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Bacterial infections caused by intracellular pathogens are difficult to control. Conventional
antibiotic therapies are often ineffective, as high doses are needed to increase the number
of antibiotics that will cross the host cell membrane to act on the intracellular bacterium.
Moreover, higher doses of antibiotics may lead to elevated severe toxic effects against
host cells. In this context, antimicrobial peptides (AMPs) and cell-penetrating peptides
(CPPs) have shown great potential to treat such infections by acting directly on the
intracellular pathogenic bacterium or performing the delivery of cargos with antibacterial
activities. Therefore, in this mini-review, we cover the main AMPs and CPPs described to
date, aiming at intracellular bacterial infection treatment. Moreover, we discuss some of
the proposed mechanisms of action for these peptide classes and their conjugation with
other antimicrobials.
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INTRODUCTION

Over the years, bacteria have been adapting to survive, become resistant to drugs, and make the
host’s phagocytes their home (Cornejo et al., 2017). Intracellular bacteria have received special
attention since they are extremely challenging to detect and treat (Mitchell et al., 2016). Once
internalized, they can remain inactive but persist, causing recurrent infections and chronic illnesses
(Monack et al., 2004). Many of the treatments currently used for internalized bacteria are ineffective
at therapeutical doses (Monack et al., 2004). For example, conventional antibiotics used in
treatments against extracellular bacteria have reduced permeability in intracellular bacterial
infections (Proctor et al., 2006; Lehar et al., 2015).

Although antibiotics can kill the internalized bacteria, these microorganisms have shown
different resistance profiles, thus often rendering the treatment ineffective (Proctor et al., 2006;
Lehar et al., 2015). In this current scenario, the search for effective alternative ways of killing
intracellular bacteria is imperative. Promising alternatives are antimicrobial peptides (AMPs) and
cell-penetrating peptides (CPPs) for direct antibacterial activities or for the delivery of antibacterial
cargos and peptide nucleic acids (PNAs) within the host cell (Splith and Neundorf, 2011; Le
et al., 2017).

Antimicrobial peptides (AMPs) are commonly found in nature, also called natural antibiotics
(Felıćio et al., 2017). These molecules play a critical role in the first line of defense against pathogens,
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being expressed constitutively or induced by different types of
cells in response to infectious or inflammatory stimuli (Kumar
et al., 2018; Yount et al., 2019).

Based on their activities and structural profiles, new and
promising active molecules have been designed; among them,
we can cite AMPs with intracellular antibacterial activity (Crépin
et al., 2020). In general, these peptides are constituted offive to 50
amino acid residues and manage to cross the host’s first barrier,
the plasma membrane (Felıćio et al., 2017). Once internalized by
endocytosis or macropinocytosis (Figure 1), they can present
direct actions in vacuoles or cytosol, where the bacteria are
found. Moreover, they can interfere with some internal
signaling pathways (e.g., maturation of IL-1b, and increased
levels of TNF-a, IL-1b, and IL-10 to eliminate intracellular
bacteria) (Wang et al., 2018). By interfering with the
intracellular pathways, some specific mediators are increased,
including those responsible for chemotactic activities,
stimulation of the oxidative metabolism in phagocytes,
increasing protein production in the acute inflammation phase
and stimulating CD4 + and CD8 + cells (Trinchieri, 1997; O’Shea
et al., 2002).

Cell-penetrating peptides (CPPs) are also considered
intracellular antibacterial agents as they can penetrate bacterial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
cell membranes without seriously compromising their integrity.
CPPs are small peptides that can autonomously translocate
across plasma membranes and mediate transport of cargo
molecules (Gomarasca et al., 2017). Charge molecules that can
be coupled to CPPs include biological products, such as proteins,
oligonucleotides, nanoparticles, and small molecule drugs
(Hoffmann et al., 2018). The conjugation of CPP-charges can
occur by a covalent and non-covalent bond (Hoffmann et al.,
2018). The main feature of the plasma membrane is to protect
the internal content of the cells. Therefore, the plasma membrane
is a semipermeable barrier and essential for cell survival. The
transport of compounds through the membrane occurs freely
with small molecules or specific channels in larger molecules
(Gomarasca et al., 2017; Ruseska and Zimmer, 2020). CPPs have
a high permeability rate, cross the membrane of different cell
types, present low cytotoxicity and do not activate the host’s
immune response (Ruseska and Zimmer, 2020).

