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A B S T R A C T

Resting-state functional MRI (R-fMRI) research has recently entered the era of “big data”, however, few studies
have provided a rigorous validation of the physiological underpinnings of R-fMRI indices. Although studies have
reported that various neuropsychiatric disorders exhibit abnormalities in R-fMRI measures, these “biomarkers”
have not been validated in differentiating structural lesions (brain tumors) as a concept proof. We enrolled 60
patients with intracranial tumors located in the unilateral cranial cavity and 60 matched normal controls to test
whether R-fMRI indices can differentiate tumors, which represents a prerequisite for adapting such indices as
biomarkers for neuropsychiatric disorders. Common R-fMRI indices of tumors and their counterpart control
regions, which were defined as the contralateral normal areas (for amplitude of low frequency fluctuations
(ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and degree centrality (DC)) and ipsilateral re-
gions surrounding the tumors (for voxel-mirrored homotopic connectivity (VMHC)), were comprehensively
assessed. According to robust paired t-tests with a Bonferroni correction, only VMHC (Fisher's r-to-z transformed)
could successfully differentiate substantial tumors from their counterpart normal regions in patients.
Furthermore, ALFF and DC were not able to differentiate tumor from normal unless Z-standardization was
employed. To validate the lower power of the between-subject design compared to the within-subject design,
each metric was calculated in a matched control group, and robust two-sample t-tests were used to compare the
patient tumors and the normal controls at the same place. Similarly, only VMHC succeeded in differentiating
significant differences between tumors and the sham tumor areas of normal controls. This study tested the
premise of R-fMRI biomarkers for differentiating lesions, and brings a new understanding to physical sig-
nificance of the Z-standardization.

1. Introduction

Resting-state functional magnetic resonance imaging (R-fMRI) is
one of the most rapidly expanding areas of neuroimaging research. As
ease of data collection in diseased people, and amenability to ag-
gregation across studies and sites, R-fMRI is particularly suitable for
clinical applications (Biswal et al., 2010; Castellanos et al., 2013; Yan
et al., 2013b; Zuo and Xing, 2014). An increasing number of R-fMRI
indices have been proposed to characterize clinical populations with

various neuropsychiatric disorders (Craddock et al., 2013; Zuo and
Xing, 2014), and several of these indices have produced consistent and
reliable results corresponding to functional areas within single in-
dividuals (Castellanos et al., 2013; Lang et al., 2014). As we have en-
tered an era of “Big Data”, vast opportunities in R-fMRI research are
available to take advantage of advanced data-intensive machine
learning methodologies, such as deep learning along with open source
computational platforms, to discover validated biomarkers not only for
diagnosis but also for assessing disease risk, prognosis and treatment
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response (Bzdok and Yeo, 2017; Kapur et al., 2012; Xia and He, 2017).
In particular, several promising R-fMRI biomarker studies have recently
been reported (Abraham et al., 2017; Drysdale et al., 2017).

However, the physiological mechanisms underlying R-fMRI indices
are still not well understood (Liu, 2013; Zhang and Raichle, 2010),
although some evidences have been provided in the literature. First, the
patterns of the networks defined by R-fMRI spontaneous fluctuations
reflect the underlying organizational rules of the brain's anatomy (Baria
et al., 2011). This fact was further validated by tract-tracing methods in
the non-human primates (Kelly et al., 2010; Margulies et al., 2009).
Second, a series of electrophysiological studies of the brains of humans,
non-human primates and other mammalians, particularly those em-
ploying intracranial electrodes, linked neural activity to ongoing fMRI
fluctuations (Hacker et al., 2017; He et al., 2008; Keller et al., 2011;
Leopold and Maier, 2012; Liu et al., 2011; Scholvinck et al., 2013).
Moreover, individual differences in behavior and pathology have sug-
gested the validity of assessing R-fMRI fluctuations (Caulfield et al.,
2016; Craddock et al., 2013; Di Martino et al., 2014; Nostro et al.,
2018). However, all this evidence only partially explains the under-
pinnings of R-fMRI signals; the details remain unresolved, causing dif-
ficulty in interpreting changes in resting-state activity and impeding the
path of R-fMRI toward clinical applications (Power et al., 2014).

