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Background: Liver hepatocellular carcinoma (LIHC) remains a global health challenge
with a low early diagnosis rate and high mortality. Therefore, finding new biomarkers for
diagnosis and prognosis is still one of the current research priorities.

Methods: Based on the variation of gene expression patterns in different stages, the
LIHC-development genes (LDGs) were identified by differential expression analysis. Then,
prognosis-related LDGs were screened out to construct the LIHC-unfavorable gene set
(LUGs) and LIHC-favorable gene set (LFGs). Gene set variation analysis (GSVA) was
conducted to build prognostic scoring models based on the LUGs and LFGs. ROC curve
analysis and univariate and multivariate Cox regression analysis were carried out to verify
the diagnostic and prognostic utility of the two GSVA scores in two independent datasets.
Additionally, the key LCGs were identified by the intersection analysis of the PPI network
and univariate Cox regression and further evaluated their performance in expression level
and prognosis prediction. Single-sample GSEA (ssGSEA) was performed to understand
the correlation between the two GSVA enrichment scores and immune activity.

Result: With the development of LIHC, 83 LDGs were gradually upregulated and 247
LDGs were gradually downregulated. Combining with LIHC survival analysis, 31 LUGs and
32 LFGs were identified and used to establish the LIHC-unfavorable GSVA score (LUG
score) and LIHC-favorable GSVA score (LFG score). ROC curve analysis and univariate/
multivariate Cox regression analysis suggested the LUG score and LFG score could be
great indicators for the early diagnosis and prognosis prediction. Four genes (ESR1,
EHHADH, CYP3A4, and ACADL) were considered as the key LCGs and closely related to
good prognosis. The frequency of TP53 mutation and copy number variation (CNV) were
high in some LCGs. Low-LFG score patients have active metabolic activity and a more
robust immune response. The high-LFG score patients characterized immune activation
with the higher infiltration abundance of type I T helper cells, DC, eosinophils, and
neutrophils, while the high-LUG score patients characterized immunosuppression with
the higher infiltration abundance of type II T helper cells, TRegs, and iDC. The high- and
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low-LFG score groups differed significantly in immunotherapy response scores, immune
checkpoints expression, and IC50 values of common drugs.

Conclusion: Overall, the LIHC-progression characteristic genes can be great diagnostic
and prognostic signatures and the two GSVA score systems may become promising
indices for guiding the tumor treatment of LIHC patients.

Keywords: hepatocellular carcinoma, prognostic stratification system, gene set variation analysis, PPI, tumor
infiltrating immune cell

INTRODUCTION

Liver cancer is the sixth most commonmalignant tumor and the
fourth most common cause of cancer-related death (Villanueva
2019). Cirrhosis, mostly as a result of hepatitis virus infection or
alcohol abuse, is currently considered to be the main cause of
liver cancer (Marengo et al., 2016). Liver hepatocellular
carcinoma (LIHC) is the most common type of liver cancer.
The main treatment strategies for LIHC are surgery,
radiotherapy, chemotherapy, and palliative therapies (Llovet
et al., 2015). Regrettably, these treatments are less effective in
patients with advanced LIHC (Tian et al., 2018). Therefore, it is
urgent to explore significant diagnosis and prognosis indicators
of LIHC. The wide use of high-throughput sequencing
technology in Liver cancer research has revealed many
promising targets for the early diagnosis and evaluation of
prognosis (Zhang et al., 2017; Calderaro et al., 2019). AFP is
the most common biomarker in LIHC for early diagnosis and
tumor recurrence surveillance (Pinero et al., 2020). DKK1 has
been found highly expressed in HCC tissue and proposed to be a
novel HCC biomarker with a very good diagnostic performance
(Shen et al., 2012). Higher expression of Glypican-3 was
significantly associated with a worse prognosis in LIHC (Xiao
et al., 2014). The upregulated expression of TBK1 can enhance
tumor immune infiltration and predict the poor prognosis of
patients with LIHC (Jiang et al., 2021). Other studies develop
prognostic models based on gene sets and carry out validation
analyses (Huo et al., 2020; Zhou et al., 2020). Nevertheless, most
studies do not take the changes of gene expression patterns in
different stages of tumors into account.

