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Machine learning model 
from a Spanish cohort 
for prediction of SARS‑COV‑2 
mortality risk and critical patients
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Patients affected by SARS-COV-2 have collapsed healthcare systems around the world. Consequently, 
different challenges arise regarding the prediction of hospital needs, optimization of resources, 
diagnostic triage tools and patient evolution, as well as tools that allow us to analyze which are 
the factors that determine the severity of patients. Currently, it is widely accepted that one of the 
problems since the pandemic appeared was to detect (i) who patients were about to need Intensive 
Care Unit (ICU) and (ii) who ones were about not overcome the disease. These critical patients 
collapsed Hospitals to the point that many surgeries around the world had to be cancelled. Therefore, 
the aim of this paper is to provide a Machine Learning (ML) model that helps us to prevent when a 
patient is about to be critical. Although we are in the era of data, regarding the SARS-COV-2 patients, 
there are currently few tools and solutions that help medical professionals to predict the evolution of 
patients in order to improve their treatment and the needs of critical resources at hospitals. Moreover, 
most of these tools have been created from small populations and/or Chinese populations, which 
carries a high risk of bias. In this paper, we present a model, based on ML techniques, based on 5378 
Spanish patients’ data from which a quality cohort of 1201 was extracted to train the model. Our 
model is capable of predicting the probability of death of patients with SARS-COV-2 based on age, sex 
and comorbidities of the patient. It also allows what-if analysis, with the inclusion of comorbidities 
that the patient may develop during the SARS-COV-2 infection. For the training of the model, we 
have followed an agnostic approach. We explored all the active comorbidities during the SARS-COV-2 
infection of the patients with the objective that the model weights the effect of each comorbidity 
on the patient’s evolution according to the data available. The model has been validated by using 
stratified cross-validation with k = 5 to prevent class imbalance. We obtained robust results, presenting 
a high hit rate, with 84.16% accuracy, 83.33% sensitivity, and an Area Under the Curve (AUC) of 0.871. 
The main advantage of our model, in addition to its high success rate, is that it can be used with 
medical records in order to predict their diagnosis, allowing the critical population to be identified 
in advance. Furthermore, it uses the International Classification of Diseases, Ninth Revision, Clinical 
Modification (ICD 9-CM) standard. In this sense, we should also emphasize that those hospitals using 
other encodings can add an intermediate layer business to business (B2B) with the aim of making 
transformations to the same international format.

The outbreak of the SARS-COV-2 pandemic has led to a disruptive change in society throughout the world at 
all levels. The health problems derived from the infection pose a challenge for the scientific community, since 
the knowledge associated with the disease is very limited. In this sense, the scientific community has focused 
its efforts on looking for solutions, vaccines, and palliatives of the pandemic, trying to accelerate the process of 
returning to normality1.
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The rapid evolution of the pandemic, together with the unknown clinical characteristics of the disease, 
has posed a challenge for the health area. The pandemic has generated problems related to the use of hospital 
resources, the unexpected evolution of patients or the choice of the most appropriate treatment, taking into 
account the clinical status that patients already had prior to the disease2.

The increase in the availability of data in the health area allows the application of Big Data analytics and 
Artificial Intelligence (AI) techniques3,4. Various studies in state-of-art literature5 present its advantages and 
applicability in different areas such as Decision Support System to improve the allocation of resources in health 
management6 or clinic and prognostic models for the prediction of various diseases such as cancer7 or heart 
disease8,9. The advantages of these techniques can also be indirectly reflected in the increase in scientific publica-
tions related to the topic10, providing various benefits such as helping to provide better care and reducing costs11. 
These results show the success of these techniques in the health field, being able to discover relevant clinical 
information hidden in a large amount of data regardless of the format12–14 (image, text, or raw data), which plays 
a key role when clinical decision must be taken. More specifically, AI techniques allow us to automate processes 
and quickly analyze the results as long as there are sufficient data available. This is key to converting data into 
information that allows us to quickly react to critical cases such as the SARS-CoV-2 virus. In addition, with the 
appearance of new strains15, such as the Alpha (United Kingdom, Sep-2020), Beta (South Africa, May-2020), 
Gamma (Brazil, Nov-2020), Delta (India, Oct-2020), the most recent Omicron (Multiple countries, Nov-2021), 
or others that have yet to appear which may vary in their effects, it is essential to be able to train specific models 
for specific diseases as soon as data is available.