These peptides can either exert a direct antibacterial
mechanism or perform the delivery of bioactive molecules,
including other antimicrobial agents and PNAs (Reissmann,
2014). PNAs are synthetic DNA derivatives applied in
hybridization-based microbial diagnostics. They are able to
reduce the proliferation of various bacteria due to the antisense
FIGURE 1 | Schematic representation of the mechanism involved in bacteria, AMPs, and CPPs internalization into macrophages. Free-floating bacteria can invade
the host cell by zipper or trigger mechanisms. Once inside the host cell, intracellular bacteria can occupy both the cytosol and vacuoles. At their therapeutic dose,
conventional antibiotics usually present low permeability, rendering the intracellular bacterial infection treatment ineffective. By contrast, increasing antibiotics’
concentration can favor their permeabilization across the host cell membrane to treat the infection. However, as a consequence, it can also trigger cell toxicity. AMPs
and CPPs have been used as alternative therapies. These peptide classes can translocate through the host cell plasma membrane via endocytosis, phagocytosis
and macropinocytosis. In some cases, CPPs can also form transient toroidal pores or interact with membrane receptors. Once inside the cell, AMPs usually trigger
direct antibacterial activities, whereas CPPs have been commonly used in conjunction with PNA and cargos aiming at essential bacterial genes silencing or direct
antibacterial activities, respectively. Figure created with BioRender.com.
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targeting of essential genes (Barkowsky et al., 2019). PNAs
coupled to CPPs are able to support translocation over the cell
membrane in bacteria (Figure 1) and, thus, increase antimicrobial
efficiency (Barkowsky et al., 2019). The CPPs’ internalization
mechanisms depend on two factors, including the target cell and
the load coupled to the CPPs (when used in association with
cargos) (Ruseska and Zimmer, 2020).

In this mini-review, we cover recent findings on the usage of
AMPs and CPPs as promising intracellular antibacterial
candidates, which act by interfering with cell-penetrating
properties, and their suggested mechanism of action and
conjugation with other antimicrobial agents.
INTRACELLULAR INFECTIONS CAUSED
BY MULTIDRUG-RESISTANT BACTERIA

Bacteria are divided into two groups, including extracellular and
intracellular bacteria. Extracellular bacteria have a free livelihood
in environmental niches, whereas intracellular bacteria can infect
a host cell and further replicate (McClure et al., 2017). Among
the main obligate intracellular bacteria, we can mention
Chlamydia spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp.,
Orientia spp., and Coxiella burnetii (McClure et al., 2017; Otten
et al., 2018), whereas facultative intracellular bacteria include
Salmonella spp., Francisella spp., Legionella pneumophila, Listeria
monocytogenes, and Yersinia spp (McClure et al., 2017; Otten
et al., 2018).

Obligatory or facultative intracellular lifestyles are characteristic
of bacterial evolution, enabling these microorganisms’ growth and
replication in different niches (Otten et al., 2018). When bacteria
start the cell internalization process, some of them can be detected
by the host defense mechanisms, activating macrophage
recruitment. However, bacteria that evade this process can also
internalize macrophages, thus being protected from the host’s
immune response and antibiotic action (Maurin and Raoult,
2001; Canton and Kima, 2012). Thus, intracellular bacteria reside
directly in the mammalian cell-host cytoplasm or vacuoles,
manipulating endocytic or secretory pathways to recruit necessary
supplements to guarantee their replication (Loeuillet et al., 2006;
Canton and Kima, 2012; Yeh et al., 2020). Different systems can
facilitate the entry of intracellular bacteria in professional
phagocytes, including type III secretion system (T3SS) and type
IV secretion system (T4SS) (Coburn et al., 2007). These systems
can translate specific proteins (effector proteins) to mediate
pathways of the pathogen’s internalization. The purpose of
bacterial effector proteins is to facilitate the entry of intracellular
bacteria into the host cell, providing survival and replication in the
cytoplasm or intracellular organelle (Ham et al., 2011; Yeh
et al., 2020).

