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Abstract

Background: Total body clearance of biological drugs is for the most part dependent on the receptor mechanisms
(receptor mediated clearance) and the concentration of antibodies aimed at administered drug – anti-drug-antibodies
(ADA). One of the significant factors that induces the increase of ADA level after drug administration could be the
aggregates present in the finished product or formed in the organism. Numerous attempts have been made to identify
the sequence fragments that could be responsible for forming the aggregates – aggregate prone regions (APR).

Purpose: The aim of this study was to find physiochemical parameters specific to APR that would differentiate APR
from other sequences present in therapeutic proteins.

Methods: Two groups of amino acid sequences were used in the study. The first one was represented by the
sequences separated from the therapeutic proteins (n = 84) able to form APR. A control set (CS) consisted of peptides
that were chosen based on 22 tregitope sequences.

Results: Classification model and four classes (A, B, C, D) of sequences were finally presented. For model validation
Cooper statistics was presented.

Conclusions: The study proposes a classification model of APR. This consists in a distinction of APR from sequences
that do not form aggregates based on the differences in the value of physicochemical parameters. Significant share of
electrostatic parameters in relation to classification model was indicated.
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Background
Therapeutic proteins are one of the fastest developing
types of drug. A pharmacokinetic profile as well as the
effect of biological drugs are the result of many complex
interactions with the immune system (Mould and Green
2010; Dostalek et al. 2012). One of the key pharmacoki-
netic parameters of biological drugs is clearance (EMA
2012). Total body clearance of biological drugs is for the
most part dependent on the receptor mechanisms (re-
ceptor mediated clearance) and the concentration of
antibodies aimed at the administered drug – anti-drug-
antibodies (ADA) (Datta-Mannan et al. 2007; Wang and
Chow 2010). ADA are produced in the organism as a re-
sponse to most of the biological drugs including

humanized molecules and completely human monoclo-
nal antibodies. The issue of immune response to bio-
logical drugs is treated by the health authorities (FDA
2014). Apart from binding (binding antibodies), ADA
can also neutralize drugs present in the organism (neu-
tralizing antibodies) (Hsu et al. 2014). One of the signifi-
cant factors that induces the increase of ADA level after
drug administration could be the aggregates present in
the finished product or formed in the organism (Chen-
namsetty et al. 2009; Wang et al. 2009). Protein aggrega-
tions, depending on their structure, can exhibit different
immunogenicity. Even a slight quantity of formed aggre-
gations after an administration of biological drug may
induce a significant increase of ADA level (Rosenberg
2006). Insufficient knowledge about the possibility of ag-
gregation process induction at the stage of drug design
may endanger safety and efficacy of biological drug
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application in the clinical phase. However, the impact of
aggregation on safety during biological drug research ap-
plications may often be difficult to predict. The reason for
this is the specificity of the immune response. In extreme
cases the dynamics of this response are extraordinarily
high and the equivalent is not seen in small molecules.
Numerous attempts have been made to identify the se-

quence fragments of different proteins that could be re-
sponsible for forming the aggregates (Pawar et al. 2005;
Tartaglia et al. 2005). In the case of therapeutic proteins,
it is known that these fragments are short, hydrophobic
sequences (aggregation prone regions – APR) that in
favorable conditions initiate the aggregation process
(Wang et al. 2009). A large number of APR in protein se-
quences could be connected with higher ability to form ag-
gregates in vivo. This, in turn, can have a significant impact
on the concentration of free form drug in blood and num-
ber of side effects (Rosenberg 2006). The aggregates in fin-
ished drugs are usually identified with the use of
physicochemical methods such as: size exclusion chroma-
tography, analytical ultracentrifugation, electrophoresis,
light scattering etc. However, these methods have some
limitations (Tatkiewicz et al. 2015). They are not always
sensitive enough or they do not determine the share of ag-
gregates of various structures in a single sample. Most of
the commonly used methods allow the determination of
hydrodynamic size or the molecular weight of an aggre-
gate. These measurements ascertain or exclude the pres-
ence of aggregates only after their formation. They do not
identify a danger connected with the ability of determined
protein to form the aggregates. Hence, the significant tool
to assess the risk relating to the ability of forming the ag-
gregates is in silico analysis (Agrawal et al. 2011). Currently,
different kinds of software based on phenomenological
methods, statistical models, Monte Carlo simulations, scor-
ing matrices, decision trees, Bayesian models etc. (Wang et
al. 2009; Tsolis et al. 2013) are used to find APR in the se-
quences of therapeutic proteins.
The aim of this study was to find physiochemical pa-

rameters specific to APR that would differentiate APR
from other sequences present in therapeutic proteins.

