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Optimal photon pairs for quantum 
communication protocols
Mikołaj Lasota* & Piotr Kolenderski

We theoretically investigate the problem of finding optimal characteristics of photon pairs, 
produced in the spontaneous parametric down-conversion (SPDC) process, for fiber-based quantum 
communication protocols. By using the accessible setup parameters, the pump pulse duration and the 
extended phase-matching function width, we minimize the temporal width of SPDC photons within 
the general scenario. This allows one to perform more effectively the temporal filtering procedure, 
which aims at reducing the noise acquired by the measurement devices. Moreover, we compare the 
obtained results with the achievable parameter values for SPDC sources based on β-Barium Borate 
crystal. We also investigate the influence of non-zero detection timing jitter. Finally, we apply our 
optimization strategy to a simple quantum key distribution scheme to show that the full optimization 
of an SPDC source can potentially extend the maximal security distance by several tens of kilometres, 
which is around 30% more as compared to previous approaches.

Quantum communication is a vast field of physical science focused on improving the process of information 
distribution among spatially separated entities with the use of quantum mechanics. The exploration of various 
types of quantum correlation and application of fundamental quantum laws has lead to a plethora of proposals for 
novel communication protocols, including quantum key distribution1,2, secret sharing3, quantum teleportation4 
and dense coding5. However, the initially proposed theoretical versions of these protocols have typically assumed 
ideal performance of the setup elements required for their physical realization, which is unreachable in practice. 
As a consequence, the performance of real-life implementations of QC protocols has been severely limited.

Realization of many such schemes requires using sources of single photons or entangled photon pairs. One 
of the most popular types of them are the devices utilizing the phenomenon of spontaneous parametric down-
conversion6,7. They have many advantages, including high quality of the emitted photons8,9, high generation and 
collection efficiency10–12 and relatively low cost of their construction. Therefore, they have been extensively used 
in practical implementations of many QC protocols13–17. However, photons born in the SPDC process are not 
monochromatic. Thus, they propagate through dispersive media (e.g. the standard telecommunication fibers) 
with wavelength-dependent velocity. As a consequence, their temporal width, defined as the standard deviation 
of the probability distribution function for the time of their arrival at the destination point, grows with the length 
of the utilized dispersive quantum channel. It forces the experimenter to define longer detection windows for 
the photon measurement system in order not to lose considerable amount of real signals. However, the longer 
detection windows are, the more noise is registered during the realization of a given QC protocol, negatively 
affecting its performance.

Taking into account the above consideration, the minimization of the temporal width of the emitted photons 
after their propagation through telecommunication fibers is very important. Nevertheless, to the best of our 
knowledge such a general optimization has not yet been done. Only recently it was shown that changing the 
properties of pairs of photons can indeed significantly influence the performance of quantum protocols18–20. A 
preliminary optimization of SPDC source for a specific setup configuration was also performed20. In this manu-
script we generalize this optimization to an arbitrary QC scheme. We also investigate the influence of non-zero 
timing jitter of realistic detectors on the obtained results and discuss whether the theoretically optimal values 
can be implemented in practice. Finally, we estimate the advantage stemming from the optimization of SPDC 
source on the maximal security distance of a basic quantum key distribution (QKD) scheme.

In our work we consider SPDC source of photon pairs based on a nonlinear crystal parametrized by the 
effective phase-matching function width σ , pumped by laser pulses of temporal width τp . Throughout this 
manuscript we assume that the information on the time moments at which the laser sends pump pulses to the 
crystal is available to everyone interested. Photons generated by the SPDC source are subsequently transfered 
to single-photon detectors through quantum channels of length LA and LB , characterized by the group velocity 
dispersion (GVD) equal to 2βA and 2βB , respectively. This scheme is illustrated in Fig. 1a. We use the following 

OPEN

Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87‑100 Toruń, Poland. 
*email: miklas@umk.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-77662-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20810  | https://doi.org/10.1038/s41598-020-77662-2

www.nature.com/scientificreports/

notation to simplify the analytical calculations: DX ≡ βXLX (for X = A,B ). To show the potential to improve 
the performance of QC schemes by optimizing the SPDC source we also consider a basic setup configuration 
for the realization of BB84 protocol in the entanglement-based variant, presented in Fig. 1b. All the subsequent 
figures shown in this manuscript are made for βA = βB = −1.15× 10−26 s2/m . For the standard wavelength of 
1550 nm it corresponds21 to the dispersion value of 18 ps/nm km, that is typical for single-mode fibers (SMFs)22, 
which are the most common telecommunication channels utilized in practical QC schemes. During the QKD 
security analysis we also assume the typical value of their attenuation coefficient: αA = αB = 0.2 dB/km.