In our study, we identified LIHC-unfavorable gene set and
LIHC-favorable gene set by integrating gene expression data and
corresponding clinical data from TCGA. Gene set variation
analysis (GSVA) was used to calculate the enrichment score of
LIHC patients and construct two scoring systems. The diagnostic
and prognostic capability of two scoring systems were verified in
multiple datasets. By integrating the PPI network and univariate
Cox regression analysis of all LCGs, ESR1, EHHADH, CYP3A4,
and ACADL were determined as the key LCGs. Subsequently, we
investigate the expression level and prognostic correlation of the
key LDGs in different HCC datasets. Additionally, ssGSEA
analysis was used to explore the correlation of the two gene
sets with gene alteration and immune infiltration. These findings
indicate that the two GSVA scoring systems may become reliable
molecular markers and provide targets for the diagnosis and
prognosis of LIHC.

MATERIALS AND METHODS

Data Collection
The gene expression data and corresponding clinical features of
LIHC patients were downloaded from International Cancer
Genome Consortium (ICGC) (Zhang et al., 2019), The Cancer
Genome Atlas (TCGA) (Tomczak et al., 2015), and Gene
Expression Omnibus (GEO) (Barrett et al., 2013). TCGA
LIHC cohorts containing 50 control samples and 374 HCC
samples (175 stage I samples, 87 stage II samples, 86 stage III
samples, and 26 stage IV samples) were collected for subsequent
analyses. In addition, we obtained gene expression array and
prognostic information of GSE14520 cohorts (374 HCC samples
and 50 control samples) and ICGC LIHC cohorts (212 HCC
samples and 177 control samples) as validation sets. The genes
with lower expression and samples with no prognostic
information were excluded.

Identification of LIHC-Development Genes
The “normalizeBetweenArrays” function in “limma” R package
was performed to background adjustment and quantile
normalization. In TCGA datasets, DEGs between normal
group and I-IV HCC stage groups were respectively identified
utilizing the “limma” package with a fold-change of 1.5 and an
adjusted p-value of <0.05 (Ritchie et al., 2015). We defined LDG
as gradually upregulated DEGs (logFCstage I vs. control <
logFCstage II vs. control < logFCstage III vs. control <
logFCstage IV vs. control) and downregulated DEGs
(logFCstage I vs. control > logFCstage II vs. control >
logFCstage III vs. control > logFCstage IV vs. control).
Potential functions and enriched pathways of LDGs were
further explored by the “clusterProfiler” package (Yu et al.,
2012), and p < 0.05 was considered as significant.

Establishment of the LIHC-Progression
Gene Set Variation Analysis Score
According to the median expression level of LDGs, all samples
were divided into high/low groups and subjected to
Kaplan–Meier survival curves analyses, and p < 0.05 was
considered to be statistically significant. Those LDGs that
drastically influenced survival were considered as LIHC-
progression characteristic genes (LCGs) and established two
prognostic gene sets, including the LIHC-unfavorable gene set
(LUGs, related to poor prognosis) and the LIHC-favorable gene
set (LFGs, related to good prognosis). Several external microarray
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datasets (GSE10143, GSE14520, GSE22058, GSE25097,
GSE36376, GSE46444, GSE54236, GSE63898, GSE64041, and
GSE76427) were performed to validate the differential
expression of LCGs between HCC samples and adjacent
normal samples.

Gene Set Variation Analysis (GSVA) is a non-parametric,
unsupervised algorithm for calculating Normalized Enrichment
score (NES) of pathways and functional annotation based on gene
expression array, which was extensively utilized in cancer-related
studies (Liu et al., 2021a; Liu et al., 2021b; Liu et al., 2021c). Next,
we further performed GSVA approach based on the two
prognostic gene sets to calculate the NES of each patient as
LIHC-unfavorable GSVA score (LUG score) and LIHC-favorable
GSVA score (LFG score) using the “GSVA” R package
(Hanzelmann et al., 2013). Receiver operating characteristic
curve (ROC) analysis was employed to illustrate the diagnostic
veracity of two GSVA scores in different HCC cohorts (TCGA,
ICGC, and GSE14520). Patients in TCGA, ICGC, and GSE14520
cohorts were divided into high/low-risk groups according to the
median scores and subsequently carried out to Kaplan–Meier
survival analysis.

Clinical Correlation Analyses of the LUG
Score and LFG Score
To investigate the impact of the two GSVA scores on clinical
characteristics, we further explore the relationship of the LUG
score and LFG score with other clinical characteristics (age,
gender, Child grade, T stage, M stage, N stage, and race). In
addition, the univariate Cox regression analysis was employed to
evaluate the correlation between prognosis and clinical
characteristics, and multivariate Cox regression analysis was
applied to analyze the independent prognostic ability of the
risk factors.

Mutation and Immunohistochemistry
Analyses of LCGs
To determine the somatic mutations of HCC patients between
high- and low-GSVA score groups, the mutation annotation
format (MAF) from the TCGA database was generated using
the “maftools” R package (Mayakonda et al., 2018). The Human
Protein Atlas is a human protein online database including
normal and neoplastic tissues (Uhlen et al., 2010). We utilized
the Human Protein Atlas web tool to validate the abnormal
expression of LCGs between HCC and liver tissues at the
protein level.

