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Abstract

Shiraia bambusicola P. Henn. is a pathogenic fungus of bamboo, and its fruiting bodies are
regarded as folk medicine. We determined and analyzed its complete mitochondrial DNA
sequence (circular DNA molecule of 39,030 bp, G + C content of 25.19%). It contains the
typical genes encoding proteins involved in electron transport and coupled oxidative phos-
phorylation (nad7-6 and nad4L, cob and cox1-3), one ATP synthase subunit (atp6), 4 hypo-
thetical proteins, and two genes for large and small rRNAs (rn/ and rns). There is a set of 32
tRNA genes comprising all 20 amino acids, and these genes are evenly distributed on the
two strands. Phylogenetic analyses based on concatenated mitochondrial proteins indicat-
ed that S. bambusicola clustered with members of the order Pleosporales, which is in agree-
ment with previous results. The gene arrangements of Dothideomycetes species contained
three regions of gene orders partitioned in their mitochondrial genomes, including block 1
(nad6-atp6), block 2 (nad1-cox3) and block 3 (genes around rms). S. bambusicola displayed
unique special features that differed from the other Pleosporales species, especially in the
coding regions around rns (trnR-trnY). Moreover, a comparison of gene orders in mitochon-
drial genomes from Pezizomycotina revealed that although all encoded regions are located
on the same strand in most Pezizomycotina mtDNAs, genes from Dothideomycetes spe-
cies had different orientations, as well as diverse positions and colocalization of genes
(such as cox3, cox1-cox2 and nad2-nad3); these distinctions were regarded as class-
specific features. Interestingly, two incomplete copies of the atp6 gene were found on differ-
ent strands of the mitogenomic DNA, a finding that has not been observed in the other ana-
lyzed fungal species. In our study, mitochondrial genomes from Dothideomycetes species
were comprehensively analyzed for the first time, including many species that have not ap-
peared in previous reports.
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Introduction

Shiraia bambusicola P. Henn. is an important pathogen and causative agent of bambusicolous
disease, with negative effects on plant growth. S. bambusicola is a highly specific pathogen, usu-
ally confining infection to Brachystachyum densiflorum and related species in China and Bam-
busa species in Japan [1,2]. It is noteworthy that the fruiting bodies of this fungus are widely
used in the southern part of China for remedying inflammation, apoplexy and sciatica. The
corresponding sporophores or mycelium are usually rich in bioactive compounds, such as
hypocrellins, which are photosensitizers that possess antibiotic, antitumor, antiviral and anti-
inflammatory properties [3-12].

The corresponding position of S. bambusicola has been reclassified several times over one
hundred years of taxonomic research. Dating back to 1900, the genus Shiraia was first recorded
as one member of Nectriaceae, Hypocreales, Pyrenomycetes [13]. Two years later, Shiraia was
anchored in the Hypocreaceae family based on the base of the larger fleshy stroma [14]. This
viewpoint was popular for several decades, until the ascus was observed to not be unitunicate
but was instead bitunicate, and Shiraia was transferred to the Loculoascomycetes class, the
Pleosporales order, and the Pleosporaceae family [15]. As illustrated in the ninth edition of the
fungal dictionary, Shiraia was characterized as a Dothideales species with an undetermined
family affiliation [16]. In recent studies, the taxonomic position of Shiraia has been analyzed
phylogenetically by DNA sequence analysis in combination with morphological evidence. Se-
quencing of the 185 rDNA and ITS-5.8S rDNA regions indicated that the genus Shiraia should
belong to Phaeospheriaceae, Pleosporales [17]. Liu et al. [18] erected a new family Shiraiceae in
Pleosporales to accommodate Shiraia based on the partial 28S nrDNA nucleotide sequence. It
is noticeable that whether regarded as a genus or a family, there is only one representative spe-
cies present in this group, and no distinct differences were found among fungal isolates from
different bamboo hosts [17].

As one of the most important organelles in the cell, the mitochondria play a vital role in gen-
erating energy [19]. The origin of the mitochondrial genome dates back to DNA transposable
elements from o-proteobacteria in a eukaryotic host cell [20-24], although most of the
mtDNA coding genes have been transferred into the nuclear chromosomes during evolution
[25]. Because of its high copy number, apparent lack of recombination, and rapid evolution,
mitochondrial genomes (mitogenomes) are widely accepted as effective markers for evolution-
ary studies in the fungal kingdom [26-31]. Fungal mitogenomics have improved tremendously
in recent years with the application of new sequencing technology, and the availability of mito-
chondrial genomes has allowed for the resolution of numerous questions regarding evolution-
ary history. For example, in February 2013 the largest fungal mitochondrial genome at that
time was reported from Agaricus bisporus, with 135,005 bp [32]. Several months later, another
mitogenome with 235,849 bp arose from Rhizoctonia solani [33]. Trans-splicing in organelles
was first demonstrated from the fungal species Gigaspora margarita by analysis of the complete
mitochondrial genome sequence [34]. A similar phenomenon of group I introns in mitochon-
dria from Gigaspora rosea revealed an unusual feature: the effect of a third helper RNA frag-
ment in trans. Studies of Pneumocystis jirovecii, an important opportunistic pathogen
associated with AIDS and other immunodeficiency conditions, displayed a special arrangement
of genes among the mitogenomes from closely related species. Thus, detailed analysis of
mtDNA sequences raises the possibility of identifying new therapeutic targets [35]. Separate
analyses of gene arrangements from the orders Sordariales [36] and Helotiales [37] displayed
significantly different conservation patterns; furthermore, fungal mitogenomes exhibit remark-
able variation between and within the major fungal phyla in terms of gene order, as demon-
strated by a comparison of 38 complete mtDNA sequences published in previous reports [38].
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The class Dothideomycetes contains more than 1900 species and is regarded as the largest
and most diverse class of Ascomycete fungi [39]. The species are taxonomically classified into
11 orders: Capnodiales, Dothideales, Myriangiales, Hysteriales, Jahnulales, Mytilinidiales,
Pleosporales, Botryosphaeriales, Microthyriales, Patellariales and Trypetheliales. Pleosporales
is the most diverse fungal order in Dothideomycetes, occupying one quarter of all dothideomy-
cetous species [40]. Species in this order occur in various habitats and were identified as one
hundred and five generic types in multigene phylogenetic analyses [41].