Results

Optimization of temporal widths.  As has already been stated in the Introduction, in the context of QC 
applications it is desirable for the temporal widths of SPDC photons to be as narrow as possible. Therefore, a 
natural question is: what are the optimal values of the source parameters, τp and σ , for which the temporal widths 
of SPDC photons, written explicitly in the “Methods” section [formulas (3) and (4)], are the lowest? In practice it 
is much easier to calibrate the temporal width of pump laser pulses than to modify the effective phase-matching 
function for the nonlinear crystal, since the latter usually requires replacing the crystal itself. Therefore, we first 
consider the situation in which the experimenter can only change the pump laser utilized by the SPDC source, 
while the crystal is fixed.

In this case the temporal width of the unheralded photon A, τA , reaches its lowest value, equal to 
τ lowA = (2+ |DA|σ 2)/(2σ) , for τp =

√
2|DA| . Since τA dos not depend on DB , the above result is iden-

tical for the symmetric and asymmetric setup configurations. In the symmetric case also the tem-
poral width of the heralded photon A, τAh , reaches its minimum for the same value of τp . It reads: 
τ
low,sym
Ah = [2|DA|(D2

Aσ
4 + 4)/(|DA|σ 2 + 2)2]1/2 . On the othe hand, the optimization of τAh over τp for the 

asymmetric setup configuration is much more complicated. In this case the function τAh(τp) does not always 
have a global minimum and the conditions for its existence heavily depend on the relationship between DA , DB 
and σ . The details of this dependence can be found in the “Methods” section, along with the derivation of the 
above formulas for τ lowA  and τ low,symAh .

The examples of the relationship τAh(τp) for the symmetric and highly asymmetric setup configurations can 
be seen in Fig. 2. In the symmetric case, presented in panel (a), the function τAh(τp) has a well-defined minimum 

Figure 1.   Setup configurations. (a) The generic setup configuration for the detection of SPDC photons. (b) A 
simple discrete-variable QKD scheme with the source of entangled photon pairs placed outside of Alice’s and 
Bob’s laboratories. R denotes polarization rotators.

(a) (b)

Figure 2.   The dependence of τAh on the pump laser. The temporal width of the heralded photon A, τAh , plotted 
as a function of the duration time of a pump laser pulse for the case when two standard single-mode fibers 
(SMFs) of length LA = 1 km and (a) LB = 1 km, (b) LB = 100 km are placed between the crystal and single-
photon detectors. The legend corresponds to both panels.
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for any σ . Its value depends on the effective phase-matching function width relatively weekly, while the value of 
τp for which this minimum is reached is independent of σ . The situation is much different in the highly asym-
metric case, illustrated in panel (b). Here both the optimal value of τp and the minimal value of τAh significantly 
depend on the effective phase-matching function width. Moreover, for σ = 100 GHz (corresponding to 0.13 
nm at 1550 nm in terms of wavelength) none of the conditions for the existence of the global minimum of τAh 
is fulfilled. In this situation τAh(τp) is monotonically increasing function (see the orange dot-dashed line). It 
can also be seen that in the asymmetric scenario the comparison between the functions of τAh(τp) plotted for 
different σ heavily depends on τp . For example, while for very short pump pulses the value of τAh calculated for 
σ = 1 THz is much smaller than for σ = 10 GHz, it is the opposite for large τp . The situation like this cannot be 
seen in the symmetric case.

Contrary to the scenario when the nonlinear crystal is fixed, full optimization of a SPDC source over the 
parameters τp and σ cannot be done analytically in the general case. Nevertheless, it can be performed for 
the symmetric setup configuration, when DA = DB ≡ D . This task has already been done in our previous 
paper18, where it was shown that in the symmetric case the optimal values of the SPDC source parameters are 
τ
sym
p =

√
2|D| and σ sym =

√
2/|D| . For these numbers the function τAh reaches its absolute minimum, equal 

to τ symAh =
√
2|D| . In the symmetric case τAh exhibits high symmetry both as a function of τp and σ . It can be 

seen in Fig. 3a, where the temporal width of the photon A is plotted for LA = LB = 1 km. For comparison, in 
Fig. 3b we plot τAh for the highly asymmetric case of LA = 1 km and LB = 100 km. As for the type of spectral 
correlation between the photons produced by a partially or fully optimized SPDC source, in general situation it 
is impossible to find such a simple expression as the formula (9) in our previous paper18, which works only for 
the symmetric schemes. However the conclusions that can be drawn from the numerical analysis of this issue 
are generally the same as before: fully optimized source produces spectrally uncorrelated photons, while the 
type and strength of correlation generated in the case when only the pumping laser is optimized depend on the 
relationship between the effective phase-matching function width and the channel parameters DA and DB . For 
short (long) propagation distances the optimal correlation is positive (negative).

