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Introduction
Inflammatory bowel disease (IBD) is a multifactorial disease 
with probable genetic heterogeneity and is primarily presented 
as ulcerative colitis (UC) or Crohn’s disease (CD). While CD 
can affect any part of the digestive system, UC only affects the 
colon (large intestine)1,2 and thus carries an increased risk of 
colorectal cancer. Ulcerative colitis involves an imbalance in 
microbiome-host interactions, with no effective cure currently 
available. Although the pathogenesis of UC remains unclear, a 
combination of factors is thought to play a part, including 
genetics and environmental risk factors (eg, diet, smoking, 
measles, and appendectomy).3,4

One hypothesis for the etiology of UC is that altered or 
pathogenic microbiota cause inflammation in genetically sus-
ceptible individuals.5 In the wake of recent advances in high-
throughput sequencing, intestinal dysbiosis of microbiota is 
considered a key factor leading to UC and its complications.6-9 
For example, recent studies on fecal and gut mucosa–associated 
microbiota in UC patients revealed an abnormal microbial 
composition characterized by low species diversity in gut 
microbial communities, but high-density mucosal surface colo-
nization and epithelial invasion in areas with active disease.5 
The diversity of mucosa-associated microbiota is also markedly 
reduced in patients with active CD undergoing surgery.10 In 
addition, the abundances of several bacterial species of 
Firmicutes are lower in patients with CD,11 with the presence 
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of aggressive bacteria increased in those with UC.12 Consistently, 
an imbalance in microbiota composition (dysbiosis) can lead to 
excessive inflammatory responses and the occurrence and/or 
progression of UC, irritable bowel syndrome, and functional 
dyspepsia in humans.6,13 The fecal microbiota of UC patients is 
dominated by unusual bacterial species.14 Moreover, UC fecal 
microbiota exhibits specific discrepancies from the microbiota 
of healthy subjects.15 Fecal microbiota transplantation (FMT) 
is a primary therapeutic method that utilizes target microbiota 
and could become a potential rescue (or even standardized) 
therapy for UC.16

As the detailed pathogenesis of UC remains uncertain,17 it 
is difficult to identify how intestinal dysbiosis contributes to 
UC. In recent years, developments in gene-sequencing tech-
nologies, as well as increased availability of powerful bioinfor-
matics tools, have enabled novel insights into the microbial 
composition of the human gut microbiota and determination 
of factors important in UC disease progression. For example, to 
explain longitudinal variations in the intestine,18 quantitatively 
assessed the spatial distribution patterns of mucosa-associated 
microbial flora along the intestinal tract in healthy human 
individuals.

The objective of this study was to comparatively investi-
gate the spatial heterogeneity of the gut microbiome of UC 
patients and healthy controls. The spatial heterogeneity can 
be used to mean the inter-subject variability among individu-
als in a cohort (or population). Taylor’s power law (TPL) is a 
classic ecological model for assessing heterogeneity at the 
population scale19-22 extended TPL from the population to 
the community level and introduced 4 types of power law 
extensions (Taylor’s power law extensions [TPLEs]), ie, 
Type-I to Type-IV TPLEs.22-24 In this study, we aimed to 
answer the question of whether UC influences the spatial 
heterogeneity of human gut mucosal microbiome from both 
community and mixed-species levels by using Ma’s Type-I 
and Type-III TPLEs, respectively. The results of this study 
will hopefully generate important insights into the influence 
of UC on the gut mucosal microbiome. A significant differ-
ence between healthy and diseased individuals in spatial het-
erogeneity parameters (of TPLEs) would indicate the 
redistribution (or rebalance) of microbes at the community 
(Type-I TPLE) or species (Type-III TPLE) level. Direct 
experimental monitoring of the redistribution (rebalance) of 
microbes in the human gut microbiome is not feasible, but 
the heterogeneity scaling (change) parameter of the TPLEs 

offers a powerful theoretic approach for estimating the level 
of microbial movement, which leads to the redistribution 
(rebalance) of gut microbes. Although not as important as 
monitoring the movement of cancer cells, assessment of the 
redistribution of gut microbes has significance, particularly 
redistribution induced by diseases such as UC.

