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Abstract

Human immunogenetic variation in the form of HLA and KIR types has been shown to be

strongly associated with a multitude of immune-related phenotypes. However, association

studies involving immunogenetic loci most commonly involve simple analyses of classical

HLA allelic diversity, resulting in limitations regarding the interpretability and reproducibility

of results. We here present MiDAS, a comprehensive R package for immunogenetic data

transformation and statistical analysis. MiDAS recodes input data in the form of HLA alleles

and KIR types into biologically meaningful variables, allowing HLA amino acid fine mapping,

analyses of HLA evolutionary divergence as well as experimentally validated HLA-KIR inter-

actions. Further, MiDAS enables comprehensive statistical association analysis workflows

with phenotypes of diverse measurement scales. MiDAS thus closes the gap between the

inference of immunogenetic variation and its efficient utilization to make relevant discoveries

related to immune and disease biology. It is freely available under a MIT license.

Author summary

Genetic association studies of complex traits often yield highly significant associations in

genetic loci coding for HLA or KIR genes, which have central functions for immune

responses. Although the roles of these genes, for example in antigen presentation or

immune signaling, are well established, their extreme degree of variability makes it chal-

lenging to infer mechanistic hypotheses. Starting with HLA or KIR typing data, our soft-

ware tool MiDAS facilitates statistical association testing, but also recodes and groups

immunogenetic information according to function and validated biological interactions.

For instance, we can test for association on the level of the actual amino acid sequence,

investigating whether an association is strongest for amino acids that determine whether

or not a given antigen can be presented by a HLA protein. We can also group HLA alleles

according to their interaction with specific KIR on Natural Killer (NK) cells, and a signifi-

cant association of such interactions might implicate NK cells in our phenotype of
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interest. In summary, MiDAS offers straightforward workflows for the analysis of immu-

nogenetic data from discovery to functional fine-mapping.

This is a PLOS Computational Biology Software paper.

Introduction

The major histocompatibility complex (MHC) is the region in the genome with the highest

density of statistical associations with disease phenotypes. The majority of these associations

are related to the central role of classical Human Leukocyte Antigen (HLA) proteins in

immune responses in the context of autoimmunity, infectious disease, and also cancer.[1] The

underlying cause of these associations can be the presentation of disease-relevant antigens by

specific HLA variants, but other mechanisms have been described, such as alternate docking

of T cell receptors or differences in the stability of HLA proteins.[1] Another complex genomic

locus relevant for immune responses is the leukocyte receptor complex (LRC) on chromosome

19, which, among other genes, harbors the killer cell immunoglobulin like receptors (KIR).

KIR predominantly mediate function and education of Natural Killer (NK) cells, but can also

be found on subsets of T cells.[2] They display a high degree of copy number as well as allelic

variation. Many KIR are receptors for HLA class I ligands via highly specific interactions that

depend on individuals’ HLA and KIR genotypes, segregating on different chromosomes.[2]

The extreme amount of genetic variation has made it challenging to accurately characterize

individuals’ HLA and KIR genotypes, but besides dedicated typing methods, there are now

multiple tools available for inference from next generation sequencing or single nucleotide

polymorphism (SNP) array genotyping data at scale.[3–5] However, the availability of immu-

nogenetic variation data is only the first necessary step in uncovering and understanding the

role of HLA and KIR in immune-related traits, and statistical considerations are more complex

when compared to the millions of common single nucleotide polymorphisms (SNPs) or copy

number variants (CNVs) in our genomes that predominantly have two allelic states.

Genome-wide association studies (GWAS) with significant hits in the MHC region can be

complemented with dedicated HLA analyses for statistical fine-mapping purposes. Due to the

complex linkage disequilibrium (LD) in the MHC, top associated SNPs can tag one or more

alleles of a given HLA gene, without being located within the boundaries of that gene them-

selves. In a recent GWAS focusing on immune responses to infections, many genome-wide

associated SNPs were found in the MHC, and so the authors followed up with HLA imputa-

tion and statistical analyses to identify the alleles causing these associations.[6]

HLA alleles at 2-field resolution (formerly ‘4-digit’) are defined by differences in their pro-

tein structure (one or many amino acids), resulting in very similar or very different antigen

presentation profiles. Therefore, it can be useful to analyze amino acid positions in the peptide

binding regions that have the same residue for one group of alleles, but a different one for oth-

ers. This was shown for example in rheumatoid arthritis, where five amino acids across three