Despite the fact that more than 165 fungal mitogenomes have been uploaded into the public
database of NCBI and the dominant sequences can be attributed to mitochondria from Asco-
mycete, there are just two sequences published officially from the Dothideomycetes class: one
from Capnodiales (Mycosphaerella graminicola) [42] and the other from Pleosporales [31].

The number of fungal mitogenomes that have been partially or completely sequenced is in-
creasing. These published sequences have the potential to speed up the development of classifi-
cation, evolution, genetics and breeding engineering for their corresponding mycetes. In this
study, we have completed the novel mitochondrial genome sequence of S. bambusicola, as well
as four additional mitogenomic sequences that were analyzed but have not appeared in previ-
ous reports. All of the referenced Dothideomycete species are well-known plant pathogens
from various hosts, such as Bipolaris maydis from southern corn [43], Leptosphaeria maculans
from oilseed rape [44], and Phaeosphaeria nodorunm from wheat [45], and have obtained
great attention for their impact on the agriculture and forestry industries. Additionally, the
hypocrellins from S. bambusicola (Dothideomycetes, Dothideales) was found to have a special
structure of perylenequinonoid compounds that was also identified in Cercospora spp. (Dothi-
deomycetes, Capnodiales) as cercosporin, Elsinoé spp. (Dothideomycetidae, Myriangiales) as
elsinochromes, and Cladosporium phlei (Dothideomycetes, Capnodiales) as phleichrome [46].
It is anticipated that the findings of comparative analysis of mitochondrial genomes will con-
tribute to the understanding of fungal evolutionary biology and enrich the knowledge of fungal
infection and toxins from Dothideomycete pathogens.

Materials and Methods
Mitochondrial DNA Purification

Strain zzz816 of S. bambusicola was isolated from moso bamboo (Phyllostachys edulis) seeds as
endophytic fungi and was previously morphologically identified and molecularly characterized
by our lab [47]. Fungal cultures were recorded and deposited in the China Forestry Culture
Collection Center (CFCC).

The mycelium from subcultured colonies were scraped from the surface of the agar and fro-
zen in liquid nitrogen for mtDNA extraction. The DNAse treatment of the whole mitochondri-
al pellets and then the extraction of mtDNA were dependent on the instructions from the
DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and Lang’s protocol [48]; nuclear DNA in-
terference was assessed by PCR for the target regions of ITS rDNA [49].

lllumina Sequencing, Scaffold Assembly, and Mitochondrial Genome
Annotation

Total mitochondrial DNA of S. bambusicola was sequenced using Illumina Hiseq 2000, and
the resulting reads were assembled into contigs using the CLC Genomics Workbench
(CLCbio). Eight scaffolds were identified by a sequence similarity search using published fun-
gal mitogenomes, and the resulting sequences were combined into a single circular DNA using
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PCR to bridge the intergenic gaps. The complete mitochondrial genome was reassured using
PCR-based DNA sequencing.

The genomic clones from four other Dothideomycetes species (Pyrenophora tritici-repentis
Pt-1C-BFP (NW 002475730), Leptosphaeria maculans (FP929115), Bipolaris maydis C5
(AIDY01000067 and AIDY01000043) and Neofusicoccum parvum UCRNP2
(AORE01000551)) were screened by high levels of sequence identity with fungal mitogenomes
referenced in the NCBI database. Fragmented contigs were separately assembled to approxi-
mate complete mitogenomic sequences; these contigs contained almost all of the protein cod-
ing genes, with a minimum of the genes encoding nadI-6, nad4L, cob, cox1-3, atp6, rnl and
rns. Another two mitogenomes from P. nodorum (NC 009746) and M. graminicola (NC
010222) were downloaded from the NCBI public database; both have been analyzed in previ-
ous reports [31,42]. In order to assure the consistency of the data, only the larger contigs (over
10 kb), which displayed high similarity with the official sequence of fungal mitogenomes, were
selected out and re-analyzed using the methods described below. Some revisions were refer-
enced in published sequence information databases.

Protein coding genes were identified with MFannot [50] and errors were revised with
BLASTp and BLASTx (NCBI). tRNA genes were screened using tRNAscan-SE [51], ARWIN
[52], AGAGORN [53] and RNAWEASEL [54]. The results were regarded as reliable when
genes were predicted by at least two methods. Non-coding regions and rRNA genes were iden-
tified manually using BLAST search and alignment with other reference sequences.