Exploration of the Molecular Mechanism
The GSVA method was used to quantify the activity of molecular
pathways and find significantly correlated pathways with two
GSVA scores. The differences in NES between the high- and low-
GSVA scores groups were compared by independent-samples
t-tests, and p < 0.05 was regarded as statistically significant. Gene
Ontology (GO) enrichment analysis was performed on the DEGs
identified by the “limma” R package between the high- and low-
LUG score groups. Gene set enrichment analysis (GSEA) was

applied to evaluate the immune response between the high- and
low-LUG score groups, and adjusted p-value < 0.05 was
considered to be different (Subramanian et al., 2005). The
gene set “c2.cp.kegg.v6.2.symbols.gmt” and
“h.all.v7.2.symbols.gmt” were chosen as the reference gene set.

Construction of PPI Network and
Identification of the Hub LCGs
A PPI network between LDGs was constructed through the
Search Tool for the Retrieval of Interacting Genes (STRING)
online tool (Szklarczyk et al., 2021). Nodes with interaction scores
>0.9 and containing LCGs were imported to the Cytoscape, a
software for visualizing complex networks. Additionally,
univariate regression analysis was utilized to evaluate the
prognostic relevance of the LCGs. The key LCGs were
screened out and the selection criteria was the number of
adjacent nodes >4 in the network and p-value <0.05 in
prognostic analysis. The Gene Set Cancer Analysis (GSCA)
database integrates comprehensive cancer information from
TCGA (Liu et al., 2018). We explored aberrant LCG
expression in several types of cancer utilizing the GSCA
online tool.

Comprehensive Analysis of the Key LCGs
The difference in expression level of key LCGs between tumor
and normal samples were validated in various datasets using
independent-samples t-test procedure. And the variation of the
key LCGs’ expression pattern as tumor stage increased was
verified by the Gene Expression Profiling Interactive Analysis
(GEPIA) database (Tang et al., 2017). Simultaneously, the
external validation sets (ICGC and GSE14520) were carried
out to Kaplan–Meier survival analysis between high- and low-
expression groups, which were divided by the median expression
value of the key LCGs. In order to further confirm the
independent prognostic ability of each key LCGs, we
combined the clinical features with the key LCGs to perform
multivariate analyses based on TCGA and ICGC data.
Furthermore, the GSCA database was employed to investigate
the potential mechanism of abnormal expression of key LCGs in
multiple aspects, including pathway activity and methylation.
Respective co-expression networks of the key LCGs in HCC were
achieved through the HCCDB online database (Lian et al., 2018),
and then input into Metascape for gene annotation (Zhou et al.,
2019).

Immune Infiltration Analysis and Drug
Susceptibility Analysis
Single-sample gene set enrichment analysis (ssGSEA) (Barbie
et al., 2009) was conducted to quantify infiltration levels for 24
different immune cell types in TCGAHCC samples (Bindea et al.,
2013). The correlation between prognostic signatures and
immunocyte infiltration levels was evaluated using the
“Pearson” approach. The difference in the distribution of
immunocyte infiltrating levels between high- and low-GSVA
groups was analyzed by Wilcoxon test. The ESTIMATE score
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of each sample, comprising StromalScore and ImmuneScore, was
calculated using the R package “ESTIMATE” (Yoshihara et al.,
2013). The distinction in immune infiltrating level and the
ESTIMATE score between high- and low-score groups were
analyzed by Wilcoxon test. Immune checkpoint inhibitor (ICI)
was an advanced method for activating antitumor immunity
(Topalian et al., 2015). Hence, the relationship between the
GSVA scores and six common inhibitory checkpoint
molecules (CD274, CTLA4, HAVCR2, LAG3, PDCD1, and
TIGIT) was assessed to speculate the immunotherapy response
targeting ICIs. The Tumor Immune Dysfunction and Exclusion
(TIDE) score and Tumor microenvironment evaluation (TME)
score are two different computational models for predicting
response to immune checkpoint blockade (ICB) (Jiang et al.,
2018; Zeng et al., 2021). We uploaded the TCGA transcriptome
profiles to the TIDE web and then obtained every patient’s TIDE
score, and TME score was computed by “TMEscore” R packages.
Moreover, to compare the therapeutic effects of
chemotherapeutic drugs in the different score groups, we
measure the semi-inhibitory concentration (IC50) values of
commonly used chemotherapeutic drugs for LIHC by the
“pRRophetic” package (Geeleher et al., 2014).