Dependence on the length of the heralding arm.  For the asymmetric QC scheme it is possible to 
reduce the temporal width of SPDC photons propagated through one of its arms by introducing a proper amount 
of dispersion to the other arm (e.g. by adjusting its length). This can have positive effect on the performance of 
QC protocols in some setup configurations, as has already been shown in the context of the asymmetric QKD 
scenario19. However, the framework used in the aforementioned work was based on the analysis of spectral cor-
relation and generated photon widths. It gave general insight into the physical mechanisms yielding the optimal 
performance of the QKD scheme, but must be reformulated to be directly related to the typical experimental 
scenario. Here we accomplish this goal using the parameters σ and τp.

In Fig. 4 it can be seen how the temporal width τAh , optimized over the duration time of the pump laser 
pulses, changes with different values of LB and σ . This picture shows that the conditions for the function τAh(τp) 
to have a global minimum, derived in the “Methods” section, are always fulfilled when the channel parameters, 
DA and DB , are of the same order of magnitude. Only for highly asymmetric schemes this function can be 
minimized asymptotically for τp → ∞ or τp → 0 . Furthermore, if the effective phase-matching function width 
is significantly larger than its optimal value, σopt , extending the length of the heralding arm always leads to the 
reduction of τAh . This effect is more prominent for smaller distances, while for LB → ∞ the temporal width of 
the heralded photon asymptotically decreases to a fixed value. On the other hand, when σ < σopt , extending the 

Figure 3.   The dependence of τAh on the pump laser and the nonlinear crystal. Logarithm of the temporal 
width of the heralded photon A, τAh , at the entrance to the detector, plotted as a function of the duration time 
of the pump laser pulse, τp , and the effective phase-matching function width of the nonlinear crystal, σ , for the 
case when the source is connected with the detectors by SMFs of length LA = 1 km and (a) LB = 1 km or (b) 
LB = 100 km. The contours shown in both plots represent values from log10 τAh = −11.2 to log10 τAh = −9.2 
with constant 0.2 spacing.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20810  | https://doi.org/10.1038/s41598-020-77662-2

www.nature.com/scientificreports/

heralding arm has the opposite effect on τAh to the one described above. Therefore, one can conclude that for 
the asymmetric QKD scheme the maximal security distance in one arm can be extended by introducing more 
dispersion to the other arm, as long as σ > σ opt . This conclusion is similar to the one stated in our previous 
work19. However, it is important to underline that contrary to the aforementioned paper, here the global time 
reference, i.e. the timing information on the pump pulses, is assumed to be known by Alice and Bob, as has 
already been stated in the Introduction. Consequently, it can potentially have much broader practical application 
than it was previously thought19.

Since the simplest way of introducing more dispersion to the heralding arm is to use longer telecommunica-
tion fiber, one should be aware of the fact that such action would always reduce the probability of registering the 
heralding photon. Therefore, one should avoid it as long as the length of the heralded arm is short enough to 
provide the QKD security even without introducing additional dispersion, as it would unnecessarily decrease 
the key generation rate. Only when the length of the heralded arm is indeed too long for the security of the 
traditional setup configuration, lengthening the heralding fiber may provide positive results for the participants 
of the QKD protocol. 

Dependence on the detector timing jitter.  It can be seen in Figs. 2, 3 and 4 that if the SMF connect-
ing the source with the detector A is of the order of 1 km, the temporal width τAh can be reduced even below 
the level of 10 ps. This value is comparable with the timing jitter of the best currently existing single-photon 
detectors23–26. In order to estimate the range of fiber lengths for which non-zero jitter can have significant influ-
ence on the temporal widths of SPDC photons, in Fig. 5 we compare the temporal widths of the heralded photon 
A, τ JAh , optimized over the source parameters, σ and τp , calculated as a function of the propagation distance for 
a few different values of the timing jitter τJA and τJB . The mathematical formula for τ JAh is derived in the “Meth-
ods” section. The plots in Fig. 5 are made for the symmetric QC scheme. As one can see there, if LA and LB are 
shorter than a few kilometers, the jitter significantly influences τ JAh even if it is much smaller than in the case of 
the state-of-the-art single-photon detectors. Therefore, to exploit the full potential of the optimization method 
presented in this paper further development of photon detection technology will be needed. At present, however, 
it is certainly possible to make the influence of detection jitter negligible if the propagation distance is of the 
order of tens of kilometers or more. To conclude, the results of our investigation, presented in Fig. 5, indicate 
that if the experimenter wants to fully optimize the short-distance QC scheme, the detection jitter of realistic 
single-photon detectors can become one of the most important factors. On the other hand, for long-distance 
communication schemes the jitter can be safely neglected.