Prior to further exploring the clinical value of R-fMRI indices, the
presuppositions of whether common indices are able to differentiate
obvious structural lesions (such as brain tumors) should be considered
first. To date, most R-fMRI studies of brain tumors have focused on
surgical planning to identify and locate the eloquent areas in order to
reduce the risk of postoperative functional deficits (Lang et al., 2014;
Pernet et al., 2016; Qiu et al., 2014; Zhang and Raichle, 2010). How-
ever, few studies have systematically explored the signals of tumors
themselves as a proof-of-concept for utilizing R-fMRI indices in clinical
applications. If an R-fMRI index cannot even differentiate obvious
structural lesions, it is likely unable to be trusted as a tool for studying
diseases without structural lesions or, consequently, as a biomarker for
further big data studies. Thus, whether R-fMRI methodologies have the
capacity for distinguishing pathological lesions from normal brain
structures should be a fundamental prerequisite for further biomarker
investigations.

To address these issues, we first comprehensively assessed common
R-fMRI metrics of tumors and their counterpart control brain regions,
which were defined as contralateral control areas to the tumors (for
amplitude of low frequency fluctuations (ALFF), fractional ALFF
(fALFF), regional homogeneity (ReHo) and degree centrality (DC)) and
ipsilateral regions surrounding the tumors (for voxel-mirrored homo-
topic connectivity (VMHC)). We used paired t-tests to compare each
measure between the tumor regions and the counterpart control re-
gions, respectively. Second, to validate the lower power in the between-
subject design than in the within-subject design, each metric was cal-
culated in a matched control group, and two-sample t-tests were used to
compare the patient tumor areas with the same areas in the normal
controls. Note that the robust statistical tests were conducted in the
present research to control any potential artifacts from outliers.
Furthermore, we compared the measures with and without Z-standar-
dization (subtracting the brain mean and dividing by the brain standard
deviation (SD)) to test the significance of this statistical transformation
(Yan et al., 2013b). We hypothesized that (i) R-fMRI metrics can dif-
ferentiate structural lesions (brain tumors), (ii) Z-standardization can
enhance the validity of R-fMRI metrics, and that (iii) within-subject
designs are superior to between-subject designs in differentiating tu-
mors.

2. Materials and methods

2.1. Subjects

A total of 60 patients (37 females; 21–72 years) with intracranial

tumors were enrolled in this study. The criteria of enrollment were: a)
tumor located in the lateral posterior cranial fossa without spreading
across the median to the contralateral side, b) without obvious edema,
c) not rich vascular masses, such as artery venous malformation (AVM),
dural arteriovenous fistula (DAVF) and substantive hemangioblastoma.
Meanwhile, 60 sex-matched and age-matched healthy individuals were
included as the control group. Approval of this study was provided by
the independent Ethics Committee of Huashan Hospital, Fudan
University. Written informed consent was obtained from all subjects.
All the maps of the R-fMRI indices of this study are shared through the
R-fMRI Maps Project (ftp://ftpdownload:FTPDownload@lab.rfmri.org/
sharing/RfMRIMaps/PaperDataSharing/Fan_2019_R-fMRIIndices_
CerebellarTumor/Fan_2019_R-fMRIIndices_CerebellarTumor.zip).

2.2. Imaging acquisition

All images were acquired using a Siemens Magnetom Verio 3.0 T
MRI scanner (Siemens Medical Solutions, MAGNETOM, Germany). All
patients were scanned preoperatively using R-fMRI (TR = 2000 ms;
TE = 35 ms; flip angle = 90°; slice number = 33; field of view
[FOV] = 210 × 210 mm; voxel size = 3.3 × 3.3 × 4.0 mm3). During
the scanning, subjects were asked to remain still with their eyes closed.
Soft foam pad was used for fixation and no task was given to the sub-
jects, but they were told not to fall asleep. Scans lasted for 8 min for a
total of 240 time points per subject. Each run was preceded by 6-s
dummy scans for magnetization stabilization. Additionally, high-re-
solution anatomical images were acquired with an axial magnetization-
prepared rapid gradient echo T1-weighted sequence with contrasts
(Gadopentetate Dimeglumine) (TR = 1900 ms; TE = 2.93 ms; flip
angle = 90°; matrix size = 256 × 215; number of slices = 176; slice
thickness = 1 mm; FOV = 250 × 219 mm).

2.3. Preprocessing

All preprocessing was performed using the Data Processing Assistant
for Resting-State fMRI (DPARSF, Yan and Zang, 2010, http://rfmri.org/
DPARSF), which is based on Statistical Parametric Mapping (SPM,
http://www.fil.ion.ucl.ac.uk/spm) and the toolbox for Data Processing
& Analysis of Brain Imaging (DPABI, Yan et al., 2016, http://rfmri.org/
DPABI). First, the initial 10 volumes were discarded, and slice-timing
correction was performed with all volume slices corrected for different
signal acquisition times by shifting the signal measured in each slice
relative to the acquisition of the slice at the midpoint of each TR. Then,
the time series of images for each subject were realigned using a six-
parameter (rigid body) linear transformation with a two-pass procedure
(registered to the first image and then registered to the mean of the
images after the first realignment). After realignment, individual T1-
weighted MPRAGE images were co-registered to the mean functional
image using a 6°-of-freedom linear transformation without re-sampling
and then segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) (Ashburner and Friston, 2005). Finally,
transformations from the individual native space to the Montreal
Neurological Institute (MNI) space were computed with the Diffeo-
morphic Anatomical Registration Through Exponentiated Lie algebra
(DARTEL) tool (Ashburner, 2007).