Statistical Analyses
All statistical analyses were conducted via R software (Version
3.6.7). The Student’s t-test was used for statistical comparisons.
Spearman’s correlation was applied for the analysis of the
correlation. The Benjamini–Hochberg false discovery rate
(FDR) method was used for p-value adjustment. Fisher’s test
was used to identify the significant GO terms. A p-value <0.05
was regarded as statistically significant. The cut-off value of
continuous variables, such as gene expression and immune
infiltration level, was median.

RESULTS

Identification of the LIHC-Development
Gene
The general analysis flow of our study is shown in Figure 1. We
screened out a total of 487 common upregulated DEGs, and 892
common downregulated DEGs were identified by the intersection
of DEGs between different subgroups (Figure 2B). Among them,
83 DEGs were gradually upregulated and 247 DEGs were
gradually downregulated as the stage evolved. These DEGs

FIGURE 1 | Flow chart of our study.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8069894

He et al. LIHC-Progression Characteristic Gene Sets

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


may have a sustained effect on HCC progression so they are
considered as the LIHC-development genes (LDGs). In the result
of the GO analysis, the TRGs were mainly associated with the
regulation of cell cycle, chromosome segregation, mitotic nuclear
division, regulation of inflammatory response and immune
effector process, response to drug, and organelle fission
(Figure 2F). The result of GO analysis showed that the LDGs
were enriched in several immunoregulation ways, such as
regulation of the immune effector process, cytokine
production involved in immune response, regulation of
leukocyte-mediated immunity, and neutrophil-mediated

immunity (Figure 2C). As for the KEGG pathway enrichment,
the LDGs were mainly associated with the chemical
carcinogenesis, PPAR signaling pathway, peroxisome, and
drug metabolism of cytochrome P450 (Figure 2D).

Two Groups of LDGs With Opposite
Prognostic CharacteristicsWere Picked out
Kaplan–Meier (KM) curve analysis discovered that 63 LDGs were
prominently associated with clinical outcome and named LIHC-
progression characteristic genes (LCGs). Among them, the

FIGURE 2 | Differential expression gene analysis and functional enrichment analysis. (A)Manhattan plot showed differentially expressed genes (DEGs) in different
stages of LIHC. (B) Venn plot of up/downregulated common DEGs in LIHC stage I–IV. (C) GO enrichment analysis of LIHC-development genes. (D) KEGG pathway
analysis of LIHC-development genes.
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LIHC-unfavorable gene set (LUGs) contained 31 LCGs related to
poor prognosis, while the LIHC-favorable gene set (LFGs)
incorporated 32 LCGs linked to good prognosis (Table 1).

Kaplan–Meier (KM) curves based on TCGA cohorts of LUGs
and LFGs are shown in Figures 3A,B. Additionally, all LCGs were
differentially expressed between HCC and adjacent noncancerous

TABLE 1 | LIHC-unfavorable gene set and LIHC-favorable gene set.

Gene set Gene symbol

LIHC unfavorable genes PYGO2, FAM189B, EHMT2, TARBP1, FLVCR1, ADAM15, TIGD1, LAMC1, LPL, EPHX4, EGFL6, CREG2, NXPH4, CEP72,
HEY1, PSPH, H4C8, HPDL, GNAZ, NT5DC2, ATP6V0D2, NANOS1, MEX3A, HES2, CHML, GNG4, CYP19A1, ATP8A2,
STK39, PNCK, ETV4

LIHC-favorable genes VIPR1, CPEB3, ESR1, ADRA1A, CD5L, RANBP3L, GHR, HAO2, CYP3A43, ACADL, EPHX2, TERB2, IYD, CCT6B,
DMGDH, GBP7, RDH16, SEC14L3, ABCA9, EHHADH, DHRS1, CYP3A4, MOGAT1, BHMT, SLC38A4, PACRG, ACOT12,
TTPA, HDC, CYP8B1, HLF, DRD1

HCC, hepatocellular carcinoma; TCGA, the cancer genome atlas; ICGC, international cancer genome consortium; GEO, gene expression omnibus; LDGs, LIHC-development gene;
LCGs, LIHC-progression characteristic gene; LUGs, LIHC-unfavorable gene set; LFGs, LIHC-favorable gene set; LUG score, LIHC-unfavorable GSVA score; LFG score, LIHC-favorable
GSVA score; DEGs, differential expressed genes; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; KM, Kaplan–Meier; ROC, receiver operating characteristic;
AUC, area under curve; OS, overall survival; GSVA, gene set variation analysis; NES, normalized enrichment score; GSEA, gene set enrichment analysis; ssGSEA, single sample gene set
enrichment analysis.