Intracellular bacteria can invade different cell types, including
neutrophils, keratinocytes, and intestinal epithelial cells (Ham
et al., 2011; Abu-Humaidan et al., 2018). The strategies used by
intracellular bacteria to invade non-phagocytic host cells include
the zipper and trigger mechanisms (Figure 1) (Ham et al., 2011).
Bacteria that use the zipper mechanism express proteins on their
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
membrane surfaces, which bind to the host cell’s plasma
membrane receptors. The binding of surface proteins (bacteria
and host cells) promotes pathogen-host cell interaction and
triggers signaling cascades that reorganize the actin cytoskeleton,
helping the bacteria to be internalized (Cossart and Sansonetti,
2004; Ham et al., 2011). By contrast, the trigger mechanism is
characterized by the type III secretion system (Veiga and Cossart,
2006). The bacterium secretes effector proteins into the
cytoplasm to modulate the actin cytoskeleton, polymerizing the
actin, thus forming a pseudopod and allowing the bacteria’s entry
into the cytoplasm (Veiga and Cossart, 2006; Ó Cróinıń and
Backert, 2012).

Another problem is that bacterial infections caused by
intracellular pathogens are incredibly difficult to eradicate
(Cossart and Sansonetti, 2004), as the antibiotics’ concentration
internalized in host cells is lower than their minimum inhibitory
concentration (MIC) (Harish and Menezes, 2015). Such
disparities in antibiotic concentration could lead to further drug
resistance. The antimicrobials currently used to treat intracellular
pathogens are sulfonamides, quinolones, tetracyclines, and
beta-lactams (Harish and Menezes, 2015; Bongers et al., 2019).
It is suggested that sulfonamides are captured by host cells by
active mechanisms and have a bacteriostatic effect on the
intracellular pathogen. Quinolones enter and accumulate in
subcellular compartments. Beta-lactams enters the cell by
passive diffusion, interfering with the intracellular bacteria
peptidoglycan synthesis. Finally, tetracyclines enter the host
cells through organic cations active transport and interfere with
bacterial protein synthesis (Bongers et al., 2019). Nevertheless,
the recurrent choice of these antibiotics has become limited
in clinical cases with resistant bacterial strains (Harish and
Menezes, 2015).

The increase in resistance to multiple drugs reinforces the
urgent need to develop new intracellularly active antibacterial
agents capable of overcoming the low cellular permeability of the
antimicrobials currently used (Weissman et al., 2016).
ANTIMICROBIAL PEPTIDES

Antimicrobial peptides (AMPs) are multifunctional molecules
that have been largely isolated from various organisms,
including vertebrate and invertebrate animals, plants, and
bacteria (Porto et al., 2017). AMPs can be useful in eliminating
bacteria, parasites, fungi, and viruses (Yan and Hancock, 2001).
In addition, immunomodulatory and anticancer properties
have also been reported (Hancock and Sahl, 2006). Therefore,
the range of physicochemical properties and mechanisms
of action attributed to AMPs make these molecules promising
antibacterial drug candidates, which are more capable of acting
on different biosynthetic pathways than conventional antibiotics
reported as working against extracellular and intracellular
bacteria (Gottschalk et al., 2015; Silva and Gomes, 2017).