Methods
Sequences selection
Two groups of amino acid sequences were used in the
study. The first one was represented by the sequences
separated from the therapeutic proteins (n = 84) able to
form aggregation bridges – APR (Wang et al. 2009)
(Table 1; sequences 1–84). A control set (CS) consisted
of peptides that were chosen based on 22 tregitope se-
quences (Epivax Inc. 2007).
The shortest sequences in the APR group consisted of

5 amino acids. 46.4 % of APR sequences consisted of
only 5 amino acids. A CS was created also based on the

peptides with the length of 5 amino acids. From each
tregitope (n = 22) two sequences were chosen (Table 1;
sequences 85–106). The first one was made of the first
five amino acids of each tregitope (1–5) and second one
was made of the next consecutive five amino acids of
each tregitope (6–10). This way, CS sequences (n = 44)
of the length of 5 amino acids each were obtained. One
of the sequences from the CS was removed from the
analysis (VVSVL). This sequence was the same as one of
the APR sequences. Another one (VSWYQ) was also re-
moved from the CS group as a result of double selection
from the group of tregitopes during conducted proce-
dures. This way, the final number of CS sequences was
42 (Table 1, sequences 107–148).
Tregitopes were used to build CS as they are short

amino acid sequences present in the structure of many
therapeutic proteins. After protein internalization, these
sequences are responsible for the modulation of an im-
mune response by influencing the regulatory T cells. The
effect of tregitope presentation by MHC-II is a tolerogenic
action (De Groot et al. 2013). The presence of tregitopes
in therapeutic protein sequences (except vaccines) is a
desired element considering the suppression of immune
response in relation to the administered protein.

Physicochemical parameters calculations
In the first phase of physicochemical characterization of
analyzed sequences physicochemical parameters of sin-
gle amino acids were calculated. 16 parameters were
taken from PubMed® database (XLogP3, rotatable bond
count, heavy atom count, formal charge, complexity,
isotope atom count, defined atom stereocenter count, un-
defined atom stereocenter count, defined bond stereocen-
ter count, undefined bond stereocenter count, covalently-
bonded unit count). Analysis of 51 physicochemical pa-
rameters of single amino acids was completed using Qik-
Prop 3.1 from Schrödinger package (v 31207) software
(Grabowski et al. 2012). QikProp was run in the normal
mode. Three-dimensional structures of compounds were
prepared in LigPrep 2.2 using settings recommended in
the QikProp’s user manual (Schrödinger 2015). In the ini-
tial phase of study, 62 parameters and features of physico-
chemical structure were used. They were calculated
separately for each amino acid that was a part of the ex-
amined sequences.
In the second phase, physicochemical parameters for

whole sequences were calculated. In this phase arith-
metic expression value (AEx) was created with the use
of eight clue physicochemical parameters (Table 1). In
cases of such parameters as: number of non-conjugated
amine groups (AM), number of carboxylic acid groups
(AC), number of non-trivial (not CX3), non-hindered
(not alkene, amide, small ring) rotatable bonds (ROT),
number of ring atoms not able to form conjugated
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Table 1 Aggregation prone regions (no. 1–84), tregitope sequences (no. 85–106) and short sequences extracted from tregitopes -
control set (no. 107–149)