2.4. Nuisance regression

To minimize head motion confounds, we utilized the Friston 24-
parameter model (Friston et al., 1996) to regress out head motion ef-
fects. The Friston 24-parameter model (which considers 6 head motion
parameters, the 6 head motion parameters at the previous time point,
and the 12 corresponding squared items) was chosen based on prior
work indicating that higher-order models remove head motion effects
better (Satterthwaite et al., 2013; Yan et al., 2013a). As global signal
regression (GSR) is still a controversial practice in the R-fMRI field
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(Murphy and Fox, 2016), we examined the results without GSR but
performed a validation with GSR in the supplementary analyses. Other
sources of spurious variance (WM and CSF signals) were also removed
from the data through linear regression to reduce respiratory and car-
diac effects. Additionally, linear trends were included as a regressor to
account for drifts in the blood oxygen level-dependent (BOLD) signal.
We performed temporal bandpass filtering (0.01–0.1 Hz) on all time-
series except for ALFF and fALFF analyses.

2.5. A broad array of R-fMRI metrics

Amplitude of low frequency fluctuations (ALFF) (Zang et al., 2007)
and fractional ALFF (fALFF) (Zou et al., 2008): ALFF is the mean of
amplitudes within a specific frequency domain (here, 0.01–0.1 Hz)
from a fast Fourier transform of a voxel's time course. fALFF is a nor-
malized version of ALFF and represents the relative contribution of
specific oscillations to the whole detectable frequency range.

Regional homogeneity (ReHo) (Zang et al., 2004): ReHo is a rank-
based Kendall's coefficient of concordance (KCC) that assesses the
synchronization among a given voxel and its nearest neighbors' (here,
26 voxels) time courses.

Degree centrality (DC) (Buckner et al., 2009; Zuo et al., 2012): DC is
the number or sum of weights of significant connections for a voxel.
Here, we calculated the weighted sum of positive correlations by re-
quiring each connection's correlation coefficient to exceed a threshold
of r > 0.25 (Buckner et al., 2009).

Voxel-mirrored homotopic connectivity (Anderson et al., 2011; Zuo
et al., 2010b): VMHC corresponds to the functional connectivity be-
tween any pairs of symmetric inter-hemispheric voxels, that is, the
Pearson's correlation coefficient between the time series of each voxel
and that of its counterpart voxel at the same location in the opposite
hemisphere. The resultant VMHC values were Fisher-Z transformed. For
better correspondence between symmetric voxels, VMHC required that
individual functional data be further registered to a symmetric template
and smoothed (4 mm FWHM). The group-averaged symmetric template
was created by first computing a mean normalized T1 image across
participants, and then this image was averaged with its left-right mir-
rored version (Zuo et al., 2010b).

For further analyses, all of the metric maps were calculated with and
without Z-standardization (subtracting the mean value for the entire
brain from each voxel, and dividing by the corresponding SD) and then
smoothed (4 mm FWHM), except for VMHC (which was smoothed be-
forehand and Fisher's r-to-z transformed).

2.6. Strategies to compare the indices of tumor regions with corresponding
control areas

We manually drew the tumor's edge of each subject as the tumor
masks using MRIcroN (http://people.cas.sc.edu/rorden/mricron/main.
html). Tumors' boundaries were defined by the average of 2 experi-
enced neurosurgeons' advices, which referred to our previous work (Qiu
et al., 2014). We determined the boundaries according to the high-re-
solution T1 images normalized to the MNI spaces using DPABI. One
pilocytic astrocytoma and all cholesteatomas' T1 images manifested no
enhancement, then we defined their boundaries using high-resolution
T1 images without contrast, and others using enhancing images. For
ALFF, fALFF, ReHo and DC, corresponding control areas were defined
as the normal symmetric inter-hemispheric voxels of the tumors. For
VMHC, corresponding control areas were defined at the tumors' per-
iphery, which were derived by enlarging the tumors by 4 voxels and
subtracting the original tumor areas, using a MATLAB-based script
called y_MaskEnlarge (http://d.rnet.co/Programs_YAN/y_MaskEnlarge.
m).