HLA genes were found to explain most of the association signal in the MHC locus.[7] HLA

alleles can also be grouped together as ‘supertypes’, based on overlaps in their antigen binding

spectrum,[8] a concept that was used to identify HLA risk factors for outcome in dengue fever

cases.[9] When NK cells are hypothesized to play a role in a phenotype of interest, it can be

useful to consider both HLA and KIR variation and analyze them according to biologically val-

idated interactions, as for example shown in studies focusing on pregnancy complications.[10]
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Design and implementation

Statistical association analyses of immunogenetic variants often focus on carrier status for spe-

cific HLA alleles. They are most often analyzed on 2-field level, which defines the protein

structure of the HLA protein, as well as the composition of its peptide binding groove and thus

the repertoire of antigens it can present. HLA alleles can also be grouped on 1-field level,

which often corresponds to the serological antigen carried by an allotype,[11] or on the level of

supertypes, which present overlapping peptide repertoires based on their main anchor speci-

ficities.[8] In addition, typing data and resulting association statistics can be available on the

level of G groups, which contain alleles that have identical nucleotide sequences across the

exons encoding the peptide binding domains (exons 2 and 3 for HLA class I and exon 2 for

HLA class II alleles).[12]

MiDAS accepts HLA genetic data in tabular form in up to 4-field (8-digit) resolution (one

individual per row, two alleles per gene in columns), checks it for consistency with official

HLA nomenclature,[11] and can reduce its resolution or transform it into supertypes or G

groups, to allow consistent results reporting and cross-study comparability (Table 1). MiDAS

includes a function to test for deviations from Hardy-Weinberg equilibrium (HWE) and pro-

vides the option to list HWE P values or directly filter out significant alleles, and it is also possi-

ble to quickly compare allele frequencies in input data sets with published frequencies across

different populations based on data from a comprehensive online database.[13]

In spite of the vast number of statistical associations in the MHC locus, the complex linkage

disequilibrium in the region combined with the proximity of genes with different immune-

related or non-immune functions can make it difficult to pinpoint causal genes and variants.

[14] However, due to the availability of protein sequences for most known HLA alleles, it is

possible to use HLA allele data to generate new variables for each amino acid position in a pro-

tein that differs across individuals. [7]

MiDAS facilitates this process by inferring variable amino acid residues for all imported

individuals with HLA allele data (Fig 1), based on sequence alignments from the IPD-IMGT/

HLA database.[15] It is then possible to perform a likelihood-ratio (‘omnibus’) test for each

variable amino acid position in HLA proteins, determine the effect estimates for all residues at

associated positions, and also to map the spectrum of HLA alleles that contain each respective

residue (Table 1 and Fig 2).

Table 1. Overview of MiDAS analysis capabilities.

Variable type MiDAS experiment

name

Definition Reference Example use

case

HLA alleles hla_alleles HLA allele status at 1- to 4-field resolution [15] [1,6]

hla_supertypes HLA class I alleles grouped into supertypes [8] [9]

hla_g_groups HLA alleles grouped according to identical nucleotide sequence in peptide

binding domains

[12] [27]

HLA amino acids hla_aa Variable amino acid positions and residues based on HLA allele sequence

alignments

[15] [7]

HLA intra-individual

diversity

hla_het Heterozygosity vs. homozygosity of each classical HLA gene [16]

hla_divergence HLA class I evolutionary divergence as measured by Grantham’s distance [28,29] [18]

HLA NK ligand status hla_NK_ligands Bw4 / Bw6, C1 / C2 allele group inference based on HLA allele matching table [2,30] [20,21]

KIR gene presence kir_genes Presence or absence of specific KIR genes (binary variable) [31] [32]

HLA-KIR interactions hla_kir_interactions Experimentally verified ligand-receptor interactions between HLA class I and

KIR

[2] [10,22,23]

Custom hla_custom, kir_custom User-provided dictionaries for custom analyses

https://doi.org/10.1371/journal.pcbi.1009131.t001
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Intra-individual diversity of HLA alleles, assessed in terms of heterozygosity versus homozy-

gosity or evolutionary divergence, is considered a useful proxy for the diversity of antigens that

can be presented by an individual’s HLA proteins. For example, HIV-positive patients with full

heterozygosity for HLA-A, -B and -C were shown to progress more slowly to AIDS,[16] which is

likely at least in part due to an increased diversity of presented peptides.[17] Further, cancer

patients treated with immune-checkpoint inhibitors responded better to the therapy if they had

an increased evolutionary sequence divergence in their HLA class I proteins.[18] MiDAS can

recode HLA alleles into new variables indicating heterozygosity at each locus, as well as Gran-

tham’s distance for HLA class I genes (Table 1 and Fig 1). Grantham’s distance is a method to

estimate evolutionary divergence by physicochemical differences between amino acids, and can

serve as an estimate for difference in the peptide binding profile of two alleles. It can be calcu-

lated for amino acids in the whole peptide binding region of HLA class I molecules, or restricted

to the B- or F- binding pockets individually.[19] Both heterozygosity and evolutionary diver-

gence are useful to investigate a possible association of the diversity of antigens presented by an

individual’s HLA proteins, rather than hypothesizing a role of a specific allele.[18]