FIGURE 3 | Survival analysis. (A) KM survival curve of 10 most significant LIHC-unfavorable genes. (B) KM survival curve of 10 most significant LIHC-
favorable genes.
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tissue in multiple validation datasets from different platforms
(Supplementary Figure S1). IHC analyses from HPA database
also confirmed aberrant expression of LCGs in tumor tissue
(Supplementary Figure S2).

LIHC-Progression GSVA Score Could
Effectively Predict Prognosis for LIHC
Patients
Based on two prognosis-related gene sets (LUGs and LFGs), we used
GSVA algorithm to construct two LIHC-progression GSVA scores,
named LIHC-unfavorable GSVA score (LUG score) and LIHC-

favorable GSVA score (LFG score) respectively. Obviously, the LUG
score gradually increased as the tumor progresses in HCC patients,
while the LFG score was complete opposite (Figure 4A). ROC
analysis proved that both LUGs and LFGs had great diagnostic
accuracy in diverse independent verification datasets, among which
AUC = 0.987 and 0.972 in TCGA, AUC = 0.966 and 0.927 in
GSE14520, and AUC = 0.959 and 0.961 in ICGC (Figures 4B–D).
As shown in Figures 4E–G, survival analyses indicated patients from
the low-LFG score group or high-LFG score group had a longer OS
than those from the high-LFG score group or high-LFG score group.
According to the univariate/multivariate Cox regression analysis,
TNM stage, LUG score, and LFG score can serve as independent

FIGURE 4 | Diagnostic and prognostic abilities of LIHC-unfavorable GSVA score (LUG score) and LIHC-favorable GSVA score (LFG score). (A) Box plot of LUG
score and LFG score in different LIHC stages. (B–D) ROC curves analysis of LUG score and LFG score in TCGA, ICGC and GSE14520. (E–G) Survival analysis of LUG
score and LFG score in TCGA, ICGC and GSE14520.
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predictors to evaluate the prognosis of HCCpatients (Figures 5A,B).
Subsequently, we explored the relevance between the GSVA scores
and other clinicopathological parameters. The result indicated the
LFG score was significantly related to T stage, and the LUG score has
a marked correlation with T stage, N stage, and race (Figure 5C).

Genetic and Transcriptional Alterations of
GSVA Scores and LCGs in LIHC
Both the high-LUG score group and low-LFG score group had a
higher TP53 mutation rate than the low-score groups (Figures
6A–D). The prognosis of patients with TP53 mutations was

significantly worse than those with wild TP53 (Figure 6E).
Because of the high mutation frequency and poor prognostic
feature of TP53, we evaluated the relationship between TP53
mutation and LCGs expression. The results showed that the
expression levels of 21 of the 63 LCGs were significantly
associated with TP53 mutation status (Supplementary
Figure S3).

We found high CNA frequency in patients who seemed to
presage poor prognosis (Figure 6F) and prevalent copy number
alterations in all LCGs (Figure 6G). LCGs with CNV gain, such as
NT5DC2, GNAZ, and HPDL, were significantly elevated in LIHC
samples, while LCGs with CNV loss, such as CYP3A4, GHR, and

FIGURE 5 | Clinical correlation analyses and of LUG score and LFG score. (A,B) Univariate and multivariate Cox regression analysis. (C) Correlation of LUG score
and LFG score with clinical features.
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HLF, were decreased in LIHC samples, suggesting that CNV
might regulate the mRNA expression of LCGs (Figure 6H).
However, some LCGs with CNV loss, such as EHMT2 and
HEY1, showed upregulated expression, while other LCGs with
abnormal expression showed no differences of frequency between
CNV gain and loss. Hence, although CNV can explain expression
variation in many LCGs, CNV is not the only factor involved in
the regulation of mRNA expression (Sebestyen et al., 2016).

Potential Molecular Mechanism of Two
GSVA Scores
Both the high-LFG score group and low-LUG score group were
significantly enriched for metabolisms, such as fatty acid
metabolism, bile acid metabolism, and xenobiotic metabolism,
while the activity of pathways related to cell cycle, such as G2M
checkpoint, mitotic spindle, and DNA repair mitotic spindle
enriched significantly in the low-LFG score group and high-

LUG score group (Figures 7A,B). GO enriched the annotation of
upregulated DEGs in the high-LUG score group showed the
significant activated functional pathways related to cell
differentiation, including differentiation regulation of the
epidermal cell and epithelial cell (Figures 7C,D). It is worth
noting that the immune responses were mainly active in the high-
LUG score group, as revealed by GSEA (Figure 7E).