Each metric of the tumor mask and the corresponding control area
was then averaged within the mask or the corresponding control area
for the same subject, allowing us to perform group-level robust paired t-

tests for the within-subject design.
To prove that a significant difference did not exist in the null con-

ditions, 60 matched normal controls underwent the same analysis,
considering the normal controls to have sham tumors at the same lo-
cations as the tumors in the patients, and comparing the five indices of
the sham tumors with those of the corresponding sham control regions.

Moreover, to confirm the validity of the within-subject design, we
compared each metric of the tumors in the patients with the sham tu-
mors in the matched controls using robust two-sample t-tests, as the
metrics in this method were derived from different subjects. This pro-
cedure allowed us to investigate differences between the within-subject
design and the between-subject design.

Given recent concerns about the presentation of neuroimaging data,
especially the traditional bar and line graphs (Rousselet et al., 2016;
Weissgerber et al., 2015), we chose to use violin graphs to present our
main findings. Violin plot is a much more informative and robust graph
that can show the full distribution of the data (Rousselet et al., 2016).
Multiple comparison is a serious issue, especially in neuroimaging area
(Chen et al., 2018; Eklund et al., 2016), we chose the most rigid
strategy, namely Bonferroni correction. As we performed 9 t-tests for
repeated measurements, the significance level was decided to be 0.0056
(0.05/9). Moreover, it should also be noted that Student's t-test is based
on some assumptions and violations of these assumptions can cause a
serious detrimental effect on the mathematical properties of this test
(Pernet et al., 2012; Wilcox and Rousselet, 2018). Thus, we used the
robust t-test which can control the classical Student's t-test's over-
sensitivity to outliers to see whether our findings were driven by vio-
lations of statistical assumptions. The robust t-test was conducted based
on the in-house MATLAB function “robustfit” which is developed for
robust regression. Robust regression (“robustfit” function) specifies a
weighted function with a tuning constant. The default tuning constant
give coefficient estimate that is approximately 95% as statistically ef-
ficient as the ordinary least-squares estimates, provided the response
has a normal distribution with no outlier (Dumouchel and O'Brien,
1992). Similar to Student's t-test in the simple general linear model, we
constructed a matrix that contains a vector specifying sample pairs and
a number of covariates controlling subjects' effects for robust pair t-test.
In the robust two sample t-test, only the group vector will be specified.

3. Results

3.1. Overlaps of tumor masks

A total of 60 intracranial tumors located in the unilateral posterior
cranial fossa were identified, including 23 tumors located on the left
side and 37 tumors on the right side. The pathological outcomes of
these tumors were verified after operations and turned out to be the
meningioma (n= 17), neurinoma (n= 31), hemangioblastoma
(n= 5), pilocytic astrocytoma (n = 3) and cholesteatoma (n= 4). Of
note, none of these tumors exhibited any neural activity whatsoever,
and their original tissues did not contain any neurons. In addition, the
edges of these tumors were clear, making them suitable for validating
the physiological meaning underlying R-fMRI (Jiang et al., 2010). The
tumors overlap probabilistic images are depicted in Fig. 1.

3.2. Comparison between indices of tumor and corresponding control areas
in the patient group

We first compared the means of each metric of the tumors and the
corresponding control areas in patients. For ALFF, fALFF, ReHo and DC,
the corresponding control areas were defined as the tumors' symmetric
inter-hemispheric voxels for VMHC, the corresponding control areas
were defined as the 4 voxels of the tumors periphery. Robust paired
Student's t-tests were conducted to determine whether significant dif-
ferences existed. Without Z-standardization, all four indices (ALFF,
fALFF, ReHo and DC) failed (cannot survive Bonferroni correction) to
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distinguish tumors from the corresponding control areas (ALFF
p= .007, t(60)= −2.53; fALFF p= .009, t(60)= −2.44; ReHo,
p= .067, t(60)= −1.516; DC, p= .074, t(60)= −0.1.47) (Table 1 and
Fig. 2). With Z-standardization, ALFF and DC were significantly differed
between tumors and the corresponding control areas (ALFF p= .001,
t(60)= −3.22, Cohen'd= 0.416; DC, p < .0001, t= −4.20, Co-
hen'd= 0.542), indicating the ability of its value to distinguish tumors
from corresponding control areas. Among 60 patients, 42 and 52 sub-
jects showed the same direction as the group difference, separately.
However, fALFF and ReHo failed again in differentiating tumors as their
p values cannot survive correction (fALFF p= .008, t(60)= −2.51;
ReHo, p= .030, t(60)= −1.91). In contrast to the above 4 indices,
VMHC was Fisher's r-to-z transformed (rather than Z-standardized) and
compared with the surrounding control areas (rather than with inter-
hemispheric areas). VMHC successfully differentiated tumors
(p < .0001, t(60)= −8.869, Cohen'd= 1.121). And 52 out of 60 pa-
tients showed the same direction as the group effect.

