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Abstract: The unscented Kalman filter (UKF) can effectively reduce the linearized model error and the
dependence on initial coordinate values for indoor pseudolite (PL) positioning unlike the extended
Kalman filter (EKF). However, PL observations are prone to various abnormalities because the
indoor environment is usually complex. Standard UKF (SUKF) lacks resistance to frequent abnormal
observations. This inadequacy brings difficulty in guaranteeing the accuracy and reliability of indoor
PL positioning, especially for phase-based high-precision positioning. In this type of positioning,
the ambiguity resolution (AR) will be difficult to achieve in the presence of abnormal observations.
In this study, a robust UKF (RUKF) and partial AR (PAR) algorithm are introduced and applied in
indoor PL positioning. First, the UKF is used for parameter estimation. Then, the anomaly recognition
statistics and optimal ambiguity subset of PAR are constructed on the basis of the posterior residuals.
The IGGIII scheme is adopted to weaken the influence of abnormal observation, and the PAR strategy
is conducted in case of failure of the conventional PL-AR. The superiority of our proposed algorithm
is validated using the measured indoor PL data for code-based differential PL (DPL) and phase-based
real-time kinematic (RTK) positioning modes. Numerical results indicate that the positioning accuracy
of RUKF-based indoor DPL is higher with a decimeter-level improvement compared that of the
SUKF, especially in the presence of large gross errors. In terms of high-precision RTK positioning,
RUKF can correctly identify centimeter-level anomalous observations and obtain a corresponding
positioning accuracy improvement compared with the SUKF. When relatively large gross errors exist,
the conventional method cannot easily realize PL-AR. By contrast, the combination of RUKF and the
PAR algorithm can achieve PL-AR for the selected ambiguity subset successfully and can improve the
positioning accuracy and reliability significantly. In summary, our proposed algorithm has certain
resistance ability for abnormal observations. The indoor PL positioning of this algorithm outperforms
that of the conventional method. Thus, the algorithm has some practical application value, especially
for kinematic positioning.

Keywords: indoor pseudolite (PL); standard unscented kalman filter (SUKF); robust unscented
kalman filter (RUKF); partial ambiguity resolution (PAR); differential PL (DPL); real-time kinematic
(RTK) positioning

1. Introduction

Pseudo-Satellite or Pseudolite, abbreviated as PL, is a transmitter deployed on the ground to
transmit some kind of positioning signal, which usually transmits signals similar to navigation satellite
system (GNSS) [1–3]. PL can be used as a supplement or enhancement for GNSS, especially in complex
environments [4–6]. The PL system has been proven to have an independent positioning capability
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similar to GNSS and can be a representative technology of indoor high-precision positioning [7–10].
The increase in the demand for high-precision indoor positioning and the development of PL hardware
technology and user receiver have increased the research attention on the indoor PL positioning
technology. In fact, for indoor positioning, many technologies have been developed for various
applications, such as Wi-Fi, Radio Frequency Identification (RFID), ultra-wideband (UWB), etc. [11–13].
Compared with most of the existing methods, the indoor PL positioning technology is relatively
high-cost and has a high positioning precision; however, the corresponding data processing is
more complex.

The code and carrier phase observations of an indoor PL system contain relatively fewer error sources
than GNSS [14]. In general, tropospheric and ionospheric errors do not exist in indoor environments.
The clocks of PLs and receivers are considerably more low cost than those used by GNSS. Thus, the clock
error is the predominant error source of PL observations. The PL system represented by LOCATA has
solved the clock difference problem by using complex clock synchronization technology [15]. However,
this problem is still difficult for most of the current relatively low-cost indoor PL systems. We can draw
lessons from the relative positioning model in GNSS; the double-differenced (DD) observations can
effectively eliminate or weaken most error sources, such as the clock error and antenna phase center
deviation, and can thus greatly simplify the difficulty in PL data processing [16]. The code-based
differential PL (DPL) and phase-based real-time kinematic (RTK) positioning models are usually
adopted for indoor PL positioning depending on the type of observation [17].