Materials and Methods
Subject selection and sampling

In total, 56 volunteers (28 couples) were recruited, including 
28 patients with UC and their healthy control partners (see 
Table 1 for details). All participants were from Kunming, 
China, and were aged from 18 to 60 years old. The health sta-
tus of the volunteers was self-reported and confirmed by 
endoscopy. No healthy volunteers suffered any diseases of the 
gastrointestinal tract and none were taking medications at the 
time of their endoscopy nor used antibiotics during the year 
prior to specimen collection. All participants received infor-
mation about UC, pathogenicity, risk factors, and the impor-
tance of the study in their local language. Verbal and written 
informed consent was obtained from each participant. This 
study was approved by the Medical Ethics Board of the First 
Affiliated Hospital of Kunming Medical University, Yunnan 
Province, China.

Microbial samples from the intestinal mucosa of the 56 par-
ticipants were collected. Intestinal mucosa sampling was 
undertaken in the morning before the colonoscopy procedure, 
without bowel cleansing preparation. All samples were imme-
diately frozen in liquid nitrogen and stored at –80°C until 
transportation on dry ice to Beijing Genomics Institute (BGI), 
Inc. (China) for sequencing analysis and storage. DNA was 
extracted from all samples, and the V3-V4 region of the 16S 
ribosomal RNA gene was amplified, sequenced, and analyzed.

TPL extensions

In 1961, Taylor19 proposed a widely applied ecological law in 
population ecology, named Taylor’s power law, to describe the 
scaling relationship between population mean abundance (m) 
at a specific site and its corresponding variance (V), which 
offers an ideal mathematical tool to measure spatial aggrega-
tion (heterogeneity). Furthermore, the power law scaling 
parameter (b) is a species-specific parameter that allows rich 
ecological and evolutionary insights about species abundance 
and spatiotemporal distribution across different environments. 

Table 1.  Summary information on datasets.

Treatment No. of 
samples

Gender No. of 
OTUs

Total 
reads

Average number of reads 
per sample

Healthy 28 Female 14/male 14 842 746 939 26 676

UC 28 Female 14/male 14 860 744 469 26 588

Abbreviations: OTUs, operational taxonomic units; UC, ulcerative colitis.
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In contrast, the a parameter is largely influenced by the sam-
pling scheme and is of relatively little biological significance.

In the present study, we used TPL analysis to assess and 
interpret the “aggregation degree” (heterogeneity level) of 
intestinal microbial species and communities in UC patients 
and healthy individuals. The TPL formula is as follows

	 V amb= 	 (1)

Since its discovery more than half a century ago, TPL has 
been applied in numerous field tests and theoretical analyses, 
especially in macroecological studies of plants and animals.19,20,25 
A resurgence in theoretical investigation and extension to wider 
applications, well beyond ecology, has occurred in recent years.22 
extended the original TPL to the community level by introduc-
ing 4 power law extensions (PLEs), with Type-I TPLE pro-
posed to assess community spatial heterogeneity.

Type-I TPLE uses the same mathematical formula as the 
original TPL, but its parameters are conveyed with different 
ecological interpretations, ie

	 c C=1 2, , , 	 (2)

where mc is the mean population size (abundance) of all species 
from the cth community site (sample), Vc is the corresponding 
variance, and C is the number of communities sampled. 
Parameter a is primarily influenced by sampling schemes, such 
as sequencing platform, and contains little biological meaning. 
Parameter b measures community spatial heterogeneity, with a 
larger b value indicating higher heterogeneity—a large b value 
means faster scaling (change) of variance with mean 
abundance.

Similarly, the Type-III TPLE of the classic TPL can assess 
spatial heterogeneity of mixed-species populations. It also 
possesses the same mathematical form as the original TPL, 
but its parameters are conveyed with different interpretations. 
Type-III TPLE is defined with the following power 
function

	 s S=1 2, , , 	 (3)

where ms is the mean population abundance of species s across 
all communities, V is the corresponding variance, and S is the 
number of species in the meta-community (consisting of C 
communities). Parameter b measures the spatial heterogeneity 
of mixed-species population, with parameter a being of little 
biological significance.