3.3. Comparison between indices of sham tumors and the corresponding
sham control areas in the normal control group

To verify that the significant differences are not false positives (i.e.,
they do not exist in null conditions), we next compared the five indices
of healthy controls' sham tumors with those of the corresponding sham
control areas. Not surprisingly, all five indices were not significantly
different between the sham tumors and the corresponding sham control
areas even without correction (p > .05, n= 60) regardless of whether
Z-standardization (not including VMHC) was employed (Table 1 and
Fig. 2). This result provided initial validation for the similarities in
functions and structures between the tumor areas and the corre-
sponding control regions in these large scales (tumors) analysis, which
suggests that the significant results described above for the patient
group may not due to false positives.

3.4. Different profiles of R-fMRI indices in differentiating tumors

After employing Z-standardization, DC and ALFF along with VMHC
were able to differentiate tumors (Fig. 2). To explore the different
profiles of the five R-fMRI indices in differentiating tumors, we con-
verted the p values to z values to identify the differences between tu-
mors and control areas (Fig. 3). VMHC showed the greatest significant
difference, followed by DC and ALFF, successively. fALFF and ReHo did
not demonstrate significant difference (p > .0056). In contrast, the p
values of the five indices for the controls were all higher than 0.05

regardless of whether Z-standardization (not including VMHC) was
employed.

3.5. Between-subject design decreased the power in differentiating tumors

To compare the power of the between-subject design with the
within-subject design, we compared each metric of the tumors in the
patient group with the metric of sham tumors in the matched control
group using robust two samples t-tests, as different subjects were being
compared. Before employing Z-standardization, ALFF, fALFF, ReHo and
DC all failed to distinguish tumors from normal areas (Table 1). Even
after employing Z-standardization in this between-subject design, all
four indices (ALFF, fALFF, ReHo and DC) failed (cannot survive Bon-
ferroni correction) to distinguish tumors from the corresponding con-
trol areas (ALFF, p= .012, t(120)= −2.32; fALFF, p= .020,
t(120)= −2.07; ReHo, p= .073, t(120)= 1.47 and DC, p= .600,
t(120)= −0.26)). With Fisher's r-to-z transformation, VMHC
(p= 9.8688 × 10−8, t(120)= −5.6797, Cohen'd= 1.037) again suc-
cessfully differentiated tumors according to robust unpaired t-tests and
53 out of 60 patients showed the same direction as the group difference
(Fig. 4).

4. Discussion

The aim of this study was to test the ability of R-fMRI indices to
differentiate brain tissues from those without neural signals (brain tu-
mors), which represents a prerequisite for adapting such indices as
biomarkers for neuropsychiatric disorders. Note that all of our subjects'
tumors do not contain any neurons and no neural activity is supposed to
be detected in these tumors. However, as a concept proof, we calculated
the “neural activity” indexed by the R-fMRI metrics in these tumors, to
see if they were significantly different from those normal areas with real
neural activity. If an R-fMRI metric cannot differentiate the tumors
from control areas, then it fails the test. Here, we comprehensively
assessed five common indices of R-fMRI indices, and we compared the
results regarding whether Z-standardization was employed or not, ex-
cept for VMHC, which was Fisher's r-to-z transformed. Interestingly,
only ALFF and DC were not able to differentiate tumors from normal
neural regions (paired t-test, survived Bonferroni correction threshold
p < .05/9 = 0.0056) unless Z-standardization was performed. These
corresponding regions did not show significant differences even
without correction when compared with the normal controls (paired t-
tests, p > .05). To verify whether our primary analyses without GSR
could be generalized to with GSR, we calculated the results with GSR

Fig. 1. Overlaps of tumors. A total of 60 patients with intracranial tumors located in unilateral posterior cranial fossa, including 23 tumors located on the left side and
37 tumors located on the right side. The tumors overlap probabilistic figures are shown. The stereo cerebellum is presented in the anterior view, and two-dimensional
maps are presented in the transverse view.
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and presented this analysis in the supplementary materials. DC still
could not significantly differentiate tumors significantly, and this per-
sisted even when Z-standardization was employed (Table S1 and Fig.
S1). These findings suggest that GSR decreases, not increases, the
ability of R-fMRI indices to differentiate tumors. Of note, these in-
vestigations did not aim to show R-fMRI indices can be better or ad-
ditional to conventional tumor imaging biomarkers, but to validate the
physiological significance of R-fMRI metrics.