Amongst multiple AMPs used for intracellular pathogens is
plectasin (Figure 1). This peptide derived from the fungus
Pseudoplectania nigrella shows defensin-like characteristics
February 2021 | Volume 10 | Article 612931
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found in spiders, scorpions, dragonflies and mussels (Mygind
et al., 2005). This peptide has been evaluated against methicillin-
resistant S. aureus (MRSA) in its extra and intracellular modes of
infection (Brinch et al., 2009; Xiong et al., 2011; Wang et al.,
2018). Wild-type plectasin (NZ2000) has been used to treat
monocytes (model THP-1) infected by MRSA, leading to a
reduction of 1-log in the intracellular bacterial load (Table 1)
(Brinch et al., 2009). This in vitro intracellular plectasin activity
was more effective than vancomycin (Brinch et al., 2009).
Moreover, the plectasin analogs NZ2114 and MP1102 were
evaluated against three S. aureus strains (methicillin-
susceptible and –resistant strains, and a high virulence strain)
internalized in RAW 264.7 cells (Table 1). Compared to their
parent peptide (plectasin), both analogs effectively reduced the
intracellular bacterial load (Wang et al., 2018). Other defensin-
like AMPs, including HNP-1 (a-human defensins) and RC-1
(humanized q-defensin, retrocyclin – 1), were tested against
intracellular Listeria monocytogenes (Arnett et al., 2011). All
these peptides caused a dose-dependent inhibition of bacterial
proliferation, with more promising results for RC-1 (Table 1)
(Arnett et al., 2011).

Amphibian-derived peptides (frog skin), including
esculentin-1a (Trinchieri, 1997; O’Shea et al., 2002; Monack
et al., 2004; Proctor et al., 2006; Splith and Neundorf, 2011;
Reissmann, 2014; Lehar et al., 2015; Mitchell et al., 2016; Cornejo
et al., 2017; Le et al., 2017; Felıćio et al., 2017; Gomarasca et al.,
2017; McClure et al., 2017; Kumar et al., 2018; Wang et al., 2018;
Hoffmann et al., 2018; Otten et al., 2018; Barkowsky et al., 2019;
Yount et al., 2019; Crépin et al., 2020; Ruseska and Zimmer,
2020) (Islas-Rodrìguez et al., 2009; Luca et al., 2013) and its
diastereomer analog, named Esc (Trinchieri, 1997; O’Shea et al.,
2002; Monack et al., 2004; Proctor et al., 2006; Splith and
Neundorf, 2011; Reissmann, 2014; Lehar et al., 2015; Mitchell
et al., 2016; Cornejo et al., 2017; Felıćio et al., 2017; Gomarasca
et al., 2017; Le et al., 2017; McClure et al., 2017; Kumar et al.,
2018; Hoffmann et al., 2018; Otten et al., 2018; Wang et al., 2018;
Barkowsky et al., 2019; Yount et al., 2019; Crépin et al., 2020;
Ruseska and Zimmer, 2020)-1c, have been tested for their
intracellular antibacterial potential on two bronchial cell types
infected with Pseudomonas aeruginosa (Table 1) (Cappiello
et al., 2016). At 5 mM, both peptides caused 15 to 20%
intracellular bacterial death within 1 h after treatment in
bronchial cells. In contrast, when tested in DF508 bronchial
cells, at 5 mM, the esculentin-1a (Trinchieri, 1997; O’Shea et al.,
2002; Monack et al., 2004; Proctor et al., 2006; Splith and
Neundorf, 2011; Reissmann, 2014; Lehar et al., 2015; Mitchell
et al., 2016; Cornejo et al., 2017; Le et al., 2017; Felıćio et al., 2017;
Gomarasca et al., 2017; McClure et al., 2017; Kumar et al., 2018;
Hoffmann et al., 2018; Otten et al., 2018; Wang et al., 2018; Yount
et al., 2019; Barkowsky et al., 2019; Crépin et al., 2020; Ruseska
and Zimmer, 2020) peptide reduced 40% of the intracellular
bacteria load, whereas its diastereomer analog caused 60%
bacterial reduction (Cappiello et al., 2016).

Insects have essential AMPs from their organism’s innate
system, a rich source to be prospected (Li et al., 2018). The
DLP4 peptide, isolated from the hemolymph of Hermetia
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
illucens, showed potent antibacterial activity against Gram-
positive and negative. In an assay using MRSA ATCC43300 in
intracellular form with RAW 264.7 cells; DLP4 peptides and
their analog DLP2 significantly reduced bacterial growth in
vitro (DLP2 - 1.89 -log and DLP4 - 1.34 -log) (Table 1) (Li
et al., 2018).