Figure 4.   The dependence of τAh on nonlinear crystal and the length of the heralding arm. Logarithm of 
the temporal width of the heralded photon A at the entrance to the detector, τAh , shown as a function of the 
length of the heralding SMF quantum channel, LB , and the effective phase-matching function width of the 
nonlinear crystal, σ , plotted for the case when the source is connected with the detector A by another SMF 
quantum channel of length LA = 1 km. For every pair of values (LB, σ) the calculated temporal width has been 
optimized over the pump laser pulse duration τp . The overshadowed area near the left [right] edge of the figure 
corresponds to the range of (LB, σ) , for which the optimal value of τAh is reached for τp → ∞ [ τp → 0 ]. For 
other combinations of LB and σ the optimal value of τp is given by the formula (7). The spacing between the 
neighboring contours becomes smaller than 0.2 for log10 τAh < −11.2 in order to better illustrate how this 
function behaves near its minimum.
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Realistic values of the effective phase‑matching function width.  In principle, in the case of any 
specific QC setup configuration, using the optimization rules presented in this paper allows the experimenter to 
easily find the most favourable values of a pump laser pulse duration and an effective phase-matching function 
width. However, one may wonder if these theoretically optimal values would be achievable for realistic SPDC 
sources. It is much easier to answer this question in the context of the pump laser pulse duration, owing to the 
variety of commercially available lasers, ranging from the CW to femtosecond ones. Since the optimal value of 
τp generally grows with the propagation distance and already for LA = LB = 1 m it is approximately equal to 150 
fs, one can safely say that the theoretically optimal pump laser pulse duration should be achievable for basically 
every realistic QC scheme.

Performing similar analysis in the context of the effective phase-matching function width associated with 
different kinds of nonlinear crystals is much more complexed. The value of σ depends not only on the type of 
nonlinear material, but also on several other parameters such as the crystal length or its optical axis orientation27. 
However, in order to get some intuition in this matter, we analyzed here a specific case of BBO crystal cut for 
degenerate type I SPDC process, in which 775 nm pump photons are converted to pairs of 1550 nm photons. The 
results of our investigation are presented in Fig. 6, where the effective phase-matching function width was plotted 
as a function of the angle α between the central propagation directions of the pump photons and the generated 
photons. The calculations were made for several different values of the crystal length, Lcryst , and the width of 

Figure 5.   The influence of non-zero timing jitter on τAh . Temporal width of the heralded photon, τ JAh , given 
by the formula (8),optimized over the SPDC source parameters σ and τp , plotted as a function of the length of 
SMFs separating the source and the photon detection systems in the case of symmetric setup configuration. The 
detectors’ timing jitter is defined as the standard deviation of the detection time probability function.

Figure 6.   Realistic values of σ for BBO crystal. The effective phase-matching function width, σ , calculated for 
775 nm → 1550 nm+ 1550 nm type I SPDC process, plotted as a function of the angle α between the central 
propagation directions for the pump photons and the generated photons. The plots are made for the crystal 
length equal to Lcryst = 1 cm (solid lines) and Lcryst = 1 mm (dashed lines), and for the following widths of the 
transverse spatial modes collected by the SMFs, Wf  : 10 μm (black lines), 100 μm (red lines), 1 mm (yellow lines). 
Blue dotted (green dot-dashed) line correspond to the optimal value of σ , calculated for the symmetric QC 
setup with SMF quantum channels of 100 km (1 km) length.
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transverse spatial mode collected by the SMFs, Wf  . Additionally, the optimal values of σ for symmetric QC setup 
configuration using SMFs of length L = 1 km and L = 100 km were indicated in this figure for comparison.

The most important conclusion that can be drawn from Fig. 6 is that for the source based on BBO crystal, 
analyzed here, the theoretically optimal values of the effective phase-matching function width can be very difficult 
to obtain in most practical situations. This goal seems to be especially hard to achieve for α ≈ 0 , which is often 
the most convenient one in practice. In this situation, even when using exceptionally long BBO crystals, one 
may hope to obtain σ opt width only for short-distance QC schemes. In principle, smaller widths of the effective 
phase-matching function can be get when the values of Wf  are sufficiently large and the BBO crystal is cut to 
emit pairs of photons at broad angle from the direction of propagation of the pump laser pulses. However, this 
kind of SPDC source would be significantly more difficult to construct. Moreover, its pair production efficiency 
and heralding efficiency would most likely be much smaller than for the case of collinear configuration. This 
would negatively affect the performance of many QC protocols28.

An example of application: quantum key distribution.  The potential of the presented method for 
the optimization of a SPDC source for its use in QC applications can be seen in Fig. 7a, where we plot the 
lower bound for the key generation rate that can be obtained from the realization of BB84 protocol in the sym-
metric version of the setup configuration schematically illustrated in Fig. 1b. We analyzed the cases of (1) non-
optimized source with σ = 1 THz and τp = 1 ns , (2) the source with the same σ , but optimized over the value 
of τp and (3) the fully optimized SPDC source. The value of the pump laser pulse duration used in the case (1) 
is roughly the same as in one of the rare experimental realizations of long-distance QKD with SPDC sources29. 
Since the authors of the aforementioned paper did not calculate the effective phase-matching function width for 
their crystal, we decided to use a typical value here. Technical details of the security analysis can be found in the 
“Methods” section.