4.1. Utilities of common R-fMRI metrics in differentiating structural lesions

Previous studies have suggested that low-frequency (typically

0.01–0.1 Hz) oscillations (LFO) are related to metabolic correlations of
neuronal activity. Researchers have explored the amplitude of BOLD
signals in healthy populations and found that ALFF exhibits significant
differences among different brain tissues (e.g., GM and WM) (Biswal
et al., 1995), different brain regions (e.g., visual and auditory regions)
and different physiological states (e.g., eyes closed vs. eyes open) (Yan
et al., 2009; Yang et al., 2007). Fractional ALFF (fALFF) approach was
defined as the ratio of the low-frequency power spectrum (0.01–0.1 Hz)
to the power spectrum of the entire detectable frequency range. As a
normalized index of ALFF, fALFF can provide a more specific measure
of low-frequency oscillatory phenomena and selectively suppress arti-
facts from non-specific brain areas, particularly in the perivascular,

Fig. 2. Common R-fMRI indices of tumors and their corresponding control areas in the patient group and the sham ones in control group. VMHC, which underwent
Fisher's r-to-z transformation, could distinguish tumors from corresponding control regions regardless of whether or not Z-standardization was employed (survived
Bonferroni correction threshold p < .05/9 = 0.0056). Furthermore, ALFF and DC could not differentiate tumors unless employed Z-standardization. However, fALFF
and ReHo, which two did not survived Bonferroni correction threshold p < .0056, failed to differentiate tumors. (* p < .0056).

Fig. 3. Different profiles of the five R-fMRI indices in differentiating tumors. VMHC showed the most significant difference, followed by DC (with Z-standardization)
and ALFF. Meanwhile, the significance of the five indices in controls were all higher than 0.05, regardless of whether no not Z-standardization was employed. For
visualization, the p values were z-transformed. The green lines stand for p= .0056 (0.05 after Bonferroni correction), and dashed green lines stand for p= .05. The
blue line shows Z values of each metric calculated using robust paired t-tests without Z-standardization, and the oranges line indicates the z values of each metric
calculated using robust paired t-tests with Z-standardization (For VMHC, Fisher's r-to-z transformation was performed, and its values are shown on the blue and
orange lines).
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periventricular and periaqueductal regions (He et al., 2007; Zuo et al.,
2010a). Both ALFF and fALFF were used as promising indices to dis-
cover biomarker in basal and clinical researches (Han et al., 2011; He
et al., 2007; Hou et al., 2014; Qian et al., 2015; Yu et al., 2014; Zang
et al., 2007; Zou et al., 2008). When applied to brains with a definitely
local pathological structure, both ALFF and fALFF showed lower values
within the tumor masks than in the counterpart regions, providing sort
of proofs that they were suggestive for regional spontaneous neuronal
activity. However, only Z-standardized ALFF succeeded in differ-
entiating tumors after applying a stringent correction, suggesting its
importance in exploring abnormal activities of diseased brains. That
also reminds us again that the group statistical maps for these two
measures are similar, but not entirely concordant (Zuo et al., 2010a).
For example, previous researches have revealed that different low-fre-
quency bands showed distinct ALFF and fALFF spatial profiles. On the
other hand, voxels exhibiting significantly greater ALFF than fALFF
were almost located within gray matter (Biswal et al., 1995; Zuo et al.,
2010a). All the cases we chose in this study were cerebellar tumors and
the convolutions of cerebellar gray matter were sufficiently more
complex, which may lead to the different organization of network.
Meanwhile, these tumors could cause different space occupying effect
that reduces the space of ambient cistern and causes vascular de-
formation, that leads to differences between ALFF and fALFF. All these
issues above should be considered in interpreting the failure of fALFF,
whose ability to differentiate local lesions was significant (p < .05) but
did not survive the further correction (p < .0056). Despite these, it is
still recommended to report scientific results with both indices in the
future study for their close relationship.