However, some studies16–18 are based on statistical techniques. These techniques have been shown to be 
imprecise as the volume of information increases19,20. To overcome these problems, the AI techniques allow to 
analyze the large number of variables present and their impact on critical patients.

Regarding AI techniques, we can find two approaches: Deep Learning (DL) and Machine Learning (ML) 
approaches. Considering DL approaches, there are previous works with good results21,22. However, DL techniques 
present problems or challenges of model explainability. Although there are studies that cover this problem by 
using techniques such as SHAP23,24, or in image classification model by visualising convolutional filters, the 
interpretability of DL models is still a hot topic25. We should point out here that one of main goals of this paper 
is to provide a clear set of variables that influence the evolution of patients. For this reason, we propose an inter-
pretable and explainable ML model. In out ML model, we can manage its explainability by setting the weight of 
each variable in the model, which allows us to validate and extract insights of which variables most influence 
in the evolution of patients.

According to ML, in a recent systematic review of ML models constructed to predict the evolution of the 
disease in patients or the risk of mortality in patients2, authors concluded that, out of the studies analysed in 
the review, many were conducted by using only data from Chinese patients. This carries a risk of bias and may 
raise questions about the applicability and accuracy of existing ML prediction models in other populations of 
patients who can be potentially different. Therefore, the objective of the study presented in this paper is to build 
and validate a ML model for patients infected by SARS-CoV-2 and to provide information on a cohort of Spanish 
patients. We believe that different ML models on different patients from different nations are absolutely needed. 
This would set the basis for ulterior research comparing and validating the evolution of patients from different 
nations and taking into consideration particular variables of the different races. Clearly, this study is out of the 
scope of this paper. This is the main reason why there are more and more studies on different patient nationalities.

Other studies26–29 were carried out in the first months of the pandemic. Thus, the number of samples covered 
is small because they use data collected during 3 months in the best case for the construction of the models. 
Incorporating a greater number of samples allows the population used for training to approach a Gaussian 
normality. This allows us to draw more robust conclusions and capture the different intrinsic casuistic in any 
population. In this sense, our study is more robust in terms of the number of patients included, since it uses data 
from patients affected by the infection for approximately 8 months.

We can also find studies based on symptoms17,29–35 such as headache, vomiting, fever, shortness of breath, 
diarrhea, muscular soreness, and other variables as comorbidities. Symptom variables are normally obtained 
in primary care and stored as handwritten notes and non-tabulated information. Our approach obtains similar 
results and does not depend on variables that are usually collected in textbook format. Moreover, our model 
uses structured information and quality variables in standard format in a way that facilitates its integration with 
the hospital information systems.

Furthermore, in recent literature it can be read papers where authors reduce the number of characteristics 
of the algorithms by applying feature selection techniques28,30–32,34 or domain knowledge17. Although in general 
terms these techniques improve the precision of the algorithms by eliminating noise36, in cases such as SARS-
CoV-2 that involve complex casuistic it is difficult to determine exactly if the noise is real data that affects the 
problem studied. Infrequent combinations in the data set can be considered an anomaly although they do have 
an implication on the outcome. This implies that information is lost. Given that we are faced with a new problem 
where much information is unknown, we follow an agnostic approach where we use all the available comorbidi-
ties in order to explore the importance of each comorbidity.

Moreover, it can be found studies that present the problem of grouping together different diseases26 such as 
cancer or respiratory problems. Currently, there are more than 100 different types of cancer. Thus, our hypothesis 
is that different cancer diseases will interact with respiratory effects caused by SARS-COV-2 differently. Similarly, 
we assume that some respiratory diseases will interact with SARS-COV-2 in a more severe way. For this reason, 
we do not group diseases into their families. Instead, we explore them individually to know their impact on the 
evolution of patients.