It can be seen in Fig. 7a that in principle by fully optimizing the source the maximal security distance for 
the analyzed scheme can be extended by almost sixty kilometers for each of the two existing quantum channels, 
which is around 30% compared to the non-optimized case. Moreover, even partial optimization of the source, 
just over the pump laser pulse duration, can provide the legitimate participants of the BB84 protocol with about 
20% of additional security distance. It is also important to notice, that the results plotted in Fig. 7a do not change 
considerably if we assume that Alice and Bob use single-photon detectors characterized by detection timing 
jitter of τJA = τJB = 100 ps , which is well above the best achievable value for the modern devices23–25. In this 
situation the maximal security distance is shortened only by a few kilometers compared to the case with ideal 
single-photon detectors. This result is consistent with the jitter influence analysis presented earlier in this work.

The results shown in Fig. 7a were obtained for the security analysis of the symmetric version of the QKD 
setup. In Fig. 7b we present the results concerning more general situation, in which the two SMFs connecting 
the SPDC source with Alice and Bob are not of the same length. In this part of our work we specifically focus on 
checking how changing the length of Bob’s fiber can influence the maximal security distance between the source 
and Alice. This investigation is motivated by the possibility of decreasing the temporal width of the heralded 
SPDC photon by extending the distance between the source and the heralding detector, discussed before. While 
such possibility is available only when σ > σ opt (see Fig. 4a), the plots shown in Fig. 6 strongly suggest that this 
requirement can be fulfilled in most practical situations. As can be seen in Fig. 7b, the maximal security distance 
between the source and Alice can be increased by several tens of kilometers just by optimizing the value of LB 
for any given LA , instead of fixing it on some short level.

Figure 7.   Key generation rate. The lower bound for the key generation rate, K, plotted as a function of the 
length LA of the SMF used to connect the SPDC source with the laboratory of Alice for the BB84 protocol 
performed in (a) symmetric, (b) asymmetric version of the QKD scheme presented in Fig. 1b. In panel (a) 
the plots are calculated for the following values of the source parameters: σ = 1 THz and τp = 1 ns (dashed 
yellow line), σ = 1 THz and τp =

√
2|β|L (dotted red line), σ =

√
2/(|β|L) and τp =

√
2|β|L (solid black 

line). The three aforementioned curves are drawn assuming ideal single-photon detectors with no timing 
jitter. Additionally, dot–dashed black line illustrates the lower bound for the key generation rate calculated in 
the case when the jitter of all the detectors utilized by Alice and Bob is 100 ps , while the source parameters are 
σ =

√
2/(|β|L) and τp =

√
2|β|L . In panel (b) all of the plots are made for σ = 1 THz , while the values of τp 

are numerically optimized and the jitter is assumed to be zero.
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Discussion
In this work we performed theoretical optimization of SPDC photon pairs for QC schemes with two dispersive 
quantum channels of arbitrary lengths. It was done over the pump laser pulse duration and the effective phase-
matching function width of nonlinear crystal. We derived an analytical formula for the best setting of the pump 
laser for a given crystal in the most general case. Moreover, we performed full numerical optimization of a SPDC 
source, demonstrating the possibility to further refine the performance of quantum protocols. We also showed 
that the temporal width of a SPDC photon can be minimized in one of two possible ways, depending on the 
exact value of the effective phase-matching function width: either by increasing the dispersion in the quantum 
channel or by decreasing it. The first (second) of these possibilities is available when the effective phase-matching 
function width is larger (smaller) than its optimal value.

To compare theoretical predictions of our work with capabilities of realistic SPDC sources we investigated 
the source based on BBO crystal, designed for type I SPDC process generating pairs of 1550 nm photons. For 
such source we performed analytical estimation of the effective phase-matching function width. It should be 
noted here that precise calculation of this parameter can be done only numerically and is beyond the scope 
of this analysis. The obtained results suggests that for most QC schemes the achievable value of the effective 
phase-matching function width would be significantly larger than the theoretically optimal one. While in some 
situations the optimal value could be achieved, it would often require relatively large angles between the pump 
laser pulse direction and the propagation directions of the generated photons. However, such setup configura-
tion would negatively affect the efficiency of SPDC source. The above consideration raises the question in what 
situations it would be more beneficial to abandon the full optimization of the SPDC source based on BBO crystal 
and use the collinear configuration to produce pairs of photons, and when it would be better to push for the full 
optimization at the expense of efficiency of the source. Further analysis of this problem would be required to 
reliably answer such question. Moreover, similar investigation performed for other types of nonlinear crystals 
would be necessary.