No. Sequence AM AC ROT HBA QPCaco [nm/s] IP [eV] NON QPlogS AEx

1 ALLVN 4 4 15 13.50 4.41 39.05 0 −0.012 −1.19

2 ALVLIAFA 5 5 19 15.00 7.17 48.36 0 −0.163 −3.22

3 ALYLV 4 4 16 12.75 4.76 29.11 0 −0.119 −1.10

4 CQQYN 5 5 23 21.75 1.71 38.59 0 0.174 2.69

5 DDHYC 5 7 21 19.25 2.08 38.91 0 −0.105 2.65

6 ELLFFAK 7 7 28 21.00 5.73 57.80 0 −0.082 −0.75

7 FAAFV 3 3 11 9.00 4.20 28.86 0 −0.096 −2.23

8 FALFFTIF 7 7 28 21.70 8.87 67.56 0 −0.226 −3.96

9 FAVWG 4 4 13 12.00 4.25 37.33 0 −0.098 −1.33

10 FILFAVF 6 6 23 18.00 8.46 57.82 0 −0.205 −4.01

11 FLSVFFSG 8 8 29 25.40 8.38 77.56 0 −0.122 −3.29

12 FVQWLM 6 6 25 21.00 6.24 56.03 0 −0.124 −1.63

13 GLALL 4 4 14 12.00 4.97 38.83 0 −0.088 −1.92

14 GLLYC 5 5 19 15.25 5.09 38.51 0 −0.077 −0.97

15 GSFFL 5 5 18 15.70 5.18 48.43 0 −0.080 −1.34

16 GSFFLY 6 6 23 19.45 5.60 48.43 0 −0.110 −1.04

17 GSFFLYS 7 7 27 23.15 5.96 58.29 0 −0.095 −1.04

18 IAALL 3 3 12 9.00 4.34 29.09 0 −0.106 −2.04

19 IFLFG 5 5 18 15.00 6.27 48.24 0 −0.130 −2.43

20 IFTDF 5 6 20 16.70 4.72 48.68 0 −0.147 −0.39

21 IFYFYGTTY 9 9 37 30.65 7.07 58.21 0 −0.184 −1.42

22 IGAIY 4 4 15 12.75 3.95 29.02 0 −0.083 −0.39

23 IGYIS 5 5 19 16.45 4.31 38.87 0 −0.068 −0.20

24 IGYIY 5 5 20 16.50 4.36 29.02 0 −0.113 −0.03

25 IMVTF 5 5 20 16.20 5.91 47.81 0 −0.125 −1.86

26 ISLLLIQ 7 7 29 24.20 7.63 67.96 0 −0.102 −2.68

27 IVTCVVV 7 7 24 21.20 8.93 67.63 0 −0.103 −4.25

28 IYYCV 5 5 21 16.00 4.88 28.73 0 −0.108 −0.48

29 LAILT 4 4 16 12.70 4.83 38.93 0 −0.106 −1.47

30 LFNIA 4 4 16 13.50 4.32 38.90 0 −0.032 −0.95

31 LFVEF 5 6 20 17.00 5.67 48.29 0 −0.132 −1.33

32 LGIYF 5 5 19 15.75 5.32 38.65 0 −0.122 −1.20

33 LGLLG 5 5 16 15.00 5.61 48.53 0 −0.070 −2.02

34 LGQFLLFC 8 8 31 26.00 8.90 77.02 0 −0.100 −3.72

35 LGVIW 5 5 17 15.00 5.77 47.12 0 −0.130 −2.02

36 LIGALLV 6 6 21 18.00 7.88 58.18 0 −0.142 −3.58

37 LLIYAA 4 4 17 12.75 4.75 29.09 0 −0.136 −0.99

38 LLIYAASYL 7 7 30 23.20 6.97 48.66 0 −0.187 −1.85

39 LLIYGA 5 5 19 15.75 5.39 38.78 0 −0.118 −1.28

40 LLIYSASFLY 9 9 38 29.90 8.70 68.10 0 −0.211 −3.06

41 LLMLL 5 5 21 15.50 6.91 47.90 0 −0.175 −2.78

42 LMVFFGN 7 7 26 23.00 7.47 67.24 0 −0.069 −2.67

43 LVFFA 4 4 15 12.00 5.65 38.57 0 −0.131 −2.41
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Table 1 Aggregation prone regions (no. 1–84), tregitope sequences (no. 85–106) and short sequences extracted from tregitopes -
control set (no. 107–149) (Continued)