Thus, the main goal of this paper is to present a ML model and a case study on a cohort of Spanish patients (n 
= 5378). The data have been obtained during 8 months of the pandemic, from February 27, 2020 to November 
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12, 2020. Our ML model is based on the medical records for detecting the probability of death of patients with 
SARS-COV-2 based on age, sex and comorbidities recorded in the ICD-9 format. One of the main remarks of 
our paper is that the provided model accurately predicts the probability that a patient dies during her infection. 
We have also used regularization techniques in order to avoid overfitting. Furthermore, another key advantage 
of our model, is that it allows what-if analysis with the inclusion of comorbidities that can appear during the 
infection. This allows the early detection of future and potential critical cases and consequently, the more severe 
effects in SARS-CoV-2 infected patients can be mitigated by taking preemptive actions.

The rest of the paper is structured as follows: First, the Method and methodology section is presented. 
Within this section, we describe all the different methodological steps applied to our case study. These steps 
can be summarized as (i) the regulation under the method was applied and the approval by the correspond-
ing ethical committee, (ii) the description of the data sets and features, (iii) the pre-processing of data, (iv) the 
explainability of missing values, (v) the ML model training, and finally, (vi) the ML model interpretation and 
explainability. Afterwards, the “Results” section presents the statistics on the study cohort, the results obtained 
by the ML algorithms and their optimization, as well as the feature importance obtained by the model. Then, the 
“Discussion” section discusses the advantages of our proposal and the limitations with different state-of-the-art 
studies presented in this “Intoduction” section. Finally, the “Conclusion and future works” section summarizes 
the contribution, results and future challenges.

Methods and methodology
All methods were carried out in accordance with relevant guidelines and regulations. The study was approved on 
3rd June 2020 by the relevant legal and ethics boards, including the committee of ethic for biomedical research 
with medicines of the University and Polytechnic La Fe Hospital (CEIm La Fe) of Valencia with registration 
number #2020-181-1. This organization complies with GCP standards (CPMP/ICH/135/95) and with current 
legislation that regulates its operation also declaring that there is no conflict of interest in the evaluation and 
authorization of the clinical study, declaring that forementioned project is conforms to ethical regulations on bio-
medical research with human subjects and is viable in terms of the scientific approach, objectives, material, and 
methods, etc., described in the application. This is a retrospective study in which the national and international 
regulations regarding the treatment of health data for secondary purposes have been respected. The legitimacy 
for the processing of personal data is based on the anonymised or pseudonymised processing of data without 
consent under the terms provided under Spanish law for in article 16.3 of Law 41/2002, of 14 November, the basic 
law regulating patient autonomy and rights and obligations regarding clinical information and documentation 
in relation to the second paragraph of the seventeenth additional provision on the processing of health data of 
Organic Law 3/2018, of 5 December, on the Protection of Personal Data and guarantee of digital rights.

Data source and baseline characteristics.  The University and Polytechnic La Fe Hospital of Valencia is 
the reference clinical setting of the La Fe Health Department, a geographical district that covers a population of 
around 300,000 inhabitants, and it includes two specialties centers and twenty primary care centers. The Elec-
tronic Health Care Record of the Hospital has access to data from both primary and specialized care.

La Fe Health Department has deployed an EHR at different care levels, including over 20 million records, 
effectively organized reaching stage 6 in the eight-stage (0–7) EMRAM maturity model. Currently, the data lake 
layer includes structured and semi-structured information, coming from several information systems involving 
clinical activity, such as emergency care settings, outpatient, hospitalization, clinical reports, surgical unit, inten-
sive care unit, hospital at home care. La Fe Health Department has developed a Real-World Data analysis platform 
composed by the aggregation of 22 datamarts and comprises 750 millions of rows, 84 tables, 4.064 columns.

This study is a retrospective, observational single centre study which includes all individuals undergoing a 
SARS-CoV-2 test at the Department of Health Valencia La Fe between 27th February 2020 to 12th November 
2020, meeting all the inclusion criteria and none of the exclusion. Inclusion criteria: Patients attended at the 
University and Polytechnic La Fe Hospital of Valencia with a confirmed diagnosis of COVID-19 by RT-qPCR. 
Exclusion criteria: Patients from whom there were not enough data to be able to make any useful assessment 
and patients referred to or treated at the hospital with no suspicion of COVID-19 infection. Several studies have 
reported the importance of age and comorbidities37,38 or the sex difference in immune response39 in the evolution 
of patients affected by SARS-COV-2. Therefore, for cases with at least one positive test, we extracted data from 
the EHR system, including demographics, comorbidities (ICD9 and ICD-10 coding system) and outpatient data.