To demonstrate the potential for improving the performance of QC protocols by optimizing SPDC source, we 
analyzed simple entanglement-based QKD scheme. We showed that the maximal secure communication distance 
can be significantly increased just by properly adjusting the pump laser. Furthermore, if the full optimization of 
the source is possible, the improvement may even reach 30% in comparison with the practical non-optimized 
scheme. We also showed that in realistic cases the detection timing jitter reduces the maximal security distance 
by no more than a few kilometers. We would like to strongly underline here that the presented method for 
improving the QKD security is not limited to the particular scheme analyzed in our work. Since its essence is the 
reduction of the amount of uncorrelated noise registered by photon detectors during the key generation process 
by minimizing the widths of detection windows, it has the potential to significantly improve the security of all 
single-photon-based protocols, including the currently most popular measurement-device-independent30 and 
twin-field31 schemes, as long as they are implemented using SPDC sources.

Nevertheless, it should be remembered that the effectiveness of this method could be significantly smaller 
if the decrease of the key generation rate to zero at the maximal security distance was mainly caused by some 
other factors than the reduction of signal-to-noise ratio below the critical level. Specifically, if the SPDC source 
is used in a prepare-and-measure type of QKD setup configuration, the security of such scheme could be higly 
dependent on the probability for producing more than one pair of photons, which is always non-zero in realistic 
situations. However, the damaging influence of the multipair generation events on QKD security can be efficiently 
reduced by using decoy-pulse method32, which greatly limits the possibility to attack multiphoton pulses by a 
potential eavesdropper. While most of the recent record-breaking long-distance realizations of QKD protocols 
reported in the literature have been implemented using weak coherent pulses and decoy-pulse method33–35, many 
papers suggest that heralded single-photon sources could potentially be better for this task36–38. This notion 
can be supported by taking into account the recent advances in the field of heralding efficiency of the SPDC 
sources10–12. While the strong temporal broadening of the generated signals has always been a serious obstacle 
for using these sources in fiber-based long-distance communication, their optimization method presented here 
allows to overcome this important problem.

Taking into account the above considerations, the noise registered by the measurement systems during the key 
generation procedure appears to be much bigger issue for long-distance QC than the aforementioned imperfec-
tion of photon pair sources. Since in our work we considered dark counts as the only source of noise, one can 
expect that the SPDC source optimization method can provide even better results in more realistic cases. It seems 
to be especially promising for the QKD performed in commercial fibers populated by strong classical signals, 
where the level of channel noise caused by those signals is typically very high39. Our results can be particularly 
useful in the case of asymmetric QKD scheme in which the distance between one of the parties and the source 
is relatively small and the goal is to maximally extend the security length of the quantum channel connecting the 
source with the other party. A good example of such scenario can be found when considering a communication 
between a single individual user and a distant node in a multilevel quntum network with several access net-
works connected to the central backbone40,41. Then, the maximal security distance between two separate access 
networks could be substantially increased by introducing more dispersion to the quantum channels connecting 
the individual users with their respective central nodes, as we also demonstrated in this work.

Methods
Temporal widths of SPDC photons.  The spectral wavefunction of the pairs of photons produced by an 
SPDC source can be written in the following approximate form27,42:
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where νA , νB are frequency detunings from the respective central frequencies. To calculate the temporal wavefunc-
tion of the pair of SPDC photons after their propagation through the dispersive media we utilize the following 
formula18:

where ψ
(

t ′A, t
′
B

)

 denotes the initial temporal wavefunction. It can be obtained from φ(νA, νB) through Fourier 
transform.

Without any loss of generality we focus on calculating the temporal width of the photon entering the detector 
A (photon A) in Fig. 1a. If an experimenter knows nothing about the detection time of the other photon (photon 
B), the probability distribution function for the detection time of photon A can be calculated as the marginal 
distribution pA(tA) =

∫

dtB|ψDADB (tA, tB)|2 . In this case the temporal width of photon A reads:

On the other hand, if the detection time of photon B is known to be TB , the prob-
abil ity distribution function for the detection t ime of photon A takes the form of 
pAh(tA, tB = TB) = |ψDADB (tA, tB = TB)|2/[

∫

dtA|ψDADB (tA, tB = TB)|2] . Its temporal width is then given by:

The temporal width of photon B in the non-heralded and heralded case can be obtained immediately from 
the expressions (3) and (4), respectively, by switching DA to DB and vice versa.

Optimization of the pump laser in the asymmetric case.  The conditions for the function τAh(τp) to 
have a well-defined global minimum are very complicated in the general case. However, they can be considerably 
simplified if we assume that DA and DB have the same sign, which is certainly a justified assumption in realistic 
situations. To write them explicitly we first introduce the following notation:

Here we focus on the typical QC scheme with SMFs, in which case it is always DA,DB < 0 . Then the right-
hand side of the expression (4) reaches its minimum for

in the three following cases: (1) when 10.7DA ≈ (4
√
2+ 5)DA < DB <

[

(4
√
2− 5)/7

]

DA ≈ 0.094DA , (2) when 
DB ≤ (4

√
2+ 5)DA and one of the inequalities σ < ξ+1,−1 or ξ+1,+1 < σ is true, (3) when 

[

(4
√
2− 5)/7

]

DA ≤ DB 
and one of the inequelities σ < ζ−1,+1 or ζ−1,−1 < σ is true. If none of the above sets of conditions is fulfilled, 
then the function τAh(τp) does not have a global minimum. If DB ≤ (4

√
2+ 5)DA but ξ+1,−1 ≤ σ ≤ ξ+1,+1 it is 

monotonically increasing, meaning that the lowest temporal width of photon A is reached for τp → 0 . On the 
other hand if 

[

(4
√
2− 5)/7

]

DA ≤ DB but ζ−1,+1 ≤ σ ≤ ζ−1,−1 the function τAh(τp) always decreases when τp 
grows. Therefore, in this situation the lowest temporal width of photon A is reached for τp → ∞.