Repeat Structure and Sequence Analysis

We utilized the REPuter [55] and Tandem Repeat Finder programs [56] to screen for dispersed
and tandem repeats. Direct (forward), inverted (palindrome) and reverse repeats were com-
posed of dispersed repeats, and the corresponding hamming distance was equal to 3 with a size
of more than 30 bp. The advanced parameter of the Tandem Repeat Finder program was set at
2 (match), 7 (mismatch), and 7 (indels). The settings of the minimum alignment score and the
maximum period size were 50 and 500, respectively. After the two programs were finished, we
manually modified the redundant results of dispersed repeats and deleted tandem repeats with
less than 15 bp.

Phylogenetic Analysis

Amino acid sequences of the protein-encoding genes atp6, cob, cox1, cox2, cox3, nadl, nad2,
nad3, nad4, nad4L, nad5 and nad6 were used for phylogenetic analysis. These sequences were
found in the mitogenomes of 32 Ascomycete species (S1 Table) and were concatenated using
DAMBE software version 5.2.13 [57]. The alignment was performed using Clustal version X
1.83, and amino acids sharing low homology were eliminated by Gblocks. Three species be-
longing to Saccharomycetales (Candida albicans, Ogataea angusta and Pichia pastoris) were
used as outgroup taxa in the phylogenetic analysis. For the Bayesian analysis, cpREV with the
Akaike information criterion (AIC) was used to choose a substitution model for the
concatenated dataset. The model GRT + I + G was chosen for the combined sequences. The
Bayesian analysis was performed with MrBayes 3.1.2 [58,59] with two sets of four chains (one
cold and three heated) and the STOPRULE option in effect, halting the analyses at an average
standard deviation of split frequencies of 0.01. The sample frequency was set to 100, and the
first 25% of trees were removed as burn-in. Bayesian posterior probabilities (PP) were obtained
from the 50% majority rule consensus of the remaining trees. Clades receiving PP > 99% were
considered to be significantly supported.
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GenBank Accession Number

The S. bambusicola mitogenome sequence was deposited in GenBank under accession number
(KM382246). The other mtDNA sequences were downloaded from reference sequences in the
NCBI database (S1 Table).

Results
Mitochondrial Genome Description

The mitochondrial genome of S. bambusicola was sequenced using Illumina Hiseq 2000, and
eight scaffolds were assembled into a typical circular DNA molecule with a length of 39,030 bp
using PCR amplification to successfully span all gaps. The sequence was AT-rich, with an over-
all G+C content of only 25.19% (Table 1). Protein-coding gene regions had a G+C content of
27.1%, and RNA genes had a slightly higher GC content of 35.4%. In general, the mitochondri-
al genome of S. bambusicola was compact, with 68.96% of the genome containing

coding regions.

Protein-coding gene regions accounted for 47.33% of the mitochondrial genome and con-
tained 17 genes encoding proteins. These genes encoded for ATP-synthase complex FO subunit
(atp6), three complex IV subunits (coxI, cox2, and cox3), one complex III subunit (cob), seven
electron transport complex I subunits (nadl, nad2, nad3, nad4, nad4L, nad5, and nad6), one ri-
bosomal protein (rps3) and four hypothetical proteins (orf250, 0rf262, orf322 and orf352)

(Fig. 1) (Table 2). These genes appeared on both strands in an unbiased fashion. Thirteen rep-

resentative mitochondrial genes involved in respiratory chain complexes (OXPHOS) displayed
high sequence conservation with other species of filamentous fungi. Specifically, cox! was adja-
cent to cox2 without intergenic regions, and the ATG initiation codon of nad5 followed imme-
diately after the termination codon of nad4L, with an overlap of one base.

Three open reading frames (ORFs) (0rf250, orf262, orf322) were found in the intergenic re-
gions and one ORF (orf352) was found in the intron. Most of the ORFs were located on the
negative strand, with the exception of 07352 in the intron of coxI. It is remarkable that there
was only one group I intron across the entire mitochondrial genome, and only one intronic
OREF encoding a putative LAGLIDADG endonuclease family protein with high similarity to
other species of filamentous fungi, including Talaromyces marneffei and Candida oxycetoniae.

Table 1. General features in the mitochondrial genome of Shiraia bambusicola.

Genomes features Value
Genomes size (bp) 39,030
G+C content (%) 25.19
No. of protein-coding genes 17
G+C content of protein-coding genes (%) 271
Structural proteins coding exons (%) 47.33
No. of rRNAs/tRNAs 2/32
G+C content of RNA genes (%) 35.4
rRNAs+tRNAs (%) 18.92
Coding regions (%) 68.96
Intergenic regions (%) 30.51
No. of introns 1

No. of intronic ORFs 1
Introns (%) 3.24

doi:10.1371/journal.pone.0116466.t001
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Fig 1. Circular mapping of the complete mitochondrial genome from S. bambusicola. The tracks from the outside represent: (1) Forward CDS and
tRNA; (2) Reverse CDS and tRNA,; (3) %GC plot (Yellow for above 50%, Violet for under 50%); (4) GC skew [(G — C)/(G + C)] (Yellow for plus, Violet for
minus). The genes are colored on the basis of their functional groups, and the color scheme is illustrated to the left of the circle. One intron (IB) appeared in
the corresponding gene cox1. The tRNA genes are indicated with brackets and the anticodon appended to the gene name. The precise positions of genes
and introns are listed in Table 2.