PL antennas are usually fixed installations. This condition changes the geometric structure
between the carrier and PLs slowly, which is not conducive to indoor PL positioning, especially
for static observation. In this observation, the multi-epoch equation has a strong correlation. Thus,
static multi-epoch cumulative observation is unsuitable for estimating the coordinate and ambiguity
parameters [18]. To solve this problem, the known point initialization (KPI) can be adopted; the
receiver in this method is placed at a fixed point with known coordinates to obtain the float ambiguity
solution [19]. In general, KPI requires the known point with a relatively accurate priori coordinate
information, which may bring some inconvenience in practical application. Although some scholars
have used algorithms to overcome the problem of KPI [17,18], the reliability and stability in practical
application remain difficult to guarantee. Therefore, KPI without the assistance of other sensors
is still the commonly used approach for high-precision indoor PL positioning among the existing
low-cost PL systems. For high-precision PL positioning, ambiguity resolution (AR) is important and
intractable. In this step, the familiar LAMBDA method [20,21] commonly used in GNSS filed can be
as an alternative approach for indoor PL system, which has been demonstrated in some previous
studies [22].

When conducting parameter estimation for indoor PL positioning, the extended Kalman filter
(EKF) [23,24] is usually adopted, while EKF inevitably brings linearized errors in a small space [25,26].
Li et al. [27] adopted the unscented Kalman filter (UKF) to solve this problem, which is a nonlinear
parameter estimation method and with a better performance for indoor PL positioning. UKF [28] is
based on UT transform, which abandons the traditional linearization procedure for nonlinear functions.
The UKF algorithm is based on the framework of Kalman, and the unscented (UT) transform is used to
deal with the nonlinear transfer of mean and covariance. UKF approximates the probability density
distribution of the nonlinear function. It uses a series of definite samples to approximate the posterior
probability density of the state, instead of approximating the nonlinear function. The UKF does not
need to calculate Jacobian matrix, and avoids linearization, which usually neglects higher order terms;
thus, the calculation accuracy of UKF is higher than that of EKF [29,30]. UKF is widely used in many
fields such as navigation, target tracking, signal processing and neural network learning. Li et al. [27]
had proved the superiority of UKF for indoor PL positioning, mainly due to its higher positioning
accuracy and lower dependence on initial values compared with additional EKF.

In summary, adopting UKF based on the relative model and KPI method for parameter
estimation and LAMBDA for PL-AR can achieve a decimeter-level positioning precision in DPL and a
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centimeter-level positioning precision in RTK under a good observation environment [27]. However,
the indoor observation environment is often complex in practical application. The multipath effect of
code observation and other interference factors may exist, and frequent observation abnormalities will
negatively affect the accuracy and reliability of indoor PL positioning. Standard UKF (SUKF) lacks
resistance to various abnormal situations [31,32]. Some scholars have put forward robust estimation
theory to resist the influence of abnormal errors in measurement information [33,34]. The essence is to
control the gross errors by constructing equivalent weights for weakening the influence of abnormal
errors on the solution. This method reduces the contribution of anomalous observations to parameter
estimation and can yield a relatively reliable result [35,36]. The recursive form of robust UKF (RUKF)
is consistent with that of SUKF. The only difference between them is that the variance matrix of
measurement noise in the observation model is replaced by the equivalent variance matrix [32,37].
Several familiar equivalent weight functions, such as IGG (I–III), Andrew, Tukey, and Huber methods,
are usually adopted to calculate the equivalent weight matrix [38,39]. For indoor PL high-precision RTK,
the RUKF will weaken the abnormal effects and improve the accuracy of float ambiguity solution when
observation anomalies exist. However, all ambiguities cannot be guaranteed to be fixed successfully,
especially under the influence of large gross errors. A partial AR (PAR) strategy is often adopted in
the GNSS field to solve the aforementioned problem [40,41]. That is, if all ambiguity elements cannot
be fixed reliably, then we can consider partial ambiguity elements that can be easily fixed. The PAR
strategy is used to select the optimal ambiguity subset from all ambiguity elements and make a
de-correlation for them. Then, the LAMBDA method is utilized to search the integer ambiguity solution
for the selected ambiguity subset. Finally, the remaining ambiguity subset and coordinate solution
are updated. In the GNSS field, the signal-to-noise ratio (SNR), elevation angle, posterior observation
residual, the estimated variance matrix of float ambiguity, and the bootstrapping AR success rate
or ratio value are usually used as the alternative information for selecting the optimal ambiguity
subset [42]. Some scholars have successfully applied the robust Kalman filter to GNSS positioning and
integrated navigation [43–45]. Most previous studies on PL positioning have focused on the outdoor
simulated code-based meter-level positioning system and are thus not convincing [46–48]. Nearly no
works have been performed on the RUKF-based indoor PL positioning, especially for the measured
system and PAR-based high-precision RTK positioning.