Four Key LCGs Were Screened out by PPI
Network Analysis and Univariate Cox
Regression Method
A PPI network, composed of 77 nodes and 152 edges, was built
using the STRING database (Figure 8A). As shown in Figure 8B,
the importance of LCGs was ordered by their number of adjacent
nodes in the network. On the other hand, a total of 40 LCGs could
affect the outcome of HCC patients according to univariate Cox
regression analysis (Figure 8C). Eventually, four LFGs (ESR1,

FIGURE 6 | Genetic alteration analysis. (A) Mutation landscape of high-LUGs score group, (B) low-LUGs score group, (C) high-LFGs score group, and (D) low-
LFGs score group. (E) KM curve of TP53mutation. (F) KM curve of CNA. (G) The top 10 LCGswith the highest frequency of CNV. (H) Frequencies of CNV gain, loss, and
non-CNV among LCGs.
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FIGURE 7 | The potential molecular mechanism of the prognostic score. (A,B) GSVA-HALLMARK for LFG score and LUG score. (C) The heatmap of DEGs
between high- and low-LUG score groups. (D) GO function annotation of DEGs. (E) GSEA using immune gene set.
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EHHADH, CYP3A4, and ACADL) were selected as the key LCGs
by integrated analysis of survival evaluation and PPI network
(Figure 9D). Pan-cancer research indicated these four key LCGs
also apparently decreased in a variety of cancers (Figure 8E).

Validation of Key LCGs Expression and
Prognosis in External Data
In the two external datasets (ICGC and GSE14520), gene
expression levels of four key LCGs were also lower in the liver
cancer tissue than adjacent tissue, which is in line with

previous researches (Figure 9A). Moreover, the box plot of
gene expression at different stages obtained from GEPIA
proved that four key LCGs possessed similar expression
patterns in the HCC progression (Figure 9B). KM survival
curves based on ICGC and GSE14520 cohorts demonstrated
key LCGs performed great efficiency for distinguishing
prognostic different HCC patients (Figure 9C). Combining
the clinical features with the key LCGs expression,
multivariate Cox regression validated that the key LCGs
were independent prognostic factors and protective factors
(Figure 9D; Supplementary Figure S4). Pathway analyses of

FIGURE 8 | PPI network and univariate Cox regression analysis. (A) PPI network of the LDGs. (B) The top 15 genes ordered by the number of nodes. (C)Univariate
Cox regression analysis of LCGs. (D) Venn diagram displaying the key LCGs. (E) Pan-cancer analysis of key LCGs from GSCA database.
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GSCA showed that all key LCGs might participate in
Hormone pathways, and EHHADH is probably connected
with the RTK pathway (Supplementary Figure S5A).
Meanwhile, the methylation level of ESR1 and CYP3A4 in
tumor samples was significantly higher than that in normal

samples, implying that methylation could be one of the factors
leading to abnormal gene expression (Supplementary Figure
S5B). Single gene enrichment analysis based on HCCDB and
Metascape revealed that the key LCGs had remarkable
correlation with metabolism pathways, which was in

FIGURE 9 | Validation of key LCGs in expression level and prognostic signification (A) The expression level of key genes in LIHC tissues and normal tissues based
on ICGC and GSE14520. (B) Differentiated expression of key genes in different LIHC stages based on the GEPIA database. (C) KM plots of key LCGs based on ICGC
and GSE14520. (D) Multivariate Cox regression of key LCGs. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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keeping with previous results on GSVA scores
(Supplementary Figure S6).

Immune Infiltration and Drug Susceptibility
Analysis
We performed the ssGSEA algorithm to assess the association
of the abundance of immune cells with two GSVA scores and
the key LCGs. As shown in Figures 10A,B, the LFGs score
similar to the key LCGs, were positively correlated with Th1
cells, DC, Eosinophils and Neutrophils, while negatively
correlated withTh2 cells, TReg and iDC. Interestingly, the
LFGs score performed oppositely in these immune cells
compared with the LFGs score (Figures 10A,B). Tumor
purity in the high-LFG score group was significantly higher

than those in the low-LFG score group, and StromalScore,
ImmuneScore, and ESTIMATEScore in the low-LFG score
group were significantly higher than those in the high-LFG
score group (Figure 10C). Chemokines involved in the
immunosuppressive process induced by Tregs (IL-4, IL-35,
and TGF-β) were also significantly upregulated in the high-
LUG score group and low-LFG score group.