doi:10.1371/journal.pone.0116466.9001

The hypothetical protein encoded by orf322 possessed some homology with YP 001427397, a
ribosomal S5-like protein with a domain from the SNF7 superfamily, from P. nodorum (length
= 323 aa; alignment range: 31-314 aa; identity = 67/291 (23%); e-value = 0.24). The 0rf262 pro-
tein was slightly similar to an unnamed protein product with accession number XM
003024124 at the protein amino acid level; this protein is found in the nuclear genome of zoo-
philic dermatophytes Trichophyton verrucosum HKI 0517 (length = 263 aa; alignment range,
81-141 aa; identity = 27/75 (36%); e-value = 1.0). The orf250 protein consisted of 251 amino
acids, displayed no similarity with other fungal proteins, and was slightly similar to a hypothet-
ical protein from Thiohalocapsa sp. by BLASTx (alignment range, 29-110 aa; identity = 45/83
(54%); e-value = 2.4).

The putative mitochondrial genes (atp6, cob, coxI1, cox2, cox3, nadl, nad2, nad3, nad4,
nad4L, nad5, nad6, orf262, orf250 and rpS3) were applied to a study of the frequencies of
codon usage for coding functional proteins. The codon usage of intronic genes was evaluated
using the orf352 sequence. The “AUG” initiation codon appeared most frequently (Table 3),
with the exception of cox2 with “AAU” and atp6 with “AUU”. The intronic gene orf352 started
with special codon “UUG”, which was not found in other genes. The coding region of cox1 was
terminated by UGA and cob by UCC. cox2 and nad4 ended with UAG, and the stop codon
used by all other genes was UAA, including intronic orf352.
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Table 2. Gene organization of the mitochondrial genome.

Gene Start position Stop position Length (nt) Length (aa) Start Codon Stop codon
cox1 162 3046 2885 526 ATG TGA
cox2 3047 3793 747 249 AAT TAG
trnN 4169 4239 71
nad6 4563 5129 567 189 ATG TAA
trnV 5201 5273 73
trnG 6116 6188 73
trnD 6191 6262 72
trnS 6502 6581 80
trnW 6761 6832 72
trnl 6934 7005 72
trnR 7010 7081 72
trnS 7288 7372 85
trnP 7564 7636 73
mi 7808 11191 3384
trnT 11299 11369 71
trnM 11392 11462 71
trnM 11468 11540 73
trnE 11719 11791 73
trnA 11824 11895 72
trnF 12675 12747 73
trnL 13201 13283 83
trnQ 13459 13530 72
trnH 13534 13607 74
trnM 13655 13726 72
atp6 13946 14719 774 258 ATG TAA
trnC 14824 14895 72
nad1 15187 16302 1116 372 ATG TAA
rps5 17580 16612 969 323 ATG TAA
nad4 19667 17622 2046 682 ATG TAG
trnK 20096 20002 95
cob 21573 20416 1158 386 ATG TCC
nadb5 24190 22205 1986 662 ATG TAA
nad4L 24459 24190 270 90 ATG TAA
trnV 24563 24491 73
atp6 25228 24599 630 210 ATT TAA
orf262 26126 25338 789 263 ATG TAA
trnM 26415 26344 72
trnH 26538 26465 74
trnQ 26613 26542 72
orf250 27677 26925 753 251 ATG TAA
nad3 29026 28259 768 256 ATG TAA
nad2 30778 29027 1752 584 ATG TAA
cox3 31883 31074 810 270 ATG TAA
orf564 34882 33188 1695 565 ATG TAG
trnK 35050 34979 72
trnV 35152 35080 73

(Continued)
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Table 2. (Continued)

Gene

trnN
trnY
trnL
ms

trnR

Start position

35288
35468
36120
37944
38242

doi:10.1371/journal.pone.0116466.t002

Stop position Length (nt) Length (aa) Start Codon Stop codon
35218 71

35384 85

36038 83

36333 1612

38172 71

Table 3 shows that the most frequently used amino acid in the 17 protein genes was isoleu-
cine, followed by serine (Table 3). As shown in Table 1, the mitochondrial genes are strongly
biased toward codons with AT (72.9%), and the preference of A and U residues is consistent
with overall codon usage. The most frequently used codons are composed exclusively of “U”
and “A”: UAA (7.03%), AAA (5.29%), UAU (4.92%), UUU (4.90%), AUU (4.84%), AUA
(4.43%), AAU (4.37%) and UUA (2.89%). The least frequent codons consist mainly of Cs and
Gs (Table 3): CCG (0.03%), UCG (0.05%), CGG (0.06%), CGA (0.08%), GCG (0.10%) and
GCC (0.11%).

tRNAscan-SE, ARWIN, AGAGORN, RNAWEASEL and BLAST comparison with other
fungal mitochondrial genomes identified two rRNAs and 32 tRNAs in the genome, corre-
sponding to all 20 amino acids (Table 4). Fig. 1 illustrates an ideogram that describes the geno-
mic organization and gene classification; these genes are also located on both strands.

In the S. bambusicola mitochondrial genome, 32 tRNAs were identified that clustered
roughly into three groups (Fig. 1) with lengths ranging from 70 to 94 bp. The genes carried co-
dons for all 20 amino acids, and some of them existed as multiple tRNAs (Table 4). There were
four copies of the trnM-CAU tRNA gene for methionine and three tRNAs for valine with the
same anticodon (trnV-UAC). Two different tRNA genes for leucine (trnL-UAG and trnL-
UAA), arginine (trnR-UCU and trnR-ACG), and serine (trnR-GCU and trnR-UGA) were
found. Two copies of trnN-GUU, trnQ-UUG, trnH-GUG and trnK-UUU were located in differ-
ent regions; the remaining 11 tRNA genes had only one copy. It is noteworthy that two copies
of three continuous genes of trnQ-UUG, trnH-GUG and trnM-CAU were separated by large
distances on different DNA strands. All tRNAs exhibited the classic cloverleaf structure based
on tRNAscan.