Beyond their central role in antigen presentation, HLA class I molecules also function as

ligands for KIR, and thus are able to impact NK cell education and function. Beyond interac-

tions between specific HLA alleles and KIR, HLA alleles can also be grouped by MiDAS

according to common epitopes into HLA-Bw4, -Bw6, -C1, and -C2 alleles (Fig 1).[2]

HLA-Bw4 alleles show experimentally verified interactions with KIR3DL1, whereas HLA-Bw6

alleles have no known interaction with inhibitory KIR. HLA-C1 alleles show strong affinity for

KIR2DL3, whereas HLA-C2 alleles show only weak affinity for KIR2DL3, but strong affinity

for KIR2DL1. In terms of examples for disease relevance, HLA-Bw4 is a risk factor for ulcera-

tive colitis in Japanese, and homozygosity for HLA-C1 was shown to be associated with

reduced risk of relapse in patients with myeloid leukemia after transplantation.[20,21]

Fig 1. MiDAS data transformation functions. MiDAS can transform HLA and KIR input data to test association hypotheses beyond single allele or KIR gene

approaches. HLA alleles can be grouped according to their interactions with KIR, and sequence information is used to infer variable amino acid positions for statistical

fine-mapping. Amino acid level information is also used to calculate evolutionary divergence of HLA allele pairs for a given gene. If both HLA and KIR data is available,

biologically validated receptor-ligand interactions can be coded according to the definitions summarized by Pende et al.[2]

https://doi.org/10.1371/journal.pcbi.1009131.g001
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Hypotheses including a potential NK cell involvement benefit from the availability of both

HLA and KIR typing data. MiDAS can load KIR data indicating the presence or absence of

individual KIR genes, and perform association analysis on the level of these genes. But more

importantly, if both HLA alleles and KIR data are available, it generates new variables indicat-

ing the presence of all experimentally validated interactions as summarized by Pende et al.[2]

Investigating the role of such HLA-KIR interactions has previously helped to better under-

stand differential risk for pregnancy complications,[10] pathogen immunity,[22] or NK cell

activity in recipients of hematopoietic cell transplants.[23]

Of note, MiDAS also facilitates the testing of specific, more refined hypotheses. For exam-

ple, amino acid position 80 modulates the interaction of HLA-Bw4 alleles with KIR,[24] which

can be modeled by subsetting HLA-Bw4 further according to amino acid level information.

Data transformation can also be customized using user-supplied additional data dictionaries.

For example, a current shortcoming of MiDAS is that allelic variation of KIR, on top of indi-

vidual gene presence, is not considered, although it is of demonstrated relevance in modulat-

ing interactions between KIR and their respective HLA ligands.[25] Another use case for

custom analyses is the transformation of HLA allele data into quantitative variables such as

allele-specific expression levels.[26] In both cases, there is still a lot of active research and dis-

cussion in the scientific community, and current data dictionaries are likely to become obso-

lete in the near future. We therefore opted for a custom integration option.

MiDAS allows flexible statistical analyses of immunogenetic data with phenotypes on a

diverse range of measurement scales, including regression models or time-to-event data.

Results are stored as data tables that display nominal and corrected P values, effect estimates,

confidence intervals and variant frequencies. It is possible to execute likelihood-ratio (‘omni-

bus’) tests, for example to summarize amino acid residues at each position in the protein and

identify the most relevant positions as basis for statistical fine-mapping. MiDAS can also per-

form stepwise conditional analyses to identify multiple statistically independent association

signals within and across HLA genes, which is commonly observed.[7] A range of genetic

inheritance models can be selected (where applicable: dominant, recessive, additive, overdomi-

nant), as well as the preferred method for multiple testing correction and frequency cutoffs for

variable inclusion, taking statistical power considerations into account (Fig 2). Benchmarking

tests revealed that MiDAS requires approximately 5GB of memory for datasets with 10,000

observations, and up to 15GB in case of N = 50,000, with runtimes between 50 and 250 min-

utes for HLA plus amino-acid level analyses. Smaller datasets can be analyzed within seconds

to a couple of minutes.