Data processing.  First, processing is carried out to restrict the data to the time window of the patient’s 
infection period (Fig. 1). That is, from the time the patient becomes infected until the moment when serocon-
version occurs (IgM and IgG immunoglobulins are negative and positive, respectively). The determination of 
this time window is of utmost importance. It allows us to select the period in which a patient test positive on a 
molecular test for SARS-COV-2 and confirms infection as well as the moment when the viral load is very low 
and not detected in the patient. In this case, the comorbidities that appear after this period are not the objectives 
of this study.

To limit the data to the specified period, the following steps are performed:

1.	 We process the results of all tests performed on a patient in the same day. A total of 25,229 patient outcomes 
are found in the dataset. For example, we can have a patient’s result for PCR and for immunological test 
result like Ag, IgM, and IgG (Fig. 2).

2.	 A positive coronavirus test only indicates that the patient is currently infected. Consequently, comorbidi-
ties present between the date of exposure to the virus and the confirmation of the first positive should be 
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taken into account. In order to reduce noise in data and approximate as accurately as possible the date of the 
patient’s exposure to the virus, we applied a correction factor on the date of onset of infection according to 
the type of positive test (see Fig. 3). In Fig. 4 we can see the detection period of SARS-CoV-2 RNA by PCR 
and antibodies by serological techniques. In Table 1 we can see a summary of the correction of days applied 
based on the parameter measured by each one of the tests present in the dataset.

3.	 The comorbidities of the patient noted by the doctors during the period of the patient’s infection are selected, 
as well as the chronic morbidities that the patient had previously in his medical history (see Fig. 1).

4.	 Comorbidities are coded to a single standard ICD-9-CM40,41 that allows the integration of the model with 
the hospital information systems. Comorbidities in ICD-10-CM was mapped to ICD-9-CM format using 
eCIEMaps v.3.3.842. Some morbidities included in the coding are eliminated because they are directly related 
to the dependent variable to be predicted. For example, ICDs associated with morbidities such as admission 
for palliative treatment or brain death imply imminent death. These ICDs would not be available beforehand 
or do not provide relevant information once the ICD appears.

Figure 1.   Selection window of the comorbidities. The red window is the period comprised between the 
beginning of the infection and when the seroconversion occurs.

Figure 2.   SARS-CoV test interpretation table where we can see if a test can be positive depending on the phase 
in which the patient is (Instituto de Salud Carlos III).

Figure 3.   Estimation of the patient exposure to the virus according to traceability of test.
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Missing values.  After processing the traceability of the tests in the study dataset, we found patients whom 
we cannot determine the end of the infection. This is due to who recommendation published on 27 May 2020 
in which a criterion was established to end the patient’s isolation (of transmission-related precautions) without 
requiring retesting43. This implies that there are patients without a negative test indicating the end of the infec-
tion. Considering that the WHO criteria also include patients presenting symptoms, it is not possible to deter-
mine and distinguish the end of infection and which comorbidities appear after the end of infection without 
introducing noise. With the aim of avoiding the inclusion of noise, we discard these patients to finally have a 
quality dataset with 1201 patients from which we can determine the period of onset and end of infection.

Model training.  For the experimentation we use different machine learning algorithms such as SVM44, 
Logistic regression45, K-Neighbors46, Decision Tree47, Gaussian Naive Bayes48, MLP49, and ensemble meth-
ods like Adaboost50 and Bagging techniques51. They were implemented in the open-source Python library for 
machine learning, Scikit-learn52,53. All methods were evaluated using a stratified k-fold cross-validation with k 
= 5 and partitions 80/2054. This approach allows subdividing the data set into different sets to avoid overfitting55 
as well as testing with a different data set than the one used for training. This simulates a real and empirical 
environment for testing the model56.

For the normalization and scaling of numerical variables such as age, we tested with different normalizers 
and how they affected the results. One-hot-encoding was used for categorical variables such as gender and a 
multilabel binarizer for the different comorbidities of the patients during infection. Thanks to the computational 
capabilities available, we have not required to apply dimensionality reduction over the data, thus preserving all 
the information as input to the machine learning models.