Phylogenetic Relationships of Dothideomycetes

In order to gain additional evidence for the classification of Dothideomycetes species and un-
derstand the evolutionary history of the mitochondrial genome, the complete concatenated
amino acid sequences of the 12 standard mitochondrial genes (atp6, cox1, cox2, cox3, nadl,
nad2, nad3, nad4, nad4L, nad5, nad6 and cob) were used for phylogenetic construction by
maximum parsimony (Fig. 2).

Using three species of Saccharomycetales in the class of Saccharomycetes (Candida albicans,
Ogataea angusta and Pichia pastoris) as outgroups, four classes of Pezizomycotina species were
identified (Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes). In the
Dothideomycetes group, the clade of five species belonging to Pleosporales were grouped sepa-
rately from Botryosphaeriales and Capnodiales species, which clustered in the same clade asso-
ciated with a posterior probability support of 95%. S. bambusicola was located amongst the
species of the Pleosporales order with a high bootstrap support value of 100% and was a sister
sequence to four other species in Pleosporales.
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Table 3. Codon usage of protein-coding genes in the mitogenome of Shiraia bambusicola.

AA codon %
Stop End UAA 7.03
K Lys AAA 5.29
Y Tyr UAU 4.92
E Phe Uuu 4.9
| lle AUU 4.84
| lle AUA 4.43
N Asn AAU 4.37
L Leu UUA 2.89
R Arg AGA 2.79
F Phe uucC 2.74
S Ser AGU 2.55
| lle AUC 2.47
Y Tyr UAC 2.42
T Thr ACU 2.37
C Cys UGU 2.29
w Trp UGA 2.29
S Ser ucu 2.18
T Thr ACC 2.14
H His CAU 2.03
N Asn AAC 2.01
S Ser AGC 1.95
E Glu GAA 1.77
L Leu UuG 1.69
\Y Val GUU 1.66
M Met AUG 1.62
S Ser uccC 1.38
\ Val GUA 1.38
T Thr ACA 1.35
R Arg AGG 1.33
A Ala GCU 1.3
C Cys UGC 1.28
K Lys AAG 1.28
G Gly GGU 1.19
S Ser UCA 1.15
L Leu Cuu 1.12
D Asp GAU 1.09
Stop End UAG 1.02
Q Gin CAA 0.97
P Pro CCu 0.78
G Gly GGA 0.71
A Ala GCA 0.7
H His CAC 0.55
L Leu CcucC 0.55
w Trp UGG 0.55
T Thr ACG 0.45
P Pro CCC 0.42
(Continued)
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Table 3. (Continued)

AA codon %

P Pro CCA 0.41
Vv Val GUG 0.41
G Gly GGG 0.37
G Gly GGC 0.37
\Y Val GUC 0.36
L Leu CUA 0.29
L Leu CUG 0.23
R Arg CGU 0.23
D Asp GAC 0.19
Q Gin CAG 0.16
R Arg CGC 0.16
E Glu GAG 0.13
A Ala GCC 0.11
A Ala GCG 0.1

R Arg CGA 0.08
R Arg CGG 0.06
S Ser UCG 0.05
P Pro CCG 0.03

doi:10.1371/journal.pone.0116466.t003

Table 4. tRNAs in the mitogenome of Shiraia bambusicola.

AA Anticodon Numbers
Ala UGC 1
Arg ACG 1
Arg ucu 1
Asn GUU 2
Asp GUC 1
Cys GCA 1
Gin UuG 2
Glu uucC 1
Gly ucc 1
His GUG 2
lle GAU 1
Leu UAG 1
Leu UAA 1
Lys uuu 2
Met CAU 4
Phe GAA 1
Pro UGG 1
Ser GCU 1
Ser UGA 1
Thr uGuU 1
Trp UCA 1
Tyr GUA 1
Val UAC 3

doi:10.1371/journal.pone.0116466.t004
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heterostrophus (JX185564), Madurella mycetomatis (JQ015302), Chaetomium thermophilum (NC015893), Neourospora crassa (KC683708), Podospora
anserine (NC001329), Sporothrix schenckii (NC015923), Glomerella graminicola (CM001021), Verticillium dahliae (NC008248), Annulohypoxylon stygium
(NC023117), Penifillium marneffei (NC005256), Aspergillus niger (NC007445), Arthroderma obtusum (NC012830), Trichophyton mentagrophyte
(NCO012826), Exophiala dermatitidis (CM001238), Botryotinia fuckeliana (KC832409), Phialocephala subalpina (NC015789), Rhynchosporium agropyri
(NC023125), Peltigera membranacea (NC016957), Candida albicans (NC002653), Pichia pastoris (NC015384), and Ogataea angusta (NC014805). Candida
albicans, Pichia pastoris and Ogataea angusta were used as the outgroups. Bayesian posterior probabilities were estimated and marked above the branches

(> 99%).
doi:10.1371/journal.pone.0116466.g002

Comparative View of Dothideomycetes mtDNAs

The sequenced mitochondrial genomes of Dothideomycetes showed remarkable variation in
size, ranging from 39,030 bp (S. bambusicola) to over 154,863 bp (L. maculans) (S1 Table). The
mitochondrial genome size of S. bambusicola (39,030 bp) was the smallest among the analyzed
Dothideomycetes mtDNAs, including the orders Pleosporales, Botryosphaeriales and Capno-
diales. The tremendous change in length can mainly be attributed to the variation in introns,
intergenic regions and the presence of hypothetical proteins.