Temporal widths of SPDC photons when the detection timing jitter is non‑zero.  When 
the timing jitter, τJA , is non-zero the difference between the detection time of photon A, tA , and the time 
of its arrival at the measurement system, t0A , can be described by the probability distribution function 
q(tA, t

0
A, τJA) = MA exp[−(tA − t0A)

2/(2τ 2JA)] , where MA is the normalization constant. Then, the probability 
distribution for the detection time of this photon in the case when the detection time of photon B is unknown 
can be calculated as πA(tA) =

∫

dt0A pA(t
0
A)q(tA, t

0
A, τJA) . The marginal distribution function pA(x) has already 

(1)φ(νA, νB) ∝ exp

(

−
(νA − νB)

2

σ 2
−

(νA + νB)
2τ 2p

4

)

,

(2)ψDADB (tA, tB) =
1

4π i
√
DADB

∫

dt′A

∫

dt′B exp

(

i
(

tA − t ′A
)2

4DA
+

i
(

tB − t ′B
)2

4DB

)

ψ
(

t ′A, t
′
B

)

,

(3)
τA =

√

(

τ 2p + D2
Aσ

2
)(

4+ σ 2τ 2p

)

2στp

(4)τAh =

√

√

√

√

√

√

16
(

τ 2p − DADBσ 2
)2

+ (DA + DB)
2
(

σ 2τ 2p + 4
)2

4
(

τ 2p + D2
Bσ

2
)(

σ 2τ 2p + 4
) .

(5)ξi,j=

[

i
DA−DB+j

√

(DA−DB)2−8DA(DA+DB)

2DADB

]1/2

,

(6)ζi,j=

[

i
DA−DB+j

√

(DA−DB)2−8DB(DA+DB)

DB(DA+DB)

]1/2

.

(7)τ
(−)
p = 2

√

−
2(DA+DB)−σ 2DB(DA−DB)+σ 4DAD

2
B

8+2σ 2(DA−DB)+σ 4DB(DA+DB)



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20810  | https://doi.org/10.1038/s41598-020-77662-2

www.nature.com/scientificreports/

been defined in the text between the Eqs. (2) and (3). It is straightforward to check that the standard deviation of 
πA(tA) is equal to τ JA = (τ 2A + τ 2JA)

1/2 . The above formula gives the temporal width of the non-heralded photon 
A for the case of non-zero jitter.

While the value of τ JA depends only on the timing jitter of the detector A, the analogous temporal width of 
photon A found in the heralded case, τ JAh , would be influenced also by the timing jitter of the other detector, τJB . 
In order to calculate it, one has to take the joint probability formula for the detection of photon A at the time tA 
and the detection of photon B at the time tB , which can be derived from (2) as pAB(tA, tB) = |ψDADB (tA, tB)|2 , 
and modify it to the following form: πAB(tA, tB) =

∫

dt0A
∫

dt0B pAB(t
0
A, t

0
B)q(tA, t

0
A, τJA)q(tB, t

0
B, τJB) . In the 

above formula t0B is the arrival time of photon B to the heralding detector. The probability distribution of 
the detection time of photon A, conditioned on the detection of photon B at the time TB , is then given by 
πAh(tA, tB = TB) = πAB(tA, tB = TB)/

∫

dtA πAB(tA, tB = TB) . The standard deviation of the resulting function is

where τAh is the temporal width of the photon A calculated for zero jitter case and 
X = (τ 2p − DADBσ

2)2(σ 2τ 2p − 4)2/[(τ 2p + D 2
Bσ

2)2(σ 2τ 2p + 4)2].