To obtain the algorithm that provides the best result to the problem, we compare different state of the art 
algorithms. The comparison is carried out using stratified k-fold cross validation, measuring the accuracy of the 
different models trained with different scalers for numerical variables. This approach allows us to obtain robust 

Figure 4.   Detection periods of SARS-CoV-2 RNA by PCR and antibodies by serological techniques. On the X 
axis we can see the number of days that have elapsed, with day 0 being the onset of symptoms. The white stripe 
of letter “E” indicates the date of exposure to the virus and the beginning of the infection (Instituto de Salud 
Carlos III).

Table 1.   Correction factor (days) by kind of test, since a patient may be infected by the virus until a test can 
detect in general terms that the patient is positive.

Test Days since positive

PCR 2

IgA 2

Ac 11

IgM 14

IgG 18
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results by balancing the classes so that they have the same weight and the results obtained are not affected by the 
imbalance present in the data. Futhermore, we have also performed Cochran’s Q test to compare the classifica-
tion accuracies between the different ML techniques.

Once we have found the best algorithm for the use case, we tune the hyperparameters using Particle Swarm 
optimization (PSO)57,58 for algorithm parameter tuning. For this optimization, a stratified k-fold cross-validation 
with k = 5 and 80/20 partitions are used where the weighted measure of accuracy and sensitivity is obtained in 
order to reduce false negatives (FN). This case is paramount when predicting that a person will not die when 
they do. This could imply that less care is offered to the patient than necessary or that the future resources that 
will be needed are underestimated. Including sensitivity allows us obtaining an algorithm more robust reducing 
the FN, that is, when the algorithm indicates that the person does not die when in fact the patient dies at the cost 
of losing precision in the false positives (FP). In other words when the algorithm indicates that the person dies 
when they do not. This last case is less important because the consequences would be to monitor a patient who 
is considered critical, which effectively thanks to the care the severe state is avoided.

To analyze the final model obtained and extract insight from its results, the variables that provides more 
information to the algorithm when making the prediction are analyzed.

Model interpretation.  To verify and interpret the final model obtained in order to know whether results of 
the presented model are consistent with the existing knowledge of the illness. We analyze the coefficients of the 
variables obtained by the model.

Taking into account that the building model is logistic regression and the dependent variable of the model 
is binary (the patient survives or not), its value is a linear combination of the independent variables. Thus, the 
probability of the dependent variable is modeled as (1)

More specifically, considering that the variable to predict is binary and p is the probability of prediction to 
be 1 (patients exitus) we can define the logit ℓ or log-odds as the probability of an event happening divided by 
the probability of that event not happening as shows in (2)

Results
In this section we will analyze the patient cohort used for the construction of the model, as well as the different 
results obtained by the different models, their optimization, and the interpretation of the final model obtained.

Patients.  After processing the data, the study includes a cohort of 1201 patients for whom the period of 
infection could be determined and who were positive for SARS-COV-2 from Feb 26, 2020 to Nov 11, 2020. 
Women were more represented than men (55.12% vs 44.88%). Mean age was 49.53 ± 24.90 years. Most of the 
patients presented at least one comorbidity (88.84%), and over half had more than two comorbidities (78.35%). 
Main comorbidity was Other specified viral infection (33.47%), followed by Essential hypertension (29.14%), 
Pneumonia (18.82%) and hyperlipidemia (17.23%). 102 patients (8.49%) were transferred to ICU and 154 
patients (12.82%) died. Table 2 shows the demographic and comorbidities statistics of the study group.

Machine learning results.  The preliminary results of the models built are shown in Table 3. In this table, 
we can see the average result of the algorithms for the stratified k-fold cross validation based on the precision 
obtained. We can see that due to the small number of numerical variables in the data set, there is not much differ-
ence between the results depending on the scaler. In general terms, standard scaler is the one that offers the best 
result. In Fig. 5, we show the results obtained for each of the algorithms in the different iterations of the stratified 
k-fold cross validation. The results in general terms are robust since there is little variability between the different 
scores, which shows that different algorithms can obtain similar acceptable results.