A mammalian peptide, denominated BSN-37 {a truncated N-
terminal fragment [Bac5 (Trinchieri, 1997; Maurin and Raoult,
2001; Yan and Hancock, 2001; O’Shea et al., 2002; Cossart
and Sansonetti, 2004; Monack et al., 2004; Hancock and Sahl,
2006; Loeuillet et al., 2006; Proctor et al., 2006; Veiga and
Cossart, 2006; Coburn et al., 2007; Ham et al., 2011; Splith and
Neundorf, 2011; Canton and Kima, 2012; Ó Cróinıń and Backert,
2012; Reissmann, 2014; Gottschalk et al., 2015; Harish and
Menezes, 2015; Lehar et al., 2015; Mitchell et al., 2016;
Weissman et al., 2016; Felıćio et al., 2017; Gomarasca et al.,
2017; Le et al., 2017; McClure et al., 2017; Porto et al., 2017; Abu-
Humaidan et al., 2018; Hoffmann et al., 2018; Kumar et al., 2018;
Wang et al., 2018; Otten et al., 2018; Barkowsky et al., 2019;
Bongers et al., 2019; Yount et al., 2019; Crépin et al., 2020;
Ruseska and Zimmer, 2020; Yeh et al., 2020)] of Bac5}, has been
evaluated against intracellular Salmonella enterica serovar
Typhimurium (S. Typhimurium) bacteria (Yang et al., 2020).
For the intracellular experiment, Madin-Darby canine kidney
cells (MDCK) were used and the peptide BSN-37 antibacterial
effect was evaluated. It was observed that BSN-37 reduced the
amount of intracellular S. Typhimurium, suggesting that this
peptide can enter the host cell and kill bacteria without harming
the cellular viability of MDCK (Table 1) (Yang et al., 2020).

Rational design is a modern approach used to improve
existing peptide structures for a desired biological activity. The
peptide WR12 (RWWRWWRRWWRR) is a de novo designed
short synthetic peptide, composed exclusively of arginine and
tryptophan amino acid residues. D-IK8 (irikirik) is a short
synthetic peptide composed only of eight D-amino acids
(Mohamed et al., 2016). These peptides were tested for their
intracellular antibacterial activity on human keratinocytes
infected by MRSA and methicillin-sensitive S. aureus (MSSA)
(Mohamed et al., 2016). The D-IK8 peptide reduced the
intracellular bacterial load of MRSA and MSSA by 96%, at a
concentration of 16 µM, whereas at this same concentration, the
peptide WR12 reduced MRSA andMSSA loads by 40% (Table 1)
(Mohamed et al., 2016).

Many AMPs have remarkable activity against bacteria, but the
minority of AMPs manage to reach intracellular bacteria via
nonlytic mechanisms to the host cell (Splith and Neundorf, 2011;
Yang et al., 2020). An alternative is the CPPs, which can present
intracellular antimicrobial activity or can be coupled to cargos
with activity against intracellular bacteria (Splith and
Neundorf, 2011).
CELL-PENETRATING PEPTIDES

Frankel and Pabo were the first researchers to discover a
peptide capable of translocating to the nucleus of cells, known
February 2021 | Volume 10 | Article 612931
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as the TAT peptide (transactivating transcription protein),
encoded by human immunodeficiency virus type 1 (HIV-1)
(Frankel and Pabo, 1988). Later, consecutive discoveries were
made and, currently, more than 1,700 CPPs have been registered
in an online database (http://crdd.osdd.net/raghava/cppsite/).

The mechanisms of CPP’s penetration into cells can occur by
more than one pathway. In general, the internalization of CPPs is
closely related to the molecule conjugated to it (cargo), its
concentration and the target cell type (Koren and Torchilin,
2012). Authors suggest that the mechanisms may include
endocytosis followed by endosomal escape, which can be
differentiated in many ways, including macropinocytosis,
clathrin-mediated endocytosis, lipid raft-mediated endocytosis
or caveola-mediated endocytosis, or via direct membrane
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
penetration, for example, by transient toroidal pores or
micelles formation (Figure 1) (Richard et al., 2003; Madani
et al., 2011; Wang et al., 2014; Rizzuti et al., 2015).