Methods

MiDAS data structure

MiDAS accepts HLA types in a format that complies with official HLA nomenclature in up to

4-field resolution (e.g. ‘A�02:01:01:01’),[11] one row per individual, and one column for each

allele of each gene (e.g. ‘A_1’, ‘A_2’). KIR data is accepted in a tabular format that indicates

presence (‘1’ or ‘Y’) or absence (‘0’ or ‘N’) of each KIR gene. Example input data tables are pro-

vided with the package to help putting users’ own data in the right format.

The ‘prepareMiDAS’ function combines HLA, KIR, and phenotypic data into an object that

is a subclass of a MultiAssayExperiment, which we termed ‘MiDAS’. HLA input data is trans-

formed into counts tables encoding the copy number of specific alleles, as a basis for statistical

analysis. This function also offers the described data transformation options (e.g. NK cell

ligands, HLA-KIR interactions).
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Compared to the MultiAssayExperiment, ‘MiDAS’ class makes several assumptions that

allow us to use data directly as an input to statistical model functions. The most important

assumptions are: the variable names are unique across MiDAS, each experiment has only one

assay defined. Further, experiments are defined as matrices or SummarizedExperiment

objects. The latter is used in cases where experiment specific metadata are needed for the anal-

ysis, including variable groupings used for omnibus tests, or information on the applicability

of inheritance models.

Statistical framework

The data analysis framework offered by MiDAS is flexible in terms of choice of the statistical

model, often used examples including logistic or linear regression, or cox proportional hazard

models for time-to-event analyses. This flexibility is possible due to using ’tidyers’ as intro-

duced in the ‘broom’ package (https://broom.tidymodels.org).

The MiDAS object is passed as a data argument to the function, and the chosen genetic var-

iables are provided using a placeholder variable (‘term’). The defined model is passed to the

‘runMiDAS’ function, where the actual statistical analysis is performed. Here, the placeholder

Fig 2. Example of amino acid fine-mapping analysis. Example analysis flow for HLA amino acid analysis. In the first step, HLA and clinical data were combined in a

MiDAS object using the ‘prepareMiDAS’ function, which also performed HLA data transformation to amino acid level (specified as ‘experiment’). Before the association

analysis, a statistical model was defined. ‘term’ is a placeholder that is replaced by each tested amino acid, covariates (‘covar’) can be categorical or numeric. It is also

possible to define interaction terms (e.g. ‘term:covar’, not shown). ‘runMiDAS’ was then run twice, first to perform an omnibus test on all variable amino acid positions,

and then to calculate effect estimates for all residues (F,Y,L) at the top-associated position (DQB1_9). ‘getAllelesforAA’ was then used to map all HLA-DQB1 alleles in

the dataset to the three DQB1_9 residues.

https://doi.org/10.1371/journal.pcbi.1009131.g002
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variable is substituted with the actual genetic variables in an iterative manner, allowing to test

individual variables for association with the response variable. The use of a placeholder allows

the use of more complex statistical models, e.g. gene-environment interactions (e.g. “lm(diag-

nosis ~ ‘term’ + sex + ‘term’:sex)”.

‘runMiDAS’ offers different modes of analysis. By default, the statistical model is iteratively

evaluated with each individual genetic variable substituted for the placeholder. Then, test sta-

tistics from individual tests are gathered and corrected for multiple testing using a method of

choice as implemented in the ‘stats’ R package. Moreover, ‘runMiDAS’ offers a conditional

mode to test for statistically independent associations of multiple genetic variables, which

implements a simple stepwise forward selection method. Here, the iterative comparisons are

made in rounds, and for each round the algorithm selects the top associated variable and adds

it to the model as a covariate, until no more variables meet the selection criteria. Further, ‘run-

MiDAS’ includes an ‘omnibus’ mode that allows to test the role of multiple grouped variables,

using a likelihood ratio test. In particular, this is useful to score amino acid positions according

to their omnibus P value, as compared to their individual residues.

Of note, MiDAS does not offer novel statistical approaches for the analysis of immunoge-

netic data, and the statistical model is chosen by the user. Therefore, results will be identical to

a more labor-intensive approach involving step-by-step testing of variables of interest.

Availability and future directions

MiDAS is freely available as an R package (MIT license), facilitating both hypothesis-driven

and exploratory analyses of immunogenetics data (https://github.com/Genentech/MiDAS). A

tutorial with example data and analyses is available under https://genentech.github.io/MiDAS/

articles/MiDAS_tutorial.html. Future versions will include the possibility to work with more

granular KIR genotyping data (copy number and allelic variation). The inference of HLA hap-

lotypes from allele data would also be a useful feature that was considered out of scope for the

current version. Users are welcome to contribute to the future development of MiDAS.
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