As an effective tool to derive a common evolutionary route in fungi, mitochondrial genomes
undergo complicated genome rearrangement. This gene order in S. bambusicola was compared
with those of Dothideomycetes species whose mitogenomes have been sequenced and annotat-
ed completely or nearly completely (S1 Table). Seven mitogenomes were selected from the rep-
resentative species: five in Pleosporlaes (S. bambusicola, P. nodorum, B. maydis, P. tritici-
repentis and L. maculans), one in Botryosphaeriales (N. parvum) and one in Capnodiales (M.
graminicola). As shown in Fig. 3, the sequences of protein-coding genes revealed significant
areas of conservation and the gene order exhibited considerable synteny in the Dothideomy-
cetes species, especially between Pleosporlaes species.

In the mitochondrial genome of S. bambusicola, the gene order could be identified for three
representative regions, which include block 1 (nad6-atp6), block 2 (nadI-cox3) and block 3
(genes around rns) (Fig. 1). There was little diversity in gene arrangement in block 1 when
compared with other Dothideomycetes species. In contrast, genes in block 2 underwent com-
plex rearrangements among different species and the relative positions of the genes (nad4-
nadl-nad5-nad4L) showed diverse patterns and different orientations. It is noteworthy that
the block 3 organization of S. bambusicola was unique and differed from four adjacent species
in the same order. Some specific genes were found to cluster together, indicating a strong rela-
tionship. For example, the gene pair nad2-nad3 was permanently associated in all seven of the
mitochondrial genomes analyzed, and no modifications were observed for gene pair coxI-cox2
in six species (Fig. 3A).

To investigate if a similar pattern occurred in other closely related classes, the species of
Eurotiomycetes, Leotiomycetes and Sordariomycetes were selected for genomic synteny analy-
sis. Complete or nearly complete mitogenomes published from Pezizomycotina were limited to
three classes, similar to our observations with Dothideomycetes. There was similar synteny in
gene order between Chaetothyriales, Eurotiales and Onygenales (Fig. 3B). The parallel phe-
nomenon remained when the species of Sordariomycetes were included in the analysis
(Fig. 3C). Two subclasses (Hypocreomycetidae and Sordariomycetidae) did not show marked
differences in gene arrangement. Two exceptions are the mitochondrial genome organization
of Verticillium dahliae and Podospora anserine, which have special locations of cox2, nad4L,
nad5, nad4L, cob, nad4, cox1, nadl, atp8 and atp6. The mitogenome gene arrangement of the
four species from Leotiomycetes also displayed a high degree of conservation in block 1 (cox3-
trnM) and block 3 (genes around rns), while genes in block 2 exhibited variable order com-
pared to different species (Fig. 3D). It is interesting that all genes for most of the known Pezizo-
mycotina mtDNAs were encoded on the same strand with the exception of the
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Dothideomycetes species, and the diverse positions of cox3 can be considered a class-specific
feature. Among 29 mitogenomes from four classes, the gene arrangement of Eurotiomycetes
and Sordariomycetes were the most conserved. For Leotiomycetes, four mitogenomes demon-
strated three types of gene order in block 2. There were no regular arrangements of genes in
block 2 of mtDNAs from Dothideomycetes, and some species also revealed unique locations of
genes around rns. Furthermore, the distribution of mitogenomic genes in different strands im-
proved the complexity of mitochondrial DNA sequences. In all, although more mitogenomes
of Dothideomycetes species are required for an in-depth study, the existing open-source data
allowed us to conclude that the mitochondrial gene orders in the class Dothideomycetes dis-
play more complex diversity than other species of Pezizomycotina.

Introns and Intronic ORFs

Intronic elements in the mitochondrial genomes of Dothideomycetes species exhibit sequence
variability, and intron insertion occurred irregularly in the coding genes (S2 Table). There were
differences in the number of introns and in the length and content of intronic regions, particu-
larly with regards to regions encoding open reading frames (ORFs).

Most fungal mitochondrial genomes that have been sequenced to date contain at least one
group I and few group II introns. In the Pezizomycotina subphylum (including all published
mitogenomes), the largest number of mitochondrial introns (n = 39) was documented for P.
tritici-repentis in our analysis (S2 Table), while M. graminicola is currently the only species of
filamentous fungi entirely lacking mitochondrial introns (S2 Table) [42].