AMP-N2; a marine NZ17074 peptide analog isolated from the
invertebrate lugworm Arenicola marina, were covalently
conjugated with two CPPs. CPP-N2 conjugates are composed
of a target peptide-N2 linker and CPPs Tat11 (trans-activator of
transcription-Tat11 peptide) or bLFcin6 (bovine lactoferricin),
and both were tested against intracellular S. Typhimurium (Li
et al., 2018). This bacterium was internalized into RAW 264.7
cells and treated with 10, 20, and 50 µM of T11N2 and 50 and
100 µM of B6N2. T11N2 reduced the intracellular bacterial load
by 3.26-log at 50 µM, whereas B6N2 reduced it by 2.1-log at 100
µM (Table 1) (Li et al., 2018). The authors suggest that the
TABLE 1 | Antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) activity against intracellular pathogenic bacteria.

Peptide Intracellular
Bacterial

Minimal Inhibitory
Concentration

(µg mL-1)

Mode of Penetration into Infected Cell Test
Development

Phase

Reference

AMPs
Wild-type plectasin
(NZ2000)

S. aureus (MSSA)
S. aureus (ATCC
25923)

8
128

nd In vitro
and
in vivo

(Brinch et al., 2009; Lacoma
et al., 2017)

Plectasin analogs
MP1102

S. aureus (MSSA)
S. aureus (MRSA)

0.15–31
1.25–250

nd In vitro
and
in vivo

(Lacoma et al., 2017; Wang
et al., 2018)

Plectasin analogs
NZ2114

S. aureus (MSSA)
S. aureus (MRSA)
Virulent S. aureus
CVCC546

0.3–60
1.25–250
100–200

Involved clathrin-mediated endocytosis and
micropinocytosis

In vitro
and
in vivo

(Lacoma et al., 2017; Wang
et al., 2018)

Humanized q-
defensin retrocyclin
RC-1

Listeria
monocytogenes

1 Enter target cells via phagocytosis or
induced endocytosis

In vitro (Arnett et al., 2011; Witter et al.,
2016; Lacoma et al., 2017)

a-defensin HNP-1 Listeria
monocytogenes

20 Enter target cells via phagocytosis or
induced endocytosis

In vitro (Arnett et al., 2011; Witter et al.,
2016; Lacoma et al., 2017)

Esculentin-1a (1–21) Pseudomonas
aeruginosa

11–33 nd In vitro (Cappiello et al., 2016)

Diastereomer
analog, Esc (1–21)-1c

Pseudomonas
aeruginosa

11–33 nd In vitro (Cappiello et al., 2016)

Insect defensin-like
peptide DLP4

S. aureus (MRSA) 20 nd In vitro (Lacoma et al., 2017; Li et al.,
2017)

DLP2 analog DLP4 S. aureus (MRSA) 10 nd In vitro (Li et al., 2017)
WR12 S. aureus (MRSA)

S. aureus (MSSA)
16.5
33

nd In vitro
and
in vivo

(Mohamed et al., 2016)

D-IK8 S. aureus (MRSA)
S. aureus (MSSA)

16.5
33.5

nd In vitro
and
in vivo

(Mohamed et al., 2016)

BSN-37 Salmonella enterica
serovar Typhimurium

400 nd In vitro (Yang et al., 2020)

CPPs
Tat11 - conjugate
AMP-N2
bLFcin6 - conjugate
AMP-N2

Salmonella enterica
serovar Typhimurium

205
355

energy-dependent macropinocytosis and
clathrin-mediated endocytosis pathways

In vitro (Li et al., 2018)

PNA-CPP, PRXR Listeria
monocytogenes

11 nd In vitro
and
in vivo

(Abushahba et al., 2016)

Tat-gentamicin E. coli K1 600 nd In vitro (Gomarasca et al., 2017)
P14KanS Mycobacterium

tuberculosis
Salmonella

33 nd In vitro
and
in vivo

(Brezden et al., 2016)
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internalization of conjugated CPPs could occur through energy-
dependent macropinocytosis and clathrin-mediated endocytosis
pathways (Li et al., 2018).