In this study, we propose a reliable indoor PL positioning method based on the RUKF and
PAR algorithm. First, the UKF is used for parameter estimation on the basis of posterior residuals.
The standardized residues and anomaly recognition statistics are calculated. Then, the IGGIII scheme
is used to construct the equivalent weight matrix for weakening the influence of abnormal observation.
We further combine the RUKF with PAR strategy to obtain reliable PL positioning results with certain
robustness by the anomaly recognition statistics information and select an ambiguity subset for PL-AR
in the presence of large gross errors in the carrier phase observation. In Section 2, the specific method
of our proposed method is provided. In Section 3, the superiority of the proposed method is verified
using static and kinematic data for indoor DPL and RTK positioning. In Section 4, some conclusions
are provided.

2. Methods

2.1. Indoor PL Positioning Model

For a single-frequency PL system, suppose that n + 1 PLs are observed synchronously on one
epoch, 2n DD observation equations can be formed, namely, n DD code (p) and n DD carrier phase (φ)
observation equations, which can be described as:

ϕls
qr = ρls

qr + λNls
qr + εls

qr
pls

qr = ρls
qr + els

qr
(1)
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where the subscripts q and r denote referenced and rover stations, respectively; the superscripts l and s
denote referenced and non-referenced PLs, respectively; Nls

qr denotes the PL DD ambiguity; the εls
qr

denotes DD carrier phase observation noise, and the els
qr is DD code observation noise; For the indoor PL

DD observations, the clock errors and phase center offset can be eliminated; ρls
qr = (ρs

r − ρ
l
r) − (ρ

s
q − ρ

l
q)

is the DD geometric distance between the receiver and PL. The mathematical model for the indoor PL
relative positioning can be described as follows:

y = E
[
φ
p

]
=

[
Γ Λ
Γ 0

][
a
b

]
D
[
φ
p

]
=

[
Qφφ 0

0 Qpp

]
(2)

where E[•] and D[•] denote the expectation and dispersion operators, respectively; a is the real-valued
baseline vector; and b is the integer ambiguity vector. Γ denotes the design matrix that corresponds
to a and Λ denotes the design matrix that corresponds to b. Qφφ denotes the covariance matrix that
corresponds to the PL DD phase observation vectors, and Qpp denotes the covariance matrix that
corresponds to the PL DD code observation vectors. The stochastic model for PL positioning generally
uses an elevation-dependent weight model. The corresponding observation noise of the code and
carrier phase can be pre-given approximate to GPS L1, and the noise can be obtained by prior modeling
for PL observations.

For the phase-based RTK model, if n+ 1 PLs are synchronously observable, then n DD observation
equation can be formed, and the contribution of code observation to high-precision RTK is generally
ignored due to its poor accuracy. Thus, n + 3 parameters need to be estimated (n PL DD ambiguity and
3 coordinate parameters). Evidently, the number of single-epoch observations is less than the number
of parameters to be estimated. For a PL system, multi-epoch static observation cannot be conducted
to increase the number of observations due to strong correlation of static observations on successive
epochs. Therefore, the coordinate should be regarded as an a priori value when PL ambiguity is solved
in RTK. Thus, the KPI method is usually adopted for current PL systems.

2.2. Robust UKF

For a nonlinear system, the state and observation equation can be represented by:

xk = f (xk−1) + wk
yk = h(xk) + vk

(3)

where k is the discrete time; xk is the state parameter to be estimated, in this study, it contains the
coordinates and PL ambiguity parameters; yk is the measurement containing PL DD code and carrier
phase observations; f (·) denotes the state function and is an identity matrix in this study; h(·) is a
nonlinear observation function which can be seen as Equation (1); wk and vk are the corresponding
Gaussian white noises which meet the following equation:

E(wi) = 0, E(wiwT
j ) = δi j ·Qi

E(vi) = 0, E(vivT
j ) = δi j ·Ri

E(wivT
j ) = 0

(4)

where δi j is the Kronecker− δ function; Q denotes the variance matrices of the process noise, R denotes
the variance matrices of the measurement noise.

The recursive form of RUKF is similar to that of SUKF. Their only difference is that the
variance–covariance (VC) matrix of the measurement noise of the observation model is replaced
by the equivalent variance matrix.

In this study, the calculation steps of RUKF algorithm are summarized as follows:
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Step 1: Initialization of the state parameters.

x̂0 = E(x0)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T]

(5)

where x̂0 denotes the initial state parameters including the 3-D coordinate and PL DD ambiguity,
and P0 denotes the corresponding covariance matrices of x̂0.