There was only one intron in the coxI gene sequence of S. bambusicola, and homologs of
mobile elements were found to be inserted at a similar position (coxI) in P. tritici-repentis, L.
maculans, B. maydis and N. parvum UCRNP2. These intronic ORFs (orf352, orf324-1, orf324-
2, orf318 and orf321) share high sequence identity (S3 Table). It is noteworthy that the existing
introns of coxI genes from Dothideomycetes species were always found to contain these hypo-
thetical proteins. The complete sequence of 0rf324 appeared repeatedly in mitogenomes of P.
tritici-repentis and L. maculans. There was no identical sequence from other species, including
B. maydis in the same family (Pleosporaceae) as P. tritici-repentis. L. maculans intron II (do-
main V) from the rns gene also appeared at the same position in N. parvum, but their intronic
sequences share low identity (S2 Table). It was interesting that the intronic ORFs encoding the
genes appeared in the mitogenomes of S. bambusicola and P. nodorum less frequently and that
similar mobile elements were usually found in other Dothideomycetes species. Many unidenti-
fied intronic ORFs encoding genes were found in B. maydis, P. tritici-repentis, L. maculans and
N. parvum. Some of these were attributed to other fungal species, because the invasive ORFs
exhibited higher comparative identity with the unknown proteins from distant relative species
of filamentous fungi and even mushrooms.

Unidentified Open Reading Frames and Conserved Open Reading
Frames in the Intergenic Regions

The mitochondrial genome of S. bambusicola included functional genes that are generally
found in other species; however, unique ORFs were identified in the intergenic regions of the
unknown proteins. Three ORFs were detected in strain S. bambusicola, compared with 5 in P.
nodorum, 64 in B. maydis, 36 in P. tritici-repentis, 28 in L. maculans, 8 in N. parvum and 15 in
M. graminicola. These strains exhibited a broad spectrum of numbers of predicted ORFs, from
the lowest ORF content (three in S. bambusicola) to the highest (64 in B. maydis). This varia-
tion in the number of predicted ORFs could partly explain the variation in genome size, and
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calculation of the percent identity of each genome revealed that most divergences were found
in the intergenic regions.

In the mitogenome of L. maculans, one intergenic region contained an open reading frame
(orf221). The putative homolog of this hypothetical protein was also found in the closely relat-
ed P. tritici-repentis mitochondrial genome (0rf493). Likewise, similar ORFs were discovered
between the mitochondrial genomes of L. maculans (orf207, orf535 and orf158) and P. tritici-
repentis (orf205 and orf243). It should be noted that although orf221 (0rf493) contained the
conserved coding LAGLIDADG endonuclease region observed in other mycelial species (such
as Ceratocystis cacaofunesta and Annulohypoxylon stygium), orf158, orf205, orf207, orf243 and
orf535 sequences contained unique sequence structure features with no obviously matched re-
gions detected in other species from the NCBI database.

Other Notable Features

We found a number of repeats in the intergenic spacer (IGS) and coding sequence (CDS) re-
gions of S. bambusicola, which were classified as 17 forward (direct), 22 inverted (palindromic),
6 reverse and 25 tandem repeats (54 Table). Three repeats (P1, P2, and P3) were particularly
long. P1 was the longest repeat with 485 bp and appeared in the CDS of atpé6. Interestingly,
there are only two partial copies of the atp6 gene in the mitogenome, and neither of them en-
codes the complete atp6 protein. P2 was located in the IGS region of the trnL-trnQ gene and
the IGS of the trnM- trnH gene, and P3 appeared in the IGS sequences of 0rf250, nad3 and
trnR, and cox1. It is generally accepted that repeats can lead to genetic recombination, with the
direct and inverted repeats represented during the loop-out process giving rise to submolecules,
and a flip-flop mechanism giving rise to inversion.

In our study, the atp8 and atp9 genes only co-occurred in the mitogenome of M. gramini-
cola, while another atp9 gene was found in N. parvum. Neither the atp8 or atp9 genes were
identified from the mtDNA of five Pleosporales species; thus, only 12 genes coding for proteins
related to oxidative phosphorylation without two ATP synthase subunits were used for phylo-
genetic studies on these species. It is noteworthy that a pair of atp6 genes was found in the
mitogenome of S. bambusicola; neither CDS could individually encode the complete ATP
synthase FO subunit 6, but the combination of the two fragments could assemble the complete
gene. Their crossed region has a length of 543 bp, with the two partial genes appearing on dif-
ferent strands. This interesting phenomenon was verified by polymerase chain reaction (PCR)
and conventional sequencing methods.

Discussion

As one of the largest and most ecologically diverse classes of fungi, the comprehensive phylo-
genic reference data were derived from the combination of five genes (nucSSU, nucLSU rDNA,
TEF1, RPB1 and RPB2) for 356 isolates in 41 families of Dothideomycetes [39]. Previously, 18
members of these species have been analyzed by comparing genome features. The order Pleos-
porales comprised more genes than Capnodiales, possibly implying the use of different modes
of pathogenesis [60]. However, there are few reports of mitogenomic analysis. Although this
approach is generally regarded as useful for evolutionary analysis, it has been applied only to
Pleosporales and Dothideomycete species. To the best of our knowledge, this is the first study
describing an intraspecific comparison of Dothideomycetes mitogenomes. We used seven
complete or nearly complete mitogenomic sequences of Dothideomycetes species in this work:
two (P. nodorum and M. graminicola) cited by published reports [31,42], four (P. tritici-repen-
tis, L. maculans, C. heterostrophus and N. parvum) assembled from contigs online, and one (S.
bambusicola) sequenced by us. Analysis of mitogenomes from P. tritici-repentis, L. maculans,

PLOS ONE | DOI:10.1371/journal.pone.0116466 March 19, 2015 15/20



@' PLOS ‘ ONE

The Complete Mitochondrial Genome of Shiraia bambusicola

C. heterostrophus and N. parvum was performed using sequence data downloaded from the
NCBI database; thus, these sequences were not verified in this study (S. bambusicola) or previ-
ous studies (P. nodorum and M. graminicola). In future studies, PCR experiments should be
applied to screening and correcting possible errors in the sequence data.