CPPs have also been used to carry PNAs, aiming at silencing
bacteria’s essential genes (Bai et al., 2012). For a PNA to enter the
cell, it is necessary to attach it to a CPP (Bai et al., 2012). For
instance, the essential RNA polymerase a-subunit (encoded by
the rpoA gene) in the intracellular pathogen Listeria
monocytogenes has been a target for PNA-CPP therapies.
Abushahba et al. evaluated five different CPPs [antennapedia,
TAT, (RXR) 4XB, and (RFR) 4XB] coupled with a PNA targeting
the gene cited above (Abushahba et al., 2016). Listeria
monocytogenes was internalized in J774A.1 cells and treated
with the PNA-CPP candidates at 2, 4, and 8 mM. Among the
tested PNA-CPPs, PRXR showed a higher reduction in the
bacterial load (Log 10 1.78), at a 2 mM (Table 1). However, the
cell permeabilization mechanism of action triggered by this CPP
is still unknown (Abushahba et al., 2016). Interestingly, studies
have reported that encapsulated intracellular bacteria (e.g., S.
Typhimurium LT2) are commonly more difficult to treat with
PNA-CPP therapies (Cornejo et al., 2017). As an alternative, the
electroporation-based delivery of CPP-PNA conjugates has been
proposed, which has led to increased bioavailability, as this
strategy does not involve the conjugate endocytosis (Cornejo
et al., 2017).

Another applicability of CPPs includes the transport of
antibiotics into the host cell, as these antimicrobials can be
useful against intracellular bacteria, but have little permeability.
To evaluate whether gentamicin (GM) would target intracellular
bacteria, studies have proposed combining GM with CPPs
(Gomarasca et al., 2017). CPPs, including a1H (KSK
TEYYNAWAVWERNAPC), a2H (GNGEQREM AVSR
LRDCLDRQA), and TAT peptide have been used in this
regard (Gomarasca et al., 2017). In a study by Gomarasca et al
(Trinchieri, 1997)., human brain microvascular cells (HBMEC)
were infected with E. coli K1 and treated with 600 µg mL-1 of the
three gentamicin-CPP conjugates, including a1H-gentamicin;
a2H-gentamicin and Tat-gentamicin (Gomarasca et al., 2017).
The best result was observed by treating the cells with Tat-
gentamicin, which led to a 6-log reduction in bacterial load
(Table 1) (Gomarasca et al., 2017). Transmission electron
microscopy studies indicate that eukaryotic cells’ surface
integrity was maintained. Additionally, it was observed that the
intracellular bacteria remain in endosomal compartments or
vacuoles after treatment with Tat-gentamicin, ultimately losing
their cell-wall integrity (Gomarasca et al., 2017). Similarly, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
development of a cleavable kanamycin-CPP conjugate has been
reported (Brezden et al., 2016). This conjugate (P14KanS)
containing the disulfide linkage will be broken to release
kanamycin when cleaved in the intracellular reduction
environment. P14KanS presents high cell penetration potential
and significant antibacterial potential against Mycobacterium
tuberculosis and Salmonella, both in vitro and in vivo (Table 1)
(Brezden et al., 2016).
CONCLUSION

Intracellular bacterial infections pose an additional challenge
compared to extracellular infections, as the antibacterial agent of
choice has to cross the host’s plasma membrane without harming
the cell to eliminate the intracellular pathogen. High doses of
conventional antibiotics are usually needed to successfully combat
intracellular infections, considering their low cell-penetrating
potential. As a consequence of these higher doses, host cell
viability is often compromised. As alternative therapies, here we
summarize recent findings on the usage of AMPs and CPPs for
treating intracellular bacterial infections. As described, these classes
of antimicrobials have shown the ability to reach the intracellular
bacteria inside the host cell either to exert direct antibacterial
activities or deliver cargo molecules with antibacterial potential.
Moreover, many studies have reported the non-toxic effects of these
peptides on the host cells, rendering them attractive drug candidates
for countering intracellular infections.
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