We have realized a Cochran’s Q test with a significance level of α = 0.01 on each stratified k-fold cross valida-
tion iteration using standard scaler. The results in Table S2 shows that differences exist between the classification 
accuracies of ML techniques. As Fig. 5 show, NB present a poor performance (between 30 and 70%) than the rest 
of algorithms in terms of accuracy. For this reason, we have excluded NB with the aim of comparing the rest of 
ML techniques. The results indicate in Table S3, with a significance level of α = 0.01, that there are no significa-
tive differences between the classification accuracies of the different ML techniques. It must be highlighted that 
according to the statistical analysis performed, the different algorithms are not significant different.

Despite this, we have chosen logistic regression as the algorithm to optimize due to the interpretability of the 
model, which is crucial for the medical domain, even though Random Forest gets a slightly better mean result. 
Random Forest is a set of 100 trees (according to training parameters), where each of the trees uses a subset of 
variables with its own importance. On the other hand, Logistic Regression has practically the same performance 
in terms of accuracy. Moreover, due to the nature of the algorithm itself, it allows us to obtain the probability 
of the event based on the evidence, as well as the coefficients of the variables involved in the decision function. 
This justifies its selection as the best algorithm. Its coefficients can be directly represented as probabilities with 
the aim of reducing the gap between machine learning and the medical domain.

(1)logit
(

p
)

= b0 + b1X1 + b2X2 + · · · + bnXn.

(2)ℓ = log

(

p

1− p

)

.
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Table 2.   Baseline characteristics and comorbidity of patients with coronavirus disease (SARS-COV-2).

Mean Std Min–max

Age of SARS-COV-2 survivors

General
N = 1201 49.53 24.90 0–101

Women
N = 662 49.98 25.53 0–101

Men
N = 539 48.97 24.12 0–101

Age of non SARS-COV-2 survivors

General
N = 154 80.89 13.11 11–101

Women
N = 75 83.43 14.46 11–101

Men
N = 79 78.49 11.27 49–101

Number of comorbidities in general population

General
N = 10,677 8.89 9.83 0–77

Women
N = 5112 8.40 9.05 0–77

Men
N = 5565 13.42 13.57 0–66

Number of comorbidities in the deceased population

General
N = 3007 19.52 11.58 0–63

Women
N = 1241 16.77 9.03 1–54

Men
N = 1766 22.35 4 4–63

Table 3.   Matrix of accuracy results, according to different scales and algorithms.

Scaler SVM LR K-neighbors Decision Tree Naive Bayes Random Forest MLP GP AdaBoost Bagging

MinMax 0.8826 0.8876 0.8759 0.8776 0.5378 0.8901 0.8901 0.8718 0.886 0.8793

Standard 0.8868 0.8968 0.8818 0.8801 0.5378 0.8976 0.8926 0.8718 0.8843 0.8859

MaxAbs 0.8826 0.8876 0.8759 0.8751 0.5378 0.8943 0.8909 0.8718 0.8851 0.8793

Robust 0.8826 0.8968 0.8784 0.8743 0.5378 0.8868 0.8934 0.8726 0.8835 0.8818

Quant-Normal 0.8859 0.8968 0.8843 0.8826 0.5378 0.8951 0.8993 0.8734 0.8843 0.8918

Quant-Uniform 0.8809 0.8876 0.8759 0.8693 0.5378 0.8984 0.8893 0.8718 0.886 0.8793

PowerTransf-yeoJhonson 0.8818 0.8968 0.8776 0.8693 0.5378 0.8935 0.8951 0.8718 0.8843 0.8859

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Accuracy  in stratified k-fold cross validation with k=5

MinMaxScaler Estándar Scaler Iteration 3 Iteration 4 Iteration 5

Figure 5.   Accuracy obtained in each of the iterations of stratified k-fold cross validation with k = 5 on each of 
the algorithms used to obtain the best algorithm that works best a priori for the use case.
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For the hyperparameter optimization of the model, the PSO optimization algorithm is used with the weighted 
measure of accuracy and sensitivity obtained from applying stratified k-fold cross-validation with k = 5, as it 
has been described earlier in the methodology section. The best result is an accuracy of 84.16%, a sensitivity 
(also knowns as recall) of 83.33%, a precision of 56.90%, specificity of 84.29% and f1-score of 67.62%. In Fig. 6 
we can see the confusion matrix of the model, where its result coincides with the median of the k-fold results. 
Considering that the true case is that the patient dies, we have a ratio of FN of 16% compared to 26.6% of FN 
obtained by the model before optimization.