To fit the PLEs, equations (2) and (3) can be transformed 
into linear functions on the log scale, ie

	 ln ln lnV a b m( ) = ( ) + ( ) 	 (4)

This linear function can be easily fitted with simple linear 
regression analysis. Either a P value or linear correlation coef-
ficient (R) can be used to determine the goodness of fit.

We used the permutation test to test the differences in 
Type-I and Type-III parameters between UC patients and 
healthy controls. The null hypothesis (H0) of permutation test 
is that the difference of values of TPLE parameters (ie, b and 
ln(a)) between UC patients and healthy controls is no less than 
that between 2 random groups; in other words, the difference 
of parameters is affected on random effect alone. We will take 
parameter b as an example to introduce the specific steps of the 
permutation test as follows:

(i)	 First, compute the absolute difference of b between UC 
and healthy (H) treatments, ∆b b b= −UC H .

(ii)	 Pool together all samples from the UC and healthy 
treatments, and evenly divide them randomly into 2 
groups. Fit the TPLE models to these 2 new groups, 
respectively, and record their b values as bp1 and bp2. 
Compute absolute difference between bp1 and bp2, and 
record it as Δpb

∆ pb p pb b= −1 2

In this step, we generate a permutation.

(iii)	Repeat step (ii) for 1000 times, generating 1000 TPLE 
models and corresponding 1000 Δpb.

(iv)	 If the number of permutations with Δpb > Δb is D, the P 
value for permutation test can be defined as

P
D

=
1000

If P ⩽ .05, we have strong evidence to reject the null hypothesis 
and receive the alternative hypothesis, ie, the parameter (b) is 
different between UC patients and healthy controls.

Results and Discussion
We recruited 28 couples for this study, divided into 2 groups 
(UC patients and healthy controls; see Table 1 for characteris-
tics). A mucosal sample was collected from each subject. Details 
on sequencing and operational taxonomic units (OTUs) for 
each group generated from bioinformatics analysis are also 
provided in Table 1. We built Type-I and Type-III TPLEs for 
the mucosal microbiomes of the healthy and UC subjects, 
including b values, ln(a), their standard errors, P values, correla-
tion coefficients (R), and sample/OTUs (n) (see Table 2 and 
Figure 1). The P value was used to determine whether the 
model was fitted successfully, and R was used to validate the 
goodness of fit. As shown in Table 2, all 4 TPLE models were 
successfully fitted to the mucosal microbiome data (P < .05), in 
which the 2 Type-III TPLE models performed well (R > 0.98). 
For the Type-I TPLE, the b values for the healthy and UC 
groups were 9.212 and 6.504, respectively, suggesting that the 
mucosal microbiome of healthy individuals had higher com-
munity spatial aggregation/heterogeneity than that of UC 
patients. For the Type-III TPLE, the b values for the healthy 
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and UC groups were 1.728 and 1.784, respectively, indicating 
that the variations in mixed-species population spatial aggre-
gations/heterogeneities of the healthy and UC groups were 
very similar. Table 3 shows the permutation test results for dif-
ferences in the parameters of the 4 models. For the Type-I and 
Type-III TPLE models, there were no significant differences 
in b values between healthy individuals and UC patients.

Previous studies have demonstrated that UC can signifi-
cantly change the ecological characteristics of gut microbiota; 
however, few studies have focused on heterogeneity.19 Power 
law model provides a useful tool to measure heterogeneity and 
TPLEs make it possible to assess community-level and mixed-
species-level heterogeneity of microbiota.22 For example, Oh 
et  al26 applied TPLE to human skin microbiome research. 
Community-level heterogeneity can indicate interspecies abun-
dance variations exhibited at the community scale, whereas 
mixed-species-level heterogeneity can indicate population 
abundance variations among spatial sites in terms of mixed spe-
cies at the population level.7 In our previous study,27 we found 
that IBD may influence the community spatial heterogeneity of 

the gut microbiota but not the spatial heterogeneity of mixed 
populations (ie, IBD may influence community-level spatial 
heterogeneity but not mixed-species-level heterogeneity). 
However, we did not adopt a robust statistical test to prove this 
finding in that study.