Immunotherapy Response and Drug
Susceptibility Analysis
Subsequently, we analyzed the correlation between GSVA scores
and multiple immunotherapy response-related indices to assess
their impacts on immunotherapy. Patients with low-LUG scores
get a higher TIDE score and lower TME score than those with

FIGURE 10 | Evaluation of immune infiltration (A) Correlation heatmap of LFG score, LUG score and key LCGs with 24 immune cells. The cross indicates no
significance. (B) Immune infiltration score in the high- and low-LUG score group. (C) Correlations of LUG score with immune score, stromal score, ESTIMATEScore and
tumor purity. (D) Expression of the immune suppressive cytokines between high- and low-LUG/LFG score group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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high-LUG score (Figure 11A). In addition, we investigated the
associations between immune checkpoints and our GSVA scores.
Figure 10E shows that several immune checkpoints were
differentially expressed in the two groups, including PD-1,
PD-L1, and CTLA-4 (Figure 11B). These results demonstrated
that patients with low LFG scores tended to have a better
immunotherapy response. We next selected chemotherapy
drugs recommended for liver cancer treatment by AJCC
guidelines to evaluate the sensitivities of patients in the low-
and high-GSVA score groups to these drugs. Interestingly, we
found that the patients in the high-LUG score group or low-LFG
score group had lower IC50 values for Sorafenib, Doxorubicin,
Doxorubicin, and Cisplatin. Together, these results showed that
LUG score and LFG score were related to drug sensitivity
(Figure 11C).

DISCUSSION

LIHC is a common digestive system tumor with high aggressiveness
and poor prognosis. LIHC is insensitive to conventional
radiotherapy and chemotherapies; consequently, surgery becomes
the main treatment (Novikova et al., 2017). Unfortunately, only
30%–40% of LIHC patients are eligible for surgical resection, and the
recurrence rate after surgery is very high (Cao et al., 2012). Therefore,
it is urgently needed to explore reliable biomarkers that can be
regarded as potential diagnostic and therapeutic targets.

With the rapid progress and widespread application of high-
throughput sequencing technology, integrated bioinformatics
analysis has emerged as a promising approach to explore
various diagnostic and prognostic biomarkers for different
tumors. In our research, LIHC data from TCGA were used for

FIGURE 11 | Drug sensitivity analysis. (A) TIDE scores and TME score between high- and low-LUG/LFG score group. (B)Correlation analysis of two GSVA scores
and six immune checkpoint genes. (C) Relationships between chemotherapeutic sensitivity and both LFG score and LUG score. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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bioinformatics analysis to identify genes that were differentially
expressed in different stages. Interestingly, we found gene
expression patterns of some DEGs incrementally or
digressively changed with LIHC development. For example, a
gene may be obviously differentially expressed in the advanced
stage but not in the early stage. Thus, we considered these LIHC-
development genes may have an impact on cell malignant
transformation and tumor evolution. With tumor
deterioration, there were 330 LDGs screened out, including 83
LUGs gradually upregulated and 247 LFGs gradually
downregulated. Additionally, GO functional enrichment
analysis indicated that LDGs were significantly involved in the
regulation of immunity. Results fromKEGG pathway enrichment
analysis manifested LDGs were enriched for the chemical
carcinogenesis and PPAR signaling pathway.

After considering the prognostic factors, the number of LDGs
was further reduced to 31 LUGs and 32 LFGs. It has been reported
that certain LUGs and LFGs are related to the formation and
regulation of tumor progression. EMHT2 encodes a
methyltransferase that is significantly associated with HCC
progression and aggression (Wei et al., 2017). CHML promotes
HCC metastasis and leads to poor survival, early recurrence, and
more satellite nodules (Chen et al., 2019). STK39 contributes to the
progression of HCC by the PLK1/ERK signaling pathway (Zhang
et al., 2021). ARID2 expression significantly decreased in metastatic
HCC tissues, showing a negative correlation with pathological grade
and organ metastasis, and a positive association with survival of
HCC patients (Jiang et al., 2020). These results confirmed the
possibility that LUGs and LFGs can be used as a prognostic
model for LIHC.

In the previous studies, it is the common way that a gene set is
analyzed by Cox regression and every gene can get a coefficient
that can construct the prognostic model. Nevertheless, because of
the heterogeneity of the tumor and the limitations of the sample
size, the coefficient of a gene is almost impossible to determine.
Thus, we took advantage of GSVA methods to calculate
individual samples’ NES as prognostic features based on LUGs
and LFGs. ROC curve analysis and KM analysis suggested the two
GSVA scores had precise diagnosis and prognosis capacity, which
were verified in the other two independent LIHC datasets.
Univariate and multivariate Cox regression analysis also
substantiated that LUG score and LFG score were independent
prognostic factors for LIHC.