Step 2: Generation of sigma points.
In this step, the sampling strategy based on Cholesky decomposition is usually utilized, for the

n-dimensional variables xk−1 (with the mean and variance of x̂k−1 and Pk−1), the calculated vector χk−1
that contains 2n + 1 sigma points is given as

Pk−1 = Dk−1DT
k−1

χk−1 =


x̂k−1

x̂k−1 +
√

n + λ×Dk−1

x̂k−1 −
√

n + λ×Dk−1


T

(6)

where Dk−1 is the lower triangle matrix in the above Cholesky decomposition for Pk−1; λ = α2(n+κ)−n
is the scale factor, α and κ are constants, α determines the spread of the sigma points around x̂k−1
(usually set as 0 or 3 − n), and κ is a constant (usually set as 0). The corresponding weights of the
produced sigma points are given as:

Wn
0 = λ/(n + λ)

Wc
0 = λ/(n + λ) + (1− α2 + β)

Wn
i = Wc

i = 1/2(n + λ), i = 1, 2, · · · , 2n
(7)

where Wn
i denotes weight of mean value and Wc

i is weight of the covariance for the i-th sigma
point; β is used to fuse prior information of random variables, and β= 2 is generally utilized for the
Gauss distribution.

Step 3: Update the state.

χk|k−1 = f (χk−1)

x̂k|k−1 =
2n∑

i=0
Wn

i χi,k|k−1

Pk|k−1 =
2n∑

i=0
Wc

i (χi,k|k−1 − x̂k|k−1) × (χi,k|k−1 − x̂k|k−1)
T + Qk

(8)

where x̂k|k−1 is the updated mean value of the state, and Pk|k−1 denotes the corresponding covariance
of x̂k|k−1.

Step 4: Update the measurement.

yk|k−1 = h(χk|k−1)

ŷk =
2n∑

i=0
Wn

i yi,k|k−1

Pyy =
2n∑

i=0
Wc

i (yi,k|k−1 − ŷk) × (yi,k|k−1 − ŷk)
T + Rk

(9)

where ŷk is the updated mean value of the predicted measurement, and Pyy denotes the corresponding
covariance of ŷk.
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Step 5: Update the SUKF filter

Pxy =
2n∑

i=0
Wc

i (χi,k|k−1 − x̂k|k−1) × (yi,k|k−1 − ŷk)
T

Kk = PxyP−1
yy

x̂k = x̂k|k−1 + Kk(yk − ŷk)

Pk = Pk|k−1 −KkPyyKT
k

(10)

where Kk is the gain matrix; x̂k is the updated SUKF-based state parameter, and Pk is the corresponding
covariance matrix of x̂k.

Step 6: Calculate the posterior observation residual
In Step 5, we can obtain the estimated parameter dx (namely, x̂k above), then we can calculate the

posterior observation residual v and corresponding VC matrix Cvv by

v = Bdx− l
Cvv = Cl − B(BTC−1

l B)−1BT (11)

where B is the design matrix; in this study, B =

[
Γ Λ
Γ 0

]
as in Equation (2); l is a mis-closure vector of

the DD PL observation, and Cl is the VC matrix of l.
Step 7: Calculate the standardized residual
The standardized residual for code and phase observations on the basis of v and Cvv in Equation (11)

can be described as
vk =

vk√
Cvv(k, k)

(12)

where vk denotes the posterior observation residual of the k-th observation, Cvv(k, k) is a scalar denoting
the k-th diagonal element of Cvv.

Step 8: Calculate the error discriminant statistics
The constructed error discriminant statistics (∆vk) on the basis of vk can be described as

∆vk =
vk

n∑
j=1, j,k

∣∣∣v j
∣∣∣/(n− 1)

(13)

Step 9: Calculate the robust factor
The calculated robust factor is used for adjusting the equivalent weight matrix. In this study, we

adopt the IGGIII scheme. The three-segment function can be described as

λk =


1

∣∣∣∆vk
∣∣∣ ≤ k0

|∆vk|(k1−k0)
2

k0(k1−|∆vk|)
2 k0 <

∣∣∣∆vk
∣∣∣ ≤ k1

∞

∣∣∣∆vk
∣∣∣ > k1

(14)

where k0 and k1 are constants, the reasonable ranges are generally 1.0 ≤ k0 ≤ 2.0 and 2.5 ≤ k0 ≤ 8.0.
Step 10: Update the RUKF filter
We update the UKF filter solution by using the abovementioned robust factor.