Effective phase‑matching function width for the BBO crystal.  The approximate value of the 
effective phase-matching function width for a particular nonlinear crystal can be calculated by using the fol-
lowing formula: σ = [(δ2k/W

2
f + 5/L2)/δ2ω]1/2 , where Wf  is the width of transverse spatial mode collected by 

the SMF and L is the length of the crystal27. Furthermore, by δk and δω we defined the partial derivatives of 
the phase mismatch �kz over the transverse component of wave vector of the produced signal photons and 
their angular frequencies, respectively. In this work we are interested in type I SPDC process taking place in 
BBO crystal. It is a negative uniaxial crystal, which means that the pump photons have to be extraordinar-
ily polarized, while the polarizations of signal and idler photons are always ordinary43. Assuming that the 
pump pulses propagate along the z direction, the phase mismatch for the investigated process is given by 
�kz = (ωs + ωi)n

e(ωs + ωi , θ)/c − [ωsno(ωs)/c − k2sx]1/2 − [ωino(ωi)/c − k2ix]1/2 , where ωs ( ωi ) is the angu-
lar frequency of the signal (idler) photon and ksx(kix ) is its transverse wave vector component. The refractive 
index for pump photons depends on the angle between the Z axis and the optic axis, θ , as follows43:

The approximate formula for the dependence of the refractive index of the ordinarily [extraordinarily] polar-
ized photons propagating in the BBO crystal, no(ω) [ ne(ω) ], on their angular frequency can be found in the 
literature43. The expression for θ can be obtained by solving the equation �kz = 0.

QKD security analysis.  For the BB84 protocol realized in the setup configuration illus-
trated in Fig.  1b the lower bound on the key generation rate is given by K = pexp[1− 2H(Q)] , where 
H(x) = −x log2 x − (1− x) log2(1− x) is the Shannon entropy and Q denotes the quantum bit error rate 
(QBER) in the raw key generated by the legitimate participants of the protocol44. In the above formula pexp is 
the probability of accepting a given event by Alice and Bob for the process of key generation. Obviously, both 
Q and pexp depend on the duration time of the detection windows chosen by the participants of the protocol. 
For a single such window of width ξτX the probability for registering a photon of temporal width τX is given by

On the other hand, the probability for registering a dark count in one of the two single-photon detectors can 
be calculated as

where d is the dark count rate for a given single-photon detector. For the calculations performed in this work we 
assume that d = 1 kHz both in the case of Alice’s and Bob’s detectors. Taking different values of d would obvi-
ously influence the obtained maximal security distances, but would not change the properties of different curves 
presented in Fig. 7, nor the relationships between them. Also, for every pair of the investigated values of LA and 
LB we separately optimize the parameters ξA and ξB in order to get the best possible outcomes for the legitimate 
parties. We consider the situation in which the dark counts are the only source of errors in the raw key. Since 
narrowing the detection windows reduces all the possible errors that are uncorrelated with the real signals in 
exactly the same way, adding such errors to the model can be easily made just by appropriate increase of d. On 
the other hand, the errors that are connected to the real signals, e.g. polarization rotation, would only slightly 
change the obtained results and not in qualitative way.

We consider the case of perfect SPDC source, always emitting a single pair of photons when the pump pulse 
propagates through the crystal. With this assumption the probability pexp for the scheme illustrated in Fig. 1b 
can be approximated by

(8)τ
J
Ah =

√

τ 2Ah + τ 2JA + Xτ 2JB,

(9)ne(ω, θ) = no(ω)

√

1+ tan2 θ

1+ [no(ω)/ne(ω)]
2 tan2 θ

.

(10)η(ξ) = (2π)−1/2

∫ ξ/2

−ξ/2
dy exp(−y2/2) = erf (ξ/2

√
2).

(11)PX(ξ) = 2dξτX ,
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where TA ( TB ) is the transmittance of quantum channel connecting the SPDC source with Alice (Bob), given 
by TA = 10−αALA/10 ( TB = 10−αBLB/10 ). The probabilities for a dark count to be registered by Alice or Bob in a 
particular detection window, denoted by PAh and PBh respectively, can be calculated by inserting the expression 
(4), and the analogous expression for the temporal width of the heralded photon B, into the formula (11). On 
the other hand, in order to obtain PA one should use the Eq. (3) instead of (4). This probability, appearing only 
in the last term on the right-hand side of Eq. (13), is needed to properly account for the case when neither of the 
signal photons is detected by the measurement systems of Alice and Bob. In this situation one of the dark counts 
registered by them has to be treated as a “heralding” click, while the other one is “heralded” by it (obviously, the 
exact choice does not matter here, as can be confirmed by checking that τAτBh ≡ τBτAh ). On the other hand, 
the second and third terms on the right-hand side of Eq.(13) correspond to the case when only one of the two 
photons produced by the source causes a click in one of the measurement systems, but the event is still accepted 
for the key generation process due to a dark count registered in the other detection system in the appropriately 
narrowed time window. Finally, the first term on the right-hand side of Eq.(13) accounts for the desired situ-
ation in which both SPDC photons from a given pair are detected by Alice’s and Bob’s measurement systems.

In the case of the simplified QKD scheme considered in our work an error in the raw key can be generated 
only if at least one of the signal photons from a given SPDC pair is lost, but the event is still accepted for key 
generation. Since dark counts occur in the detectors of Alice and Bob totally randomly, in all of such situations 
the error probability is 50% . Therefore, QBER can be calculated using the expression
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