In the current study, we designed a more sophisticated exper-
iment to investigate UC-related changes in the heterogeneity of 
the gut microbiota. We recruited couples consisting of 1 UC 
patient and 1 healthy individual. We studied couples who live 

Table 2. P arameters of PLE-I for community spatial heterogeneity and PLE-III for mixed-species population spatial aggregation.

PLE Dataset b SE (b) ln(a) SE(ln(a)) P value R n

PLE-I for community spatial 
heterogeneity

Healthy 9.212 4.448 –20.338 15.371 .048 0.376 28

UC 6.504 2.903 –10.932 9.959 .034 0.402 28

PLE-III for mixed species Healthy 1.728 0.011 2.388 0.026 .000 0.984 842

UC 1.784 0.009 2.644 0.022 .000 0.989 860

Abbreviations: PLE-I, Type-I power law extension; PLE-III, Type-III power law extension; UC, ulcerative colitis.

Figure 1.  Graphs fitting Type-I PLE and Type-III PLE with mucosa microbial samples of healthy and UC groups. (A) Type-I PLE for community spatial 

heterogeneity and (B) Type-III PLE for mixed species. IBD indicates inflammatory bowel disease; PLE, power law extension; UC, ulcerative colitis.

Table 3. P ermutation test for differences in parameters of PLE-I 
for community spatial heterogeneity and PLE-III for mixed-species 
population spatial aggregation.

Paired 
treatment

P values of PLE-I 
parameters

P values of PLE-III 
parameters

b ln(a) b ln(a)

Healthy vs UC 0.251 0.613 0.992 0.999

Abbreviations: PLE-I, Type-I power law extension; PLE-III, Type-III power law 
extension; UC, ulcerative colitis.



Sun et al	 5

together and share similar living and eating habits and environ-
ments, which should help eliminate the effects of external envi-
ronmental factors to a large extent. In addition, a permutation 
test was adopted for pairwise statistical testing, with a P value of 
less than .05, indicating a significant difference.

Dysbiosis of the gut mucosal microbiome has been reported 
in UC patients previously, including a decrease in species of the 
phyla Firmicutes and Bacteroidetes, an increase in the abundance 
of facultative anaerobes, and a reduction in bacteria producing 
short-chain fatty acids.28-31 However, based on the permuta-
tion test, we found that UC did not influence community-level 
or mixed-species-level heterogeneity of the gut mucosal micro-
biome. This indicates that, although changes in species compo-
sition were found in UC patients, UC did not influence the 
aggregations/heterogeneities of the gut mucosal microbiome. 
This may be because the effects of species loss can be compen-
sated for by the acquisition of other species. These results also 
emphasize the high resilience (or low variability) of the gut 
mucosal microbiome against UC.

It is worth noting that, at the community level, spatial 
scaling of the heterogeneity quantifies the degree of inter-
individual variations of gut mucosal microbiome across sub-
jects. In effect, the community spatial heterogeneity can be 
considered as a proxy of diversity. Our results revealed that 
the scaling parameter (b) was not affected by UC, which also 
further verified that parameter b is intrinsic to the human gut 
microbiome.22,25

Our quest for a specific pathogen in UC has been hindered 
by a lack of understanding of the host conditions required for 
pathogenesis. However, in the wake of recent advances in high-
throughput sequencing, it is becoming increasingly evident 
that intestinal microbes are essential for the development of 
UC. Our study adopted a pairwise comparison with robust sta-
tistical testing to confirm that UC did not influence either 
community-level or mixed-species-level microbiome heteroge-
neity. Although this research is novel, as few studies have 
examined UC-related changes in gut microbiota heterogeneity, 
there are some study limitations. We only provided an overall 
(or general) view of the ecological changes in the gut microbi-
ota caused by UC and did not identify precisely which species 
were significantly different in the gut microbiota of UC 
patients and healthy individuals. In future work, we will iden-
tify and investigate the significantly different species found in 
paired UC patients and healthy individuals.
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