Pyy =
2n∑

i=0

Wc
i (yi,k|k−1 − ŷk) × (yi,k|k−1 − ŷk)

T + λk ·Rk (15)

where the meaning of Pyy is the same as the expression in Equations (9) and (10). The subsequent filter
updating is the same as Step 5.
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2.3. PAR for PL Positioning

In the conventional indoor PL RTK processing, all PL DD ambiguities will be involved in the
PL-AR using the LAMBDA method. The RUKF can improve the accuracy of the float solution to some
extent, but the whole set of PL DD ambiguity cannot be fixed successfully. Thus, a PAR strategy for PL
RTK positioning is introduced.

After conducting the RUKF, the parameters of the baseline vector and ambiguity float solution in
Equation (2) denote â and b̂, and the corresponding VC matrix is composed of Qâ and Qb̂. The subset
of the PL DD ambiguities can be described as

b̂ =

[
b̂1

b̂2

]
, Qb̂ =

 Qb̂1
Qb̂1b̂2

Q
b̂2 b̂1

Qb̂2

 (16)

where b̂ is the entire set of estimated float ambiguity solutions; b̂1 is the optimal subset, which can be
easily fixed using the LAMBDA method; and b̂2 is the remaining subset, which is difficult to fix due to
certain errors in the corresponding DD phase observation.

The selecting criterion b̂1 is the core of the PAR for PL. In general, the SNR, elevation, posterior
observation residual, the estimated variance information of float ambiguity, and the bootstrapping AR
success rate or ratio value when conducting LAMBDA can be adopted to the identify the criterion of
the optimal subset. In this study, we use the error discriminant statistics (∆v) in Equation (13) to select
subset b̂1.

We sort ∆v of all PLs in ascending order, which can be described as

∆V =
{
∆v1, ∆v2, · · ·∆vn

∣∣∣∆v1 < ∆v2 < · · · < ∆vn
}

(17)

where ∆vk represents the elevation in k-th order. If the number of the subset b̂1 (m) is pre-given, then
the program can easily obtain the subset b̂1.

b̂1 =
{
N1, N2, · · ·Nm

∣∣∣∆v1 < ∆v2 < · · · < ∆vm
}

(18)

where N denotes the PL DD ambiguity float solution. If the subset b̂1 has been successfully fixed using

LAMBDA, then the fixed solution denotes
^
b 1. Accordingly, we can update the remaining subset b̂2,

which can be described as
^
b 2 = b̂2 −Qb̂2b̂1

Q−1
b̂1
(b̂1 −

^
b 1)

Q^
b 2

= Qb̂2
−Qb̂2b̂1

Q−1
b̂1

Qb̂â

(19)

If the subset b̂1 cannot be successfully fixed, then we continue to decrease the number of the subset
b̂1 (m) and repeat the above steps until m is less than 3. We then exit the program of PAR.

2.4. Data Processing

In this study, we propose a reliable indoor PL positioning method based on the RUKF and PAR.
The relative positioning model and KPI method are adopted. If only code observation is used for
positioning, we call it the DPL model, while if the high-precision carrier phase is used, we call it the
RTK model. For the single-frequency PL system, the polynomial fitting method is used for cycle slip
detection and reparation for carrier phase observations. The initial coordinate value is pre-given within
a relatively accurate range when KPI is conducted. The popular LAMBDA method is used for PL-AR.
Figure 1 shows the flowchart of our proposed method.



Sensors 2019, 19, 3692 8 of 18
Sensors 2019, 19, x FOR PEER REVIEW 8 of 20 

 

 

Figure 1. Flowchart of indoor PL positioning based on our proposed algorithm. 

3. Experimental Results and Analysis 

3.1. Observation Platform of the Indoor Positioning System 

The PL positioning system is set up in a 10 m × 7 m × 4 m laboratory with five PLs mounted on 
the ceiling. The model of PL instrument is GSG-L1, which can generate an L1 carrier that is BPSK 
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3. Experimental Results and Analysis