ReHo, which represents the KCC between a given voxel's time-series
and its 26 adjacent neighbors, differentiated voxels that were more

temporally homogeneous within a functional brain area when the area
was involved in a specific condition (Zang et al., 2004). ReHo serves as
a data-driven R-fMRI metric for investigating neural activities in normal
brain networks and clinical features in several diseases, such as AD (Liu
et al., 2008; Zhang et al., 2012), PD (Wu et al., 2009), epilepsy (Zhong
et al., 2011) and psychiatric disorders (Dichter et al., 2015; Dutta et al.,
2014; Paakki et al., 2010; Peng et al., 2014; Yuan et al., 2008), and it
reflects stable trait properties with excellent test-retest reliability (Jiang
and Zuo, 2016; Zuo et al., 2013). Although as a robust R-fMRI metric
(Zuo and Xing, 2014), ReHo failed to differentiate tumors from normal
regions. Even employed Z-standardization, the differences showed a p
value < .05 but still cannot survive correction. ReHo represents func-
tional homogeneity of nearby voxels involved in a given region, and
voxels in tumor may have similar activities to some extent. Although
these voxels do not display fluctuations as normal neural activities do,
they have the same blood supplies to shape and couple their sham
“functional signals” by hemodynamic response, which causes tumors to
mimic the homogeneous sham situation. This result emphasizes the fact
again that R-fMRI signals are derived from the hemodynamic reactions
and the importance of considering physiological noise in R-fMRI stu-
dies.

Extensive evidence suggests that some brain areas act as hubs that
are distinctively interconnected distinctively, functionally specialized
systems. However, these hubs are susceptible to disconnection and
dysfunction in certain brain disorders (Buckner et al., 2009; Zuo et al.,
2012). DC is the number or sum of weights of significant connections
for a voxel. As such, centrality measures allow us to capture the com-
plexity of the functional networks as a whole. We calculated the
weighted sum of positive correlations by requiring each connection's
correlation coefficient to exceed a threshold of r > 0.25 (Buckner

Fig. 4. Common R-fMRI indices of tumors and their corresponding control areas in the patient group and of sham tumors in the healthy control group. We compared
each R-fMRI measure of the tumors with those of the sham tumors in the matched controls, assuming that they had the same tumors in the same locations. As the
patient tumor and sham tumor came from different subjects, we were able to investigate a between-subject design. Only VMHC succeeded in distinguishing tumors
from corresponding control regions (cannot survive Bonferroni correction threshold 0.05/9 = 0.0056). ALFF and DC failed, although they demonstrated significant
differences (p < .0056) in the within-subject design. In this analysis, all metrics (except for VMHC, which was compared after Fisher's r-to-z transformation) were
calculated with Z-standardization, which is critical for R-fMRI metrics, as shown in Fig. 3 (* p < .0056).
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et al., 2009). Unfortunately, as a global index, DC could not dis-
criminate tumors from corresponding control areas in our unless stan-
dardization was employed. One possible explanation is fMRI indices
generally showed moderate test-retest reliability in general, but DC
showed lower performance than local metrics, ALFF for instance (Wang
et al., 2017). This view was consistent with our study. DC as a low test-
retest reliability measure was easily affected by a variety of experi-
mental and analytical strategies, such as computational space, GSR and
head motion (Zuo and Xing, 2014). GSR even had a substantial influ-
ence on its spatial pattern (Liao et al., 2013; Murphy and Fox, 2016).
This study highlights the importance of employing Z-standardization
rather than GSR when exploring functional networks using DC, not only
because its test-retest reliability improved without GSR (Liao et al.,
2013), but also because DC with Z-standardization had the ability to
differentiate structural lesions.

The high degree of synchrony in spontaneous activity between
geometrically corresponding inter-hemispheric regions is a funda-
mental characteristic of the intrinsic functional architecture of the
brain. VMHC (Anderson et al., 2011; Zuo et al., 2010b) represents a
useful screening method for evaluating homotopic connectivity which
is ubiquitous and regionally specific across the whole brain. As a robust
index with fair to excellent test-retest reliability (Zuo and Xing, 2014),
VMHC is suitable for discovering the underlying physiological me-
chanisms of normal brain development and aging, as well as the dis-
eased brain. And it has already been applied in studying many patho-
physiological disorders, such as autism (Anderson et al., 2011),
schizophrenia (Hoptman et al., 2012), seizures (Ji et al., 2014) and AD
(Dai et al., 2015). Our study revealed a consistent result that VMHC not
only was able to differentiate structural lesions from normal areas, but
also turned out to be the most reliable measure with the highest sig-
nificance level and largest effect size. Although the counterpart normal
regions defined differently from other indices, the enrolled subjects had
clear boundary tumors, that can mitigate this concern. And the results
proved again that VMHC is a credible measure to explore intrinsic
network architecture.