44 LVYGA 4 4 14 12.75 3.96 29.09 0 −0.066 −0.53

45 NLFLLS 6 6 24 20.20 6.12 58.52 0 −0.053 −1.60

46 NVILFSVF 8 8 30 26.20 8.97 77.71 0 −0.093 −3.83

47 RGFFY 5 5 22 17.75 3.85 37.66 0 −0.091 0.50

48 SFFLY 5 5 21 16.45 4.96 38.74 0 −0.128 −0.69

49 SFFLYS 6 6 25 20.15 5.32 48.60 0 −0.113 −0.64

50 SVFIF 5 5 19 15.70 6.01 48.38 0 −0.116 −2.06

51 SVFIFP 6 6 20 19.20 7.90 57.74 4 −0.128 0.32

52 SVFLFP 6 6 20 19.20 7.90 57.79 4 −0.128 0.32

53 SVFLFPP 7 7 21 22.70 9.80 67.16 8 −0.140 2.67

54 TEYNQ 5 6 23 22.45 1.05 39.13 0 0.108 3.60

55 TLFLVY 6 6 24 19.45 6.63 48.54 0 −0.157 −2.01

56 TLLIIFK 8 7 31 22.70 7.73 67.67 0 −0.113 −2.67

57 TNYNQ 5 5 22 21.95 1.08 39.35 0 0.186 3.25

58 TTEYN 5 6 22 20.65 1.50 39.34 0 0.048 3.08

59 TVFIFP 6 6 20 19.20 8.04 57.73 4 −0.142 0.18

60 VAYWYILFIG 9 9 35 28.50 9.42 66.37 0 −0.264 −3.87

61 VEALYL 5 6 21 17.75 4.79 38.83 0 −0.119 −0.27

62 VFLGMFLY 8 8 31 25.25 9.28 67.02 0 −0.212 −4.04

63 VLIYF 5 5 20 15.75 6.14 38.65 0 −0.158 −1.94

64 VLMISL 6 6 24 19.20 7.29 57.67 0 −0.143 −2.76

65 VTLFF 5 5 19 15.70 6.14 48.41 0 −0.131 −2.20

66 VTMLV 5 5 19 16.20 6.00 47.97 0 −0.105 −2.04

67 VVCFL 5 5 18 14.50 6.88 48.06 0 −0.105 −3.03

68 VVCLL 5 5 18 14.50 6.95 48.19 0 −0.102 −3.11

69 VVITL 5 5 18 15.70 6.31 48.59 0 −0.107 −2.47

70 VVSVLTVL 8 8 28 25.40 9.59 77.87 0 −0.129 −4.55

71 VVSVLTVV 8 8 27 25.40 9.60 77.84 0 −0.111 −4.62

72 VVYYSNSYWYF 11 11 46 38.90 7.51 66.98 0 −0.147 −1.40

73 YCLQYD 6 7 27 22.50 3.50 38.73 0 −0.063 1.55

74 YCQQHNE 7 8 32 31.75 2.19 57.83 0 0.162 3.13

75 YCQQHY 6 6 28 26.00 2.53 38.17 0 0.056 2.39

76 YCQQNNN 7 7 31 30.75 1.82 58.47 0 0.329 3.28

77 YCQQS 5 5 23 20.95 2.01 38.51 0 0.112 2.39

78 YCQQYS 6 6 28 24.70 2.43 38.51 0 0.082 2.48

79 YFIAAV 4 4 16 12.75 4.69 28.93 0 −0.122 −1.03

80 YIFSNYWIQWV 11 11 46 39.20 8.59 84.76 0 −0.153 −2.52

81 YISQFIIMY 9 9 40 32.20 8.08 67.10 0 −0.163 −2.37

82 YSVVLLL 7 7 27 22.45 8.03 58.37 0 −0.158 −3.10

83 YVWQVL 6 6 24 21.25 5.61 47.09 0 −0.100 −0.98

84 YYWTWI 6 6 26 20.20 4.34 36.24 0 −0.213 0.49

85 LMIYEVSNRPSGVPD 15 17 56 55.15 12.68 134.38 8 −0.105 2.04

86 NTLYLQMNSLRAEDTAVYYCA 18 20 80 68.85 10.95 144.82 0 −0.047 −3.65

87 NSTYRVVSVLTVLH 14 14 56 51.05 11.43 125.82 0 −0.079 −4.92
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Table 1 Aggregation prone regions (no. 1–84), tregitope sequences (no. 85–106) and short sequences extracted from tregitopes -
control set (no. 107–149) (Continued)