3.1. Observation Platform of the Indoor Positioning System

The PL positioning system is set up in a 10 m × 7 m × 4 m laboratory with five PLs mounted on
the ceiling. The model of PL instrument is GSG-L1, which can generate an L1 carrier that is BPSK
modulated with the C/A code and navigation signal. In this local coordinate, the origin point is located
at the center of the laboratory. The coordinates of PLs were accurately determined in advance by a
total station. As shown in Figure 2, the locations of PLs are indicated by red circles.
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The base and rover stations use Universal Software Radio Peripheral (USRP) as the frontend of the
software receiver. The main function of USRP is to mix the L1 radio frequency signal to an intermediate
frequency signal, and then complete the digitalization process. The following acquisition and tracking
processes are all done by a self-developed software receiver, which brings great convenience to the
research of indoor PL positioning systems. Figure 3 shows the experimental data acquisition scene.
Each grid on the floor is a square of 0.6 m × 0.6 m. The base station is fixed on known points, and the
rover station can move arbitrarily on a mobile car or along fixed rail.
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3.2. DPL Model

In this test, a static short baseline is used, and the observation conditions are relatively good.
A total of approximately 11,000 observation epochs are used. Five PLs are synchronously observed
during the entire observation period; thus, four DD code observations can be formed, we denote
them as PL1-PL6, PL4-PL6, PL5-PL6 and PL8-PL6. The data processing method in Section 2.4 is used
to conduct static robust DPL positioning for this test. The initial coordinates of UKF are provided
accurately in the range of 0.1 m. A large gross error of 10 m is randomly added to some DD code
observations on approximately 20 epochs to verify the resistance of the proposed algorithm to the
gross errors of code observations and the small gross errors of the original observation data. Figure 4
shows the posterior residuals of four DD code observations and the corresponding sequence of error
discriminant statistics (∆vi, denotes k as well) in Equation (13) during the entire observation period.

The observation posterior residuals can clearly reflect the anomalies of four PL DD code
observations, especially large gross errors. A comparison of the error discriminant statistics (k)
indicates that the corresponding values of k for some epochs with the 10 m gross error increase
dramatically compared with those for other normal observation epochs. Apart from the epochs with
artificial gross errors, many other epochs also show evident anomalies. This finding indicates that the
error discrimination statistics can identify some small gross errors. In this experiment, k0 and k1 in
Equation (14) are set to 2 and 8, respectively, when conducting the RUKF for indoor PL positioning.
According to the absolute value of k, the observation environment can be divided into three situations
as follows. In Situation #1, no abnormality is found in the observations, and the corresponding
equivalent weight matrix does not need to be adjusted. In Situation #2, a certain small gross error
exists in the observations, and the corresponding equivalent weight matrix needs weight reduction
processing. In Situation #3, some large gross errors exist in the observatons, and the corresponding
equivalent weight matrix needs weight abandonment processing. The specific method is presented in
Equation (14).
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Figure 4. Observation posterior residuals and error discriminant statistics (k) of the four PL DD
code observations.

Table 1 shows the epoch number statistics of various DD PLs under the three situations mentioned
above. The statistical results in Situation #1 indicate that most of the single DD code observations are
normal without anomaly, but the epoch number of all the DD code observations that are simultaneously
normal is relatively few at only 3694. The statistical results in Situation #2 show that most epochs,
which account for approximately 63% of the total epochs, are affected by a minor gross error to varying
extent. The statistical results in Situation #3 reveal that more than 300 epochs with a gross error of 10 m
have relatively large gross errors in the original code observation.

Table 1. Epoch number statistics of various DD PLs in three different situations.

Situation #1 Situation #2 Situation #3

PL1-PL6 9887 949 29
PL4-PL6 7846 2819 200
PL5-PL6 10014 826 25
PL8-PL6 8255 2486 124

All DD PLs 3693 6794 378

Figure 5 shows the positioning error sequence for SUKF and RUKF. The SUKF lacks resistance to
observation anomalies, and its positioning results are worse than those of RUKF when gross errors
exist for many epochs, especially large gross errors. This disadvantage of SUKF is evident. By contrast,
the proposed RUKF algorithm can weaken the adverse effect of observation anomalies and improve
the positioning accuracy.
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Figure 5. Comparison of SUKF-/RUKF-based DPL positioning errors in X/Y/Z directions for one static test.