4.2. The significance of Z-standardization

Remarkable site-related variations along with a multitude of ex-
perimental, environmental and subject-related factors further challenge
R-fMRI measures, especially given that R-fMRI research has entered the
era of “big data” (Bzdok and Yeo, 2017; Xia and He, 2017; Yan et al.,
2013b). Big data from multiple centers play a practical role in clinical
applications, particularly holding promise for use in validating bio-
markers with the assistance of advanced data-intensive machine
learning methodologies, such as deep learning (Arbabshirani et al.,
2017). Recently, an intriguing study using R-fMRI data from 1200
subjects offered an impressive example in which subtypes of depression
could be defined by R-fMRI data (Drysdale et al., 2017). Another con-
nectome-based study reported the prediction of biomarkers study in
autism patients using big data (Abraham et al., 2017). However, with
new advances come new challenges. Big data also provides a stark
portrayal of variability in imaging methodologies employed in the
neuroimaging field (Teipel et al., 2017; Wald and Polimeni, 2017). Big
Data can be easily polluted by noise due to the aggregation of data
collected via different research designs and data collection methods,
particularly imaging sites (Xia and He, 2017), which emphasizes the
need to establish consistent acquisition protocols, relevant equipment
and software throughout studies. Unfortunately, standardizing all of
these factors across studies is not always feasible. Although studies have
highlighted the utility of post-acquisition standardization techniques in
minimizing the influences of nuisance variables on inter-individual
variation (Yan et al., 2013b), less is known regarding the validity of
such techniques in lesion differentiation. This research found most in-
dices could differentiate tumors after employing Z-standardization, al-
though fALFF and ReHo were not able to pass the correction

(0.0056 < p < .05). Moreover, ALFF and DC failed to differentiate
tumors unless Z-standardization was performed. Employing Z-standar-
dization was effective in reducing nuisance effects and increasing test-
retest reliability, allowing ALFF and DC to succeed in differentiating
tumors even performed rigid correction. As a post-hoc standardization
strategy was used widely, this study offers a new understanding of the
substantial necessity of Z-standardization in the era of big data.

4.3. Within-subject designs are crucial for R-fMRI research

Within-subject designs have gained popularity for their ability to
decrease participant-related nuisance variations and increase power.
Researchers should generally prefer within-subject designs to between-
subject designs when possible, as larger effect sizes in within-subject
designs can increase reproducibility in small-sample-size studies (Chen
et al., 2018; Mumford et al., 2014). This study emphasized the im-
portance of within-subject designs again, as some R-fMRI indices, ALFF
and DC, for instance, could not differentiate tumors when calculated
using the between-subject design, which compared the R-fMRI metrics
of tumors with sham tumors in controls using the robust two-sample t-
test, even after employing Z-standardization. This result is in contrast to
the within-subject design, for which more R-fMRI indices (ALFF and DC
pass the correction, fALFF and ReHo did not pass the correction) were
able to distinguish tumors from normal brain regions with Z-standar-
dization. Therefore, researchers should prioritize within-subject designs
over between-subject designs whenever possible.

4.4. Limitations and future directions

This study is characterized by several limitations. First, we only
used cerebellar tumors to test the validity if R-fMRI indices in differ-
entiating lesions. This is because cerebellar asymmetry is weaker than
cerebral asymmetry from a structural (Ito, 1984) and functional per-
spective (Wang et al., 2013). Furthermore, the cerebellum contains
nearly 4 times more neurons than the cerebral cortex but has a much
smaller volume, and thus, cerebellar tumors caused less anatomic dis-
tortions in spatial normalization (Agarwal et al., 2017). Second, we
only explored the differences in R-fMRI metrics between tumors and
normal areas, but we did not compare their performances with other
multi-modal MRI sequences. We plan to study the relations between R-
fMRI and perfusion MRI (cerebral blood flow), for different vascularity
of tumors could serve as a potential reason for the changes in ALFF/
fALFF. Third, although > 80 subjects (40 per group) were re-
commended for fMRI research for reliability and sensitivity and our
sample size were enough (Chen et al., 2018), a much larger sample size
would give us the opportunity to study on different tumor pathological
types, such as hypervascular tumors and hypovascular tumors, solid
tumors and cystic tumors, which may provide new insight into phy-
siological significance of R-fMRI signals and artifacts. These limitations
summarize additional aspects that we plan to explore in the future.

5. Conclusions

To the best of our knowledge, this is the first study to comprehen-
sively evaluate the ability of different R-fMRI metrics to differentiate
structural lesions, which should be the premise of identifying R-fMRI
biomarkers in neuropsychiatric disorders or mapping eloquent areas
and epileptic foci. VMHC were able to discriminate tumors from normal
regions, while ALFF and DC failed to differentiate structural lesions
(brain tumors) unless Z-standardization was employed. These results
validated the implicit assumptions from the perspective of neuro-
surgeon that R-fMRI signals represented neural activity rather than
noise. Furthermore, we recommend within-subject designs over be-
tween-subject designs whenever possible.
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