88 PAVLQSSGLYSLSSVVTVPSSSLGTQ 25 25 89 88.75 21.08 233.51 8 0.009 −5.47

89 VDTSKNQFSLRLSSVTAADTA 19 20 77 67.90 10.42 175.19 0 0.049 −3.18

90 KVYACEVTHQGLSS 14 14 54 48.85 8.39 116.08 0 0.067 −1.91

91 MHWVRQAPGKGLEWV 15 15 56 52.50 10.90 130.77 4 −0.085 −0.31

92 LNNFYPREAKVQWKVDNALQSGNS 24 24 94 86.65 12.22 202.03 4 0.330 −0.58

93 VHWYQQKPGQAPVL 14 13 49 51.25 10.67 113.79 8 0.071 3.62

94 GTDFTLTISSLQPED 15 18 57 55.50 10.60 146.32 4 −0.116 0.20

95 PGLVRPSQTLSLTCT 15 15 55 53.50 13.68 144.30 8 −0.034 0.86

96 GGLVQPGGSLRLSCAASGFTF 19 19 66 64.30 16.45 183.05 4 −0.014 −5.46

97 WSWIRQPPGKGLEWI 16 16 58 54.20 12.32 139.75 8 −0.130 2.37

98 VSWYQQLPGTAPKL 14 13 49 48.15 11.01 114.36 8 0.020 3.28

99 WSWVRQPPGRGLEWI 15 16 57 55.20 12.31 139.09 8 −0.181 2.36

100 GGLVQPGRSLRLSCAASGFTF 19 19 71 66.30 15.86 182.15 4 −0.033 −4.79

101 LAWYQQKPGKAPKL 15 12 52 45.75 8.84 103.95 8 0.157 5.45

102 MHWVRQAPGQGLEWM 14 15 56 54.50 10.54 130.27 4 −0.106 0.04

103 VSWYQQHPGKAPKL 15 13 52 50.45 9.59 113.81 8 0.110 4.76

104 GDRVTITCRASQGIS 14 15 58 51.80 8.68 134.40 0 0.007 −2.06

105 GASVKVSCKASGYTF 15 13 53 44.05 8.86 116.11 0 0.115 −2.48

106 EEQYNSTYRVVSVLTVLHQDW 21 24 89 82.80 12.81 182.90 0 −0.081 −5.22

107 LMIYE 5 6 23 18.25 4.47 38.13 0 −0.135 0.19

108 NTLYL 5 5 21 17.95 3.86 39.21 0 −0.023 0.40

109 NSTYR 5 5 24 20.65 1.38 38.43 0 0.062 3.08

110 PAVLQ 4 4 13 15.00 4.85 38.40 4 −0.005 2.02

111 VDTSK 6 6 22 18.40 2.43 48.87 0 0.029 2.06

112 KVYAC 5 4 19 13.25 3.09 28.56 0 0.024 0.87

113 MHWVR 5 5 23 19.50 3.89 45.42 0 −0.124 0.43

114 LNNFY 5 5 21 18.75 3.34 39.18 0 0.051 0.92

115 VHWYQ 5 5 21 20.25 3.16 37.21 0 −0.058 1.12

116 GTDFT 5 6 18 17.40 3.04 48.96 0 −0.054 1.12

117 PGLVR 5 5 17 17.50 5.49 47.26 4 −0.048 2.26

118 GGLVQ 5 5 16 17.50 4.23 48.42 0 0.043 −0.63

119 WSWIR 5 5 23 17.70 3.43 45.05 0 −0.140 0.89

120 WSWVR 5 5 22 17.70 3.44 45.08 0 −0.123 0.81

121 GGLVQ 5 5 16 17.50 4.23 48.42 0 0.043 −0.63

122 LAWYQ 4 4 18 15.25 2.69 27.72 0 −0.064 1.19

123 MHWVR 5 5 23 19.50 3.89 45.42 0 −0.124 0.43

124 GDRVT 5 6 20 18.70 2.69 48.02 0 −0.035 1.66

125 GASVK 5 4 16 13.70 2.53 38.72 0 0.081 0.88

126 EEQYN 5 7 24 23.75 0.57 39.01 0 0.107 4.32

127 VSNRP 5 5 19 19.70 3.83 47.65 4 0.061 4.13

128 QMNSL 5 5 22 20.20 3.04 48.18 0 0.084 1.16

129 VVSVL 5 5 17 15.70 6.18 48.63 0 −0.075 0.00

130 SSGLY 5 5 19 17.15 3.22 39.12 0 −0.018 0.89

131 NQFSL 5 5 21 19.70 3.28 48.73 0 0.079 0.84
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aromatic systems (NON), ionization potential (IP) and
hydrogen bond acceptors (HBA), the sum of the values
of particular parameter (SP) calculated for each amino
acid separately SP = (SPi = ni) + (SPii × nii) + (SPiii × niii)…,
where SPi-iii – structure parameter calculated for particu-
lar amino acid, n – amount of particular amino acid in the
sequence, i, ii, iii – particular amino acids was calculated.
In case of predicted apparent Caco-2 cell permeability

(QPCaco) and solubility (QPlogS), SP was an arithmetic
mean of particular physicochemical parameters calcu-
lated according to the formula:

SP ¼ SPi � nið Þ þ SPii � niið Þ þ SPiii � niiið Þ…½ �=N ;

where N – number of non-replayed amino acids in se-
quence. This way calculated physicochemical parameters
(Table 1) were used to search for the correlation that
could differentiate APR from CS.

Creation of arithmetic expressions
The search for differences in each SP between the APR
and CS groups (Table 1) did not yield any significant
findings. Therefore, an attempt to create an arithmetic
expression value (AEx) consisting of several different SP
was made. To this end, the method published earlier
was used (Grabowski et al. 2012). Many compilations of
SP were tested (not published data), as the result of
which the arithmetic statement was distincted: Ln(AM −

IP +AC × ROT) − (QPCaco −NON). A value QPlogS and
this arithmetic statement were used to classify the se-
quence groups and to exhibit a significance of differ-
ences between classes (APR and CS). QPlogS is a
physicochemical parameter of a complex character. This
focuses the information of solubility in water. However,
this information combines many properties linked to a
molecule solubility and its electrostatical character.
Hence, there was an attempt to use that parameter in
presented model.

Statistical analysis and model validation
Statistical analysis was performed with the use of Graph-
Pad Prism 6.0 software. All relationships were confirmed
by Mann-Whitney test (Zc statistics) and differences
with p <0.05 were regarded as statistically significant.
Arithmetic mean (M), standard deviation (SD), lower
and higher 95 % confidence intervals for M (CI low, CI
high), and standard error (SE) was calculated (SD=

ffiffiffiffi

N
p

,
where – N is total number of sequences (APR and CS)).
Sample size of training set (APR) was positively verified
by Toplis ratio (ratio of the number of chemicals in
the training set to the number of descriptors in the
AEx is >5:1) (OECD 2007; ECHA 2008).
Classification model and four classes (A, B, C, D) of

sequences were finally presented. Currently, the Cooper
statistics is the most widely used method of classification

Table 1 Aggregation prone regions (no. 1–84), tregitope sequences (no. 85–106) and short sequences extracted from tregitopes -
control set (no. 107–149) (Continued)