Figure 6 shows the DPL average positioning error statistics (computed by the absolute value of
every positioning errors) of SUKF/RUKF in Situations #2 and #3. A comparison of the statistical results
shows that the RUKF performs better in Situations #2 and #3 than the SUKF, especially when large
gross errors exist such as in Situation #3. In the case of small gross errors (Situation #2), RUKF has a
decimeter-level improvement for the indoor PL positioning accuracy compared with SUKF because
the RUKF uses a robust factor to adjust the equivalent weight matrix automatically. The RUKF also
conducts weight reduction processing for anomalous observations, which can adaptively weaken its
negative effect to some extent.Sensors 2019, 19, x FOR PEER REVIEW 12 of 20 
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3.3. RTK Model

The accuracy and stability of the DD carrier phase observation show much better performance
than those of the DD code observation. The former is also less susceptible to interference and has
smaller multipath effects under the indoor environment than the latter. However, if no robust strategies
are applied under the occurrence of abnormal interference, then the final positioning accuracy and
reliability will be affected; in particular, the PL-AR will be challenging. This phenomenon is evident,
especially for indoor kinematic positioning. In this study, the superiority of the proposed RUKF
combined with the PAR algorithm is verified by static and kinematic tests in two cases. One case
is that the PL ambiguity can be easily solved, and the other is that the the observation exists some
abnormalities and PL ambiguity cannot be solved successfully using the conventional PL-AR method.

3.3.1. Static Test

In this experiment, one static short baseline is used, and the observation conditions are relatively
good. A total of 270 observation epochs are used. Five PLs are observed synchronously during the
entire observation period. Each epoch can form four carrier phase DD observations, denoted as
PL4-PL1, PL5-PL1, PL6-PL1 and PL8-PL1. The PL4-PL1 observation for some epochs is added with
a gross error of 5 cm without affecting the normal PL-AR to verify that the RUKF can identify and
resist a certain small gross error for carrier phase observation. Figure 7 shows the posterior residuals
and the corresponding error discrimination statistics (k) of the original PL4-PL1 observations, and the
corresponding results after artificially adding a gross error of 5 cm. In Figure 7, the original carrier
phase observations are relatively stable, most of the posterior residuals are less than 5 mm, and the
corresponding k values are less than 2. Therefore, all epoch observations are not abnormal. After a
small gross error of 5 cm is added, the corresponding epoch and posterior residual also exhibit a large
jump. The corresponding k values are highly sensitive to detect the occurrence of the anomaly.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 
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phase observation. Left: Original PL4-PL1 observations without artificial errors. Right: PL4-PL1
observations with artificial errors of 5 cm on some epochs.

When conducting KPI for the short baseline, the ambiguity is easily fixed as long as the given
initial coordinates have high accuracy. The fix and hold mode is used to gain the ambiguity solution
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between successive epochs, and the coordinates for all epochs are fixed solutions in this test. Figure 8
shows the sequence of positioning errors for SUKF and RUKF. The SUKF-/RUKF-based positioning
results have no differences in the epochs without gross error. However, for the epochs with a gross
error of 5 cm (within the red ellipse in Figure 8), a centimeter-level jump occurs in the SUKF-based
positioning results. By contrast, the RUKF weakens the influence of gross errors and does not show
large abnormality in its positioning results.Sensors 2019, 19, x FOR PEER REVIEW 14 of 20 
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Figure 8. Comparison of SUKF-/RUKF-based RTK positioning errors for one static test.

The SUKS-based indoor PL-AR usually fails when gross errors exist in carrier phase observation.
A gross error of 0.15 m is artificially added to the PL4-PL1 observations on the 100th epoch to verify the
validity of our proposed RUKF and PAR strategy for indoor PL RTK positioning for the abovementioned
static short baseline data. Three experimental schemes are adopted for data processing: Scheme
#1 based on SUKF, Scheme #2 based on RUKF, and Scheme # 3 based on RUKF combined with the
PAR algorithm.

Figure 9 shows the positioning results for the three experimental schemes. For the 100th epoch,
the SUKF-based PL-AR fails and has a jump of the positioning result of approximately 0.16 m due
to the lack of resistance to abnormal observations. The RUKF cannot achieve the ambiguity fixed
solutions as well, and shows a jump of the positioning result of approximately 0.12 m. Further
comparison shows that SUKF needs 12 epochs to achieve ambiguity re-fixing, whereas RUKF needs
five epochs. The reason is that the RUKF cannot realize PL-AR for the 100th epoch but still weakens
the effect of adding gross errors to a certain extent. The accuracy of float ambiguity solution of RUKF
is higher than that of SUKF and thus has a relatively faster filtering convergence speed for subsequent
epochs. Scheme #3 adopts a PAR strategy based on RUKF. The PL-AR procedure does not consider
all ambiguities for searching together, and an ambiguity subset that contains three other normal
observations is selected for partial PL-AR. Therefore, the approach can achieve fixed solutions for all
epochs and improves positioning accuracy.
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Figure 9. Comparison of the RTK positioning errors in the case of three different experimental schemes
for one static test.