Four LCGs (ESR1, EHHADH, CYP3A4, and ACADL) were
identified as key prognosis-related LCGs based on a combination of
the PPI network and univariate Cox regression analysis. CYP3A4
encodes a member of the cytochrome P450 superfamily of enzymes
and can influent the chemoresistance of LIHC thus leading to a poor
prognosis (Ashida et al., 2017). ESR1 has been a focus in breast
cancer, and its mutation is a common cause of acquired resistance
(Dustin et al., 2019). ACADL restrains hepatocellular carcinoma by
targeting Hippo/YAP signaling (Zhao et al., 2020). We have reason
to believe the potential effects of these genes to LIHC, although
exploration is still insufficient now.

Through the research on the molecular mechanism of
prognostic signatures and score models, we found that the
high-LFG score group with a poor prognosis was remarkably

enriched in the active metabolism, while the high-LUG score
group with a poor prognosis not only exhibited low immune
response and metabolic activity but also involved cell cycle
regulation. The key LCGs belonged to protective factors and
were involved in the metabolic process in HCC. Active
metabolism was considered as one of the important signatures
of a good prognosis of HCC (Yang et al., 2020; Liu et al., 2021c).

As a continuous breakthrough in the field of immunotherapy,
emerging research shows that the tumor microenvironment can
regulate cancer progression (Hinshaw and Shevde 2019).
Increasing evidence shows that LIHC tissue is often infiltrated
by many types of Immune cells (Ringelhan et al., 2018). Th1 cells
participate in effective anti-cancer response but Th2 cells show a
low cytolytic and antigen-presenting activity. Increase of T2 cells
and decrease of T1 cells in intra-tumor are inversely associated
with HCC patient survival (Foerster et al., 2018). Our research
showed Th2 cells were significantly reduced in the high-LUG
score group with a poor prognosis.

DCs play a key role in the initiation and regulation of the
immune response. Mature DCs can guide the body to produce a
specific immune response and play an anti-tumor role. On the
other hand, immature DCs can lead to immune tolerance by
activating the body to produce regulatory T cells, anergic T cells,
or tolerant T cells (Dhodapkar et al., 2001). In this study, we
found that high infiltration of immature DCs mainly happened in
the high-LUG score group, while LUG score was negative with
infiltration of Mature DCs.

Tregs can promote immunosuppression via secreting immune
suppressive cytokines (IL-10, IL-35, TGF-β) or expressing co-
inhibitory molecules such as CTLA-4, PD-1, LAG-3, and TIGIT
(Josefowicz et al., 2012; Kumar et al., 2018). In the present study,
Tregs are upregulated in the high-LUG score group and low-LFG
score group. Additionally, cytokines (IL-10, IL-35, TGF-β)
related to the immunosuppression process and co-inhibitory
checkpoints (CTLA-4, PD-1, and LAG-3) were all upregulated
in the high-LUGs score group, which validated that the
immunosuppression induced by Tregs exists in high-LUGs
score tumors.

Immune checkpoint inhibitors can block immune checkpoints on
the cell membrane, which become a promising strategy in the
treatment of cancer. Although a variety of immune checkpoint
inhibitors has been widely applied in the front-line treatment of
HCC, many advanced LIHC patients are resistant to immune
checkpoint therapy (Donisi et al., 2020). Our study reveals
multiple immune checkpoints (like PD-1, PD-L1, and CTLA4)
expression upregulated in high-risk groups. Low TIDE score and
high TME score mean a high probability of response to immune
checkpoint blockade therapy. We observed that TME scores were
significantly higher in high-LFG score groups than those with low-
LFG score groups and TME score is completely opposite. Meanwhile,
patients with low LFG scores had high expression of multiple
immune checkpoints (CTLA4, CD247, HAVCR2, LAG3, PDCD1,
and TIGIT). Therefore, we estimate the LFG score possibly can
predict the response of immune checkpoint therapy, and combined
immunotherapy may be a better choice for the treatment of LIHC.

Nonetheless, several limitations were notable in our study.
First, since all data were collected retrospectively, the potential
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bias of clinicopathological features is inevitable. Second, the two
gene sets may be too large to economize on the sequencing costs.
Finally, large-scale prospective studies and functional and
mechanistic experimental studies are needed to support our
findings.

CONCLUSION

In summary, we discover two LIHC-progression characteristic
gene sets and created two LIHC-progression GSVA scores with
great diagnostic and prognostic values for hepatocellular
carcinoma. Our findings are of great importance in developing
new prognostic markers and molecular targets for LIHC.
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