As illustrated in S1 Table, the mitochondrial genome of S. bambusicola displayed a circular
DNA molecule with a length of 39,030 bp, which was the smallest of the closely related species.
In contrast, the L. maculans mtDNA sequence comprised 154,863 bp. The various sizes were
partly attributed to different intron and intergenic regions; for example, the intergenic region
of the S. bambusicola mitogenome contains just one intron and three ORFs.

The phylogeny of Shiraia and related genera are still under debate, because the relative posi-
tion of this group indicated special characteristics according to marker gene sequences (LSU
rDNA, ITS regions and tub2) [17,61]. Recently, Shiraia species were deduced to be a new fami-
ly anchored in the order of Pleosporales [18]. The phylogenetic tree based on mtDNA encoded
proteins in our work suggested that four species grouped together as sister clades to S. bambusi-
cola in the Pleosporales cluster. This new version of the relative position of S. bambusicola rein-
forces the hypothesis that Shiraia species should be included in the Pleosporales order.

Comparative analysis of gene arrangements is generally used to derive the evolutionary
route. Here, we found that although S. bambusicola has been classified into the order of Pleos-
porales, the genomic organization of S. bambusicola differed considerably from other species
(Fig. 3). Furthermore, the gene and tRNA order from Dothideomycete species seemed less con-
served than other Pezizomycotina species (Eurotiomycetes, Leotiomycetes and Sordariomy-
cetes). Protein coding genes and tRNAs appeared on different strands, which inferred a more
complex organization of their relative positions. To investigate the high variability of mito-
chondrial gene order among Dothideomycetes species, further studies are required to exploit
the additional mitogenomic sequences. tRNA genes that clustered as groups were generally re-
garded as a unique characteristic of fungal mitochondrial genomes [26], where the relevant
contents and positions always display similar features in closely related species (Fig. 3). In the
mitogenomes of Dothideomycetes species, the tRNA genes were distributed into three groups.
There were large tRNA gene clusters around the rnl gene, a conserved pattern that also ap-
peared in Eurotiomycetes, Leotiomycetes and Sordariomycetes species. The tRNA genes near
rns contained a consensus RRLV from Pleosporales species. With the exception of special fea-
tures contained by S. bambusicola, no similar order was found in other Ascomycete species.
The analysis of mitogenomic sequences from Eurotiomycetes, Leotiomycetes and Sordariomy-
cetes suggested that all genes were located on the positive strand, and arrangement of protein
coding and tRNA genes displayed high sequence conservation, whether separately or recipro-
cally. It is remarkable that Dothideomycete species always contain several genes (such as nad2,
nad3 and cox3) located on different strands, especially in M. graminicola (Capnodiales) and S.
bambusicola (Pleosporales), where the genes were distributed almost evenly between the two
strands (especially rns and rnl). To the best of our knowledge, no similar pattern has been
found in other Pezizomycotina mtDNA sequences. Kouvelis et al. [62] suggested that gene
pairs nad2-nad3, nadl-nad4, nad4L-nad5, atp6-atp8, and cob-coxI usually remain joined in
Ascomycetes, as was shown for Eurotiomycetes, Leotiomycetes and Sordariomycetes. Howev-
er, in most mitogenomes present in Dothideomycetes species, the atp8-9 genes were not pres-
ent, and the cytb-cox1 and nadl-nad4 genes were uncoupled. Only two of these gene pairs were
coupled (nad2-nad3 and nad4L-nad5) on sections, and the coxI-cox2 gene pair could be re-
garded as a typical trait for Dothideomycetes species, with the exception of M. graminicola
from Capnodiales.

There are two genetic origins (nuclear and mitochondrial) for the fungal ATP synthase. The
atp6 gene from mitochondrial DNA usually encodes an essential subunit of the ATP synthase
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proton translocating domain, and we only identified two partial segments of duplications locat-
ed in disperse positions of different strands from the mitogenome of S. bambusicola, For organ-
elle genes, the case of trans-splicing has been reported in higher plants (such as wheat [63] and
Oenothera [64]) and fungi (such as Gigaspora rosea [65]), but to the best of our knowledge, a
similar case has not been described in ATP synthase genes from fungal species. Our further
studies would focus on analysis of this gene expression and function to explore the

internal mechanism.

As the largest order in the Dothideomycetes, Pleosporales included different species [40],
most of which could be divided into epiphytes, endophytes or parasites of living leaves or
stems, hyperparasites on fungi or insects, lichens, or saprobes of dead plant stems, leaves or
bark [41,66]. Fungi belonging to the class Dothideomycetes are mostly soil-, wood- and dung-
inhabiting fungi, and the seven described here belong to pathogens from living tissues of plants.
Shiraia is a specific parasite of bamboo, infecting species of Brachystachyum densiflorum, Bam-
busa, and Phyllostachys edulis. We compared the ORFs of the intergenic regions and intronic
OREFs of S. bambusicola with other species, including plant and animal fungi, and no potential
mobile elements were found with high similarities. Seven Dothideomycete species used in this
study are generally regarded as plant pathogens, and the complexity of gene arrangements in
their mitogenomes inferred a possible impression from hosts to parasites. It is anticipated that
further mitogenomic analyses would improve the understanding of plant-Dothideomycete
pathogen interactions.
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