In addition, in Fig. 7 we can see how the final model reaches a good prediction performance in terms of 
curve ROC (AUC = 0.871).

Interpretation of the model.  Once the final model has been optimised and selected, we can go into more 
detail on verify and interpret the model in order to know whether results of the presented model are consistent 
with the existing knowledge of the illness. To this aim, we will analyze the coefficients of the variables obtained 
by the model as specified in the method and methodology section.

The model finds that the most important variables are Chronic airway obstruction which increases the prob-
ability of dead in a 575%. Other variables as Age increase the probability in 145% each 10 year of patients or 
Acute respiratory failure with a increase of 513%.

As we can see in Supplementary Table S1, among the most influential comorbidities we can find those 
expected by medical professionals as leading to more severe. However, there are also other unexpected comor-
bidities as well as some that apparently would be completely unrelated. The explanation of these comorbidities 
appearing is due to their association with other chronic problems. As the model learns from the underlying 
sample, patients who suffer for example from dementia show larger health deterioration, which in practice leads 
to more difficulties to survive to the SARS-CoV-2 infection.

Figure 6.   Confusion matrix obtained after optimizing parameters using data not previously seen by the 
algorithm for the validation of the results. In this case, label 0 means that the patient is alive after infection, 
whereas 1 means that the patient dies.

Figure 7.   Area under the curve of the best algorithm obtained. The Y-axis show the relation of True Positive 
(TP) rate and the X-axis show False Positive (FP) rate with AUC = 0.871.
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Discussion
Our study shows that machine learning models are capable of predicting with a high degree of precision the 
evolution of patients in terms of mortality using demographic variables and patient comorbidities during SARS-
CoV-2 infection. For a given patient passed as input, the model obtained can also indicate the probability of the 
expected outcome, as well as identify and report those comorbidities that have not been taken into account for 
the result shown (they were not present in the training of the model). This provides more contextual information 
for medical professionals using the model, allowing them to make more efficient use of medical resources and 
help them reduce the mortality of patients infected by SARS-CoV-2.

If we compare our results with the literature, we find several studies28,30,32,34 that obtain similar or superior 
results in terms of sensitivity, accuracy and AUC but in which a smaller number of patients are considered. In 
Ref.28 they used a cohort (n = 162), which implies that our approach is more robust since it has been validated 
on a larger cohort of patients. According to this study34, in addition to a larger cohort of patients, we used a data 
sample to validate the model formed by patients that the model had not previously seen in its training, simulat-
ing a real environment20,30,32,34, that obtain similar or superior results in terms of sensitivity, accuracy and AUC 
but in which a smaller number of patients are used.

On the other hand, we have studies17,18,30,31 that obtain similar results but with a less specific approach. Con-
sequently, that implies less detail in the patient’s situation. In Ref.17 they realized a classification as severe that 
encompasses different states of patients (the intensive care unit, mechanic invasive ventilation, or death) while 
our model is more specific in terms of using and knowing which are the morbidities that most affect the mortal-
ity of patients. In Ref.18 they use a statistical analysis. In our approach we pre-process the data to eliminate data 
contamination. We also use a different data set than the one used in the construction of the model to verify the 
model and the conclusions drawn. Regarding Refs.30,31 our approach considers a greater number of morbidities, 
and we offer a broader approach based on different diseases instead of different symptoms.

Finally, we have studies27,33,35 that follow an approach like ours, but obtain worse results in terms of AUC. 
In Ref.35, they obtain a result of 0.742 that is still present in the model replication in Ref.27 on a new cohort of 
patients. Our approach improves results mainly in the detection of patients who are going to die, reaching a sen-
sitivity of 83.33% in this case. In addition, our approach allows us to know which are the characteristics that most 
affect the mortality of patients19,33,35, that follow an approach like ours, but obtain worse results in terms of AUC.

Despite these advantages, the current study has limitations. First, for the training of the model, laboratory 
data were not available, which could improve the results obtained, as well as expand the criteria available for the 
model in the detection of patients who will need intensive care. Second, we found unrepresentative comorbidi-
ties. Consequently, a threshold could be established with the aim of more aggressively eliminate comorbidities 
that do not reach such threshold. Finally, despite using a much larger cohort of patients than other studies and 
the good results obtained, we consider that it is still a population belonging to a relatively small geographical 
area. This could also be solved by using more data from patients from other countries and/or health systems to 
further validate the robustness of the results.