132 EVTHQ 5 6 21 22.20 2.49 48.40 0 0.031 1.92

133 QAPGK 5 4 15 16.00 2.66 38.18 4 0.134 4.63

134 PREAK 5 5 20 17.50 2.05 37.37 4 0.054 6.16

135 QKPGQ 6 5 20 21.50 2.70 47.81 4 0.195 5.36

136 LTISS 5 5 20 17.10 4.11 48.93 0 −0.041 −0.08

137 PSQTL 5 5 18 19.40 4.25 48.41 4 0.029 3.59

138 PGGSL 5 5 13 16.20 4.98 48.32 4 0.004 2.10

139 QPPGK 6 5 16 19.50 4.55 47.54 8 0.122 7.10

140 QLPGT 5 5 16 18.70 4.53 48.25 4 0.032 3.08

141 QPPGR 5 5 16 20.50 4.53 46.86 8 0.054 7.11

142 PGRSL 5 5 18 18.20 4.39 47.43 4 −0.015 3.47

143 QKPGK 7 5 22 20.00 2.73 47.66 4 0.201 5.51

144 QAPGQ 4 4 13 17.50 2.63 38.32 4 0.128 4.24

145 QHPGK 6 5 19 21.00 3.11 47.70 4 0.122 4.86

146 ITCRA 4 4 19 14.20 3.14 37.69 0 −0.031 0.60

147 VSCKA 5 4 18 13.20 3.04 38.41 0 0.069 0.62

148 STYRV 5 5 23 19.15 2.79 38.18 0 −0.034 1.62

Sequence sequence named according to IUPAC recommendations (IUPAC 1983), AM number of non-conjugated amine groups, AC number of carboxylic acid
groups, ROT number of non-trivial (not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds, HBA hydrogen bond acceptors, QPCaco predicted
apparent Caco-2 cell permeability, IP ionization potential, eV electronovolts, NON number of ring atoms not able to form conjugated aromatic systems, QPlogS
solubility, AEx arithmetic expression value Ln(AM − IP + AC × ROT) − (QPCaco − NON)

Marczak et al. In Silico Pharmacology  (2016) 4:6 Page 6 of 10



model validation (Fang and Fang 2013; Fang et al. 2013;
Zambrano et al. 2015). That is why, for model validation
Cooper statistics based on Bayesian approach (sensi-
tivity – Sn, specificity – Sp, accuracy – Ac, error rate –
Er, positive predictivity – Pp, negative predictivity –
Np, false positive (over-classification) rate – FPoc, false
negative (under-classification) rate – FNuc, proportion
of active chemicals in a population – Pas) was pre-
sented. Cooper statistics was calculated using equations:
Sp =Tn/(Tn + Fp), Sn = Tp/(Tp + Fn), Ac = (Tp + Tn)/N where
Er = [N − (Tp +Tn)]/N, Pp = Tp/(Tp + Fp), Np = Tn/(Tn + Fn),
FPoc = Fp/(Fp + Tn), FNuc = Fn/(Fn + Tp), Pas = Tn/(Tn + Fp),
where Tp (true positive) is the number of compounds cor-
rectly classified as APR, Tn (true negative) is the number
of compounds correctly classified as CS, Fn (false negative)
is the number of APR compounds classified as CS, Fp
(false positive) is the number of CS compounds classified
as APR and N is total number of sequences (APR and
CS). Each calculated value was multiplied by 100 and
expressed as %, model was verified as validated if Cooper
statistics is significantly greater than 50 % (OECD 2007).

Results
The mean values of SP calculated for particular groups
of sequences were presented in Table 2 (Table 2).
At the initial stage of study, the differences in SP

between APR and CS were searched. As the result, they
could differentiate significantly between these two
groups. The analysis of single parameters did not yield
its expected results. In case of comparative analysis of
SP calculated for the tregitope sequences and APR, sig-
nificant differences were identified (p <0.05), for instance
in relation to HBA↔IP. After a selection of shorter
sequences (CS) from the same tregitope sequences,
though, it turned out that the differences in relation to
HBA↔IP were not significant (Fig. 1). The significant
differences (p <0.05) in relation to values SP of tregitopes
and APR were also stated for correlations: FISA↔AC ×
DN0.5/SA, FISA↔Vol, Vol↔HBA, QPlogS↔FISA, where
FISA – hydrophilic component of the solvent accessible
surface area, AC ×DN0.5/SA – index of cohesive interaction
in solids, Vol – total solvent accessible volume in cubic
angstroms (Å2) using a probe with a 1.4 Å radius.