3.3.2. Kinematic Test

In this test, a fixed rail is used, and a mobile car with a PL receiver antenna travels from one end to
the other. A total of 270 observation epochs are used. Five PLs are observed synchronously during the
entire observation period. Each epoch can form four carrier phase DD observations. The advantage of
our proposed method is verified in the case of successful and failed PL-AR with conventional methods.

A gross error of 0.1 m is added to one carrier phase observation for some epochs, and the SUKF
and RUKF are used for kinematic positioning. The initial coordinates given for the first epoch are
relatively accurate, the fix and hold mode is adopted to gain the ambiguity solution between successive
epochs, and the coordinates of all epochs are fixed solutions in this experiment. Figure 10 shows the
positioning results of two different schemes. The SUKF-based X-directional positioning results show
several centimeter-level jumps for the epochs with gross errors (within the red ellipse in Figure 10),
whereas RUKF can effectively weaken the effect of adding gross errors and has no large fluctuation in
its positioning results.

In kinematic positioning of a moving rover station, the initial coordinate value of the current
epoch is usually based on the coordinates of the previous epoch. A large deviation in the positioning
result of one epoch negatively affects the subsequent initialization of coordinates and thus leads to
filtering divergence and positioning failure. Therefore, the proposed RUKF and PAR algorithm is
more necessary than the static positioning. In this experiment, a gross error of 0.15 m is added to
one carrier phase observation for the 50th epoch. Two different data processing schemes, namely,
SUKF and RUKF and PAR, are adopted for kinematic positioning. The single-epoch PL-AR model is
used during the successive epochs. Figure 11 shows the planar trajectory derived from the kinematic
positioning results of the two different schemes. For the 50th epoch, the SUKF-based PL-AR fails and
has a deviation of several decimeters for the positioning result, which is transmitted to the subsequent
initialization of coordinates. The subsequent filtering of epochs cannot converge and continues to
diverge along with the corresponding positioning results due to the large deviation. Figure 11 shows
that the plane trajectory correspondingly deviates from the true straight rail. When the RUKF and
PAR algorithm is adopted, the effect of adding the gross error is weakened to a certain extent, and the
ambiguity subset containing three other normal observations is selected and successfully realizes the



Sensors 2019, 19, 3692 15 of 18

partial PL-AR. The positioning accuracy based on our proposed method is better by 2–3 cm than the
planar positioning trajectory and the true straight rail.Sensors 2019, 19, x FOR PEER REVIEW 16 of 20 
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4. Conclusions

Our observations in this study are prone to abnormalities due to the complex environment of indoor
PL positioning. The traditional parameter estimation method lacks the effective ability of anomaly
recognition and anti-interference, and the conventional PL-AR becomes challenging. This study
presents a reliable indoor PL positioning method based on the RUKF and PAR strategy. The error
discriminant statistic is constructed using posterior residuals of the observations, and the equivalent
weight matrix of observation is adaptively adjusted by the calculated robust factor. The optimal
ambiguity subset is selected to conduct the partial PL-AR on the basis of the error discriminant
statistics. The superiority of the proposed algorithm for indoor code-based DPL and phase-based RTK
positioning is verified using static and kinematic observation data. Some valuable conclusions are
obtained as follows.

1. Compared with the SUKF algorithm, the RUKF algorithm can effectively weaken the anomalous
effect of PL code observations and improve the accuracy and reliability of indoor DPL positioning,
especially when certain large gross errors exist.

2. RUKF can identify small gross errors (centimeter-level) of PL carrier observations and achieve the
corresponding indoor RTK positioning accuracy of fixed solutions at a centimeter-level improvement.

3. Compared with SUKF, RUKF can improve the accuracy of ambiguity float solution and the
re-convergence speed when the carrier phase observation has relatively large gross errors. However,
RUKF cannot achieve PL-AR successfully. The proposed RUKF combined with PAR strategy can
achieve partial PL-AR for the selected ambiguity subset and obtain an accurate fixed solution.
The advantages of our proposed algorithm are important for indoor PL kinematic positioning.

Currently, most of the PL systems are still only capable of high-positioning adoption of the KPI,
which brings some inconveniences in application. In our future work, we will form a combination for
indoor PL and ultra-wideband (UWB) positioning, and it is expect that the indoor UWB-assisted PL
positioning can avoid the disadvantage of KPI and have a better positioning performance.
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