Despite the limitations, we show that machine learning techniques can play a key role in this type of problem. 
Among the strengths of the study, we can highlight that this study has used a relatively large cohort of patients 
compared to other studies in the literature. Furthermore, we have taken special care in data cleaning in order 
to eliminate noise and using data from patients who have tested positive for SARS-COV-2. Furthermore, our 
study has used a diverse cohort of patients to whom different lifestyles and different health states can be attrib-
uted, obtaining robust results in terms of accuracy and sensitivity. These results have been validated using cross 
validation techniques, verifying that the chosen model obtains solid results, and using different sets of patients 
for training and testing. In addition, we follow an agnostic approach where a large set of comorbidities were 
considered in order to identify which are the morbidities that lead to negative patient evolution.

On the other hand, since our model is based on the international code of ICD 9-CM diseases, it allows the 
almost integration of the information systems of the hospitals that use it. Alternatively, codes can be converted 
from other standards to this encoding adding an intermediate layer business to business (B2B), thus being 
able to quickly integrate it into the hospital systems and reducing data required to be input by users to obtain 
a prediction.

Finally, our model not only indicates the evolution of the patient but also indicates the probability that this 
event will occur, providing more contextual information to health workers. This allows the early detection of the 
most critical patients and consequently, an early intervention which implies a potential reduction in the mortality 
of patients with SARS-COV-2, as well as a more efficient use of medical resources.

Conclusion and future works
This study has been developed based on the hypothesis that pre-existing conditions (comorbidities) of patients 
can increase the severity of patients due to SARS-COV-2. Therefore, we have followed an agnostic approach and 
developed a machine learning model capable of predict the mortality of patients infected by SARS-COV-2 with 
robust performance in terms of (AUC = 0.871), accuracy of 84.16% and a sensitivity of 83.33%.

Regarding data sources, we have used a data set (n = 5378) of anonymized patients where we consider 
demographic variables such as age and sex, as well as data from the medical records of the patients. The model 
has been validated by using stratified k-fold cross-validation with k = 5, where robust results are obtained for 
different iterations. The presented model not only offers a high degree of precision, but also offers the prob-
ability that the cited event will occur and reports on those comorbidities that were not present in the training of 
the model. This allows physicians a more efficient use of medical resources, as well as the early detection of the 
most critical patients allowing an early intervention that potentially reduces the most severe effects in patients 
infected by SARS-CoV-2.
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This type of tool allows to automate processes and a quick analysis of the results as there is sufficient data 
available and retraining the models. This is key to react to critical cases such as the SARS-CoV-2 virus or other 
existing diseases. In addition, with the appearance of new strains, such as the Brazilian, the English or Indian 
variant, it allows us to compare them and train specific models for those strains or specific diseases, improving 
the efficiency and the extraction of knowledge as well as reducing the impact of the disease on patients.

Regarding future works, there are relevant challenges such as obtaining and unifying data from different 
hospitals and/or countries to replicate of the model with data from other populations. This will allow to perform 
an external verification with the aim of verifying if the conclusions of this paper can be extrapolated to other 
populations. This, in turn, raises the problem of data integration from the different systems, since over the years 
the coding of the international disease system has evolved. However, this information is not necessarily up to 
date in the information systems of all hospitals across the globe. Furthermore, in order to improve the results 
of the presented model, more patient data could be used and/or laboratory data. This would allow not only to 
improve the results of this model, but also to perform other tasks such as predicting those patients who will be 
admitted to the ICU.

Data availability
The data that support the findings of this study are available from the Medical Research Institute of Hospital La 
Fe but restrictions apply to the availability of these data, due to the nature of data which were used after signing 
a data processing agreement that complies with the requirements of the current legal framework in relation to 
data processing for the current study, and so are not publicly available. Data pseudo-anonymised are however 
available from the Medical Research Institute of Hospital La Fe upon reasonable request to any researcher wishing 
to use them for non-commercial purposes and who could guarantee and demonstrate compliance with national 
and European legal requirements regarding data protection. Researchers who wish to obtain a copy of the data 
submit their request to valdivieso_ber@gva.es.
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