However, all the same correlations were not significant for
the CS selected from the tregitopes. At the next stage of
study, SP was used to create arithmetic statement (AEx)
that allowed differentiation of APR (n = 84) from CS (n =
42) with a sensitivity of 79.76 %. After statement of a cor-
relation AEx↔QPlogS, the sequences APR and CS were
differentiated on 4 different classes (A, B, C, D). The range
of classes are characterized with the values of parameters
QPlogS and AEx. A definition of class includes the values:
QPlogs > 0 and AEx < 0 (class A), QPlogs ≥ 0 and AEx > 0
(class B), QPlogs < 0 and AEx ≥ 0 (class C), QPlogs ≤ 0 and
AEx ≤ 0 (class D), (Fig. 2). A range specific for APR
illustrates class D on Figure 2. As a result of using AEx,
only 20.24 % of APR were incorrectly recognized as se-
quences not connected with the aggregation process (class
B and C on Fig. 2). And only one of 42 CS sequences was
recognized as a sequence potentially dangerous and
classified to class D. As a result, 97.67 % of CS sequences
were classified as not possessing any features connected
with forming the aggregates (Table 3) – class A, B, C on
the Figure 2.
Out of 127 sequences (a sum of APR and CS) only

one was present in A class. 67 APR sequences were
classified to class D. Other sequences were in classes: B
and C. The proposed classification model did not allow
total separation of APR from CS. During analyses, it
turned out that four out of 42 CS sequences had regions
that were repeated in APR. These regions contained
hydrophobic amino acids such as F, I, L, M and N. These
regions were: LMI, LYL, TDF and QYN. Only one APR
(CQQYN) was classified to class B instead of class D. In
relation to CS, none of mentioned regions (LMI, LYL,
TDF, QYN) impacted on incorrect classification of CS.
Every CS sequence possessing the mentioned regions in
its structure was assigned to class C (EEQYN) or B
(LMIYE; NTLYL; GTDFT).
Significant difference (p <0.05) between AEx value cal-

culated for APR (n = 84) and CS (n = 42), Zc = 7.172
was stated. Moreover, significant difference (p <0.05)
was also stated between QPlogS value calculated for
APR (n = 84) and QPlogS calculated for CS (n = 42)
p <0.05, Zc = 6.270. Calculated Cooper statistics was
Sn = 79.76 %, Sp = 97.62 %, Ac = 85.71 %, Er = 14.29 %,

Table 2 An arithmetic mean and standard deviations of physicochemical parameters used for arithmetic expression (AEx; Ln(AM − IP +
AC × ROT) − (QPCaco − NON)) determination

Analyzed sequences Arithmetic mean; standard deviation

AM AC ROT HBA QPCaco [nm/s] IP [eV] NON QPlogS AEx

Aggregation prone regions 6.0; 2.0 6.0; 2.0 23.0; 7.0 19.64; 6.01 5.84; 2.17 49.70; 13.96 0.0; 1.0 −0.095; 0.095 −1.21; 2.02

Tregitopes 17.0; 3.0 17.0; 4.0 63.0; 14.0 58.98; 12.61 11.83; 2.88 145.77; 32.73 4.0; 2.0 −0.003; 0.113 −0.68; 3.40

Control sequences 5.0; 1.0 5.0; 1.0 19.0; 3.0 18.17; 2.30 3.44; 1.04 43.27; 5.65 2.0; 2.0 0.015; 0.084 2.23; 2.03

AM number of non-conjugated amine groups, AC number of carboxylic acid groups, ROT number of non-trivial (not CX3), non-hindered (not alkene, amide, small
ring) rotatable bonds, HBA hydrogen bond acceptors, QPCaco predicted apparent Caco-2 cell permeability, IP ionization potential, eV electronovolt, NON number
of ring atoms not able to form conjugated aromatic systems, QPlogS solubility
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Pp = 98.53 %, Np =70.69 %, FPoc = 2.38 %, FNuc =
20.24 % and Pas = 85.71 %.

Discussion
This study attempted to use the physicochemical parame-
ters of single amino acids to detect APR sequences in thera-
peutic proteins. The introduced method involved analysis
using software used previously mostly for calculations of
physicochemical parameters of small molecules. This
method uses the analysis of physicochemical parameters of
single amino acids and bases on a prediction of final par-
ameter (SP). This parameter, in turn, is the basis for creat-
ing a sequence or region characterization based on AEx,
constructed of many SP (AEx = SP ⟺ SP ⟺ SP….,

where ⟺ means mathematic operation). AEx with
QPlogS was used to construct a model, where 4 sequence
classes were defined. Class D includes APR sequences, and
classes A, B, C – sequences that do not have the same in-
fluence on aggregation bridges forming.
In the course of the study, it was stated that using the

long amino acid sequences to verify the presented model
implemented false positives. In long tregitope sequences
AEx had a value significantly different from AEx calcu-
lated for APR. However, this may result from the exist-
ence of feature camouflage of the shorter CS (CS derived
from tregitopes, n = 5).
The study proposes a classification model of APR con-

sisting in a separation of APR based on the differences

Fig. 1 A relationship between hydrogen bond acceptors (HBA) and ionization potential (IP-[eV – electronovolts]). APR aggregation prone regions
(○; n = 84); tregitope sequences (□; n = 22), CS control set extracted from tregitopes (●; n = 42)

