilities in uncovering the underlying
mechanisms of learning, memory, and mosquito behavior. Such knowledge might allow
the observed behavioral changes in arbovirus-infected mosquitoes to be elucidated and
could further implement the development of new countermeasures against arbovirus-
transmitting vectors. In conclusion, this study presents a promising basis for further
investigations in the context of vector research and disease pathogenesis.
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