Fig. 2 A separation of 4 classes (a, b, c, d) of dependencies and the relationship between aqueous solubility (QPlogS) and arithmetic expression
value (AEx), Ln(AM − IP + AC × ROT) − (QPCaco − NON). APR aggregation prone regions (○; n = 84), CS control set extracted from tregitopes
(●; n = 42), AC number of carboxylic acid groups, AM number of non-conjugated amine groups, IP ionization potential, ROT number of
non-trivial (not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds, QPCaco predicted apparent Caco-2 cell permeability,
NON number of ring atoms not able to form conjugated aromatic systems
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in the value of QPlogS and AEx in relation to sequences
that do not form aggregates. A value of water solubility or
hydrophobicity of APR with reference to APR has been
discussed in many studies (Wang et al. 2009; Tsolis et al.
2013; Zbilut et al. 2003; Wu et al. 2014). The significance
of this feature in relation to APR was also confirmed in
this study. Moreover, it was stated that the charge
characterization of particular amino acids present in ana-
lyzed sequences has a significant correlation with APR. It
is indicated by the presence in AEx of such parameters as:
ionisation potential, number of amine groups or number
of carboxylic acid groups. At least three parameters used
to construct AEx relate to the charge characterization of
analyzed sequences. The presence of IP in AEx does not
seem to be accidental. The IP value is determined, among
other things, in relation to the oxidative potential of
amino acids. It is known that IP value is connected with
the proton-donating or proton-accepting character of the
amino group and carbonyl groups of amino acids (Hira-
kawa 2014). IP is a parameter indicative of the molecular
ability to transfer positive ion. Therefore IP is connected
with the oxidative reactions of amino acids (Rooman and
Wintjens 2014). On the other hand, oxidation of some
amino acids (histidine, methionine, cysteine, tryptophan,
tyrosine) may have influence on the increase of aggrega-
tion forming dynamics (Li et al. 1995).
Although some sequences were not classified correctly,

validation parameters confirm the predictive quality of
the model. Based on the calculations, it can be deduced

that the finding of APR in the protein structure with the
use of parameters used so far for small molecules is
possible. The study confirmed previous observations
concerning the influence of short, hydrophobic protein
sequences on the initiation of the protein aggregation
process. Additionally, the significant share of electrosta-
tistic parameters including IP in relation to classification
parameters was indicated.

Conclusions
The study proposes a classification model of APR consist-
ing in a distinction of APR based on the differences in the
structure in relation to sequences that do not form aggre-
gates. Key parameters for validation of the presented model
include: number of non-conjugated amine groups, number
of carboxylic acid groups, number of non-trivial (not CX3),
non-hindered (not alkene, amide, small ring) rotatable
bonds, hydrogen bond acceptors, predicted apparent Caco-
2 cell permeability, ionization potential, number of ring
atoms not able to form conjugated aromatic systems and
solubility.
This presented model allows selection of APR’s in the

protein sequence in non-clinical drug development process.
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Not applicable.

Consent for publication
Not applicable.

Table 3 Summary of statistics for arithmetic expression value (AEx) Ln(AM − IP + AC × ROT) − (QPCaco − NON) and solubility (APlogS)
of each sequence (aggregation prone regions and control set) in classes A, B, C, D

Class

A B C D

Aggregation prone regions

Parameters AEx QPlogS AEx QPlogS AEx QPlogS AEx QPlogS

M na. na. 0.313 0.015 0.103 −0.012 −1.629 −0.098

SD na. na. 0.420 0.082 0.990 0.041 1.167 0.044

CI low na. na. 0.039 −0.039 −0.583 −0.041 −1.909 −0.108

CI high na. na. 0.587 0.068 0.789 0.017 −1.350 −0.087

n 0 9 8 67

SE na. na. 0.140 0.027 0.350 0.015 0.143 0.005

Control set sequences

M −0.029 0.002 1.733 0.041 0.472 −0.025 −0.002 −0.001

SD 0.000 0.000 2.060 0.052 0.801 0.046 0.000 0.000

CI low na. na. 0.873 0.019 0.091 −0.046 na. na.

CI high na. na. 2.594 0.062 0.853 −0.003 na. na.

n 2 22 17 1

SE na. na. 0.439 0.011 0.194 0.011 na. na.

Groups groups of parameters depicted in Fig. 2, M arithmetic mean, SD standard deviation, CI low lower 95 % confidence interval for M, CI high higher 95 %
confidence interval for M, n number of sequences observed in specific class (A, B, C, D), SE standard error, na. not applicable, QPlogs >0 and AEx <0 (class A),
QPlogs ≥0 and AEx >0 (class B), QPlogs <0 and AEx ≥0 (class C), QPlogs ≤0 and AEx ≤0 (class D)
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