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Abstract 

Background: Insulin resistance and hyperinsulinemia in patients with type 2 diabetes (T2D) are adversely associated 
with the development and worsening of heart failure (HF). Herein, we sought to investigate the effect of canagliflozin 
on insulin concentrations and the associations of changes in insulin concentrations with HF-related clinical param-
eters in patients with T2D and HF.

Methods: This was a post-hoc analysis of the investigator-initiated, multicenter, open-label, randomized, controlled 
CANDLE trial for patients with T2D and chronic HF (UMIN000017669). The endpoints were the effects of 24 weeks of 
canagliflozin treatment, relative to glimepiride treatment, on insulin concentrations and the relationship between 
changes in insulin concentrations and clinical parameters of interest, including New York Heart Association (NYHA) 
classification. The effects of canagliflozin on those parameters were also analyzed by baseline insulin level.

Results: Among the participants in the CANDLE trial, a total of 129 patients (canagliflozin, n = 64; glimepiride, n = 65) 
who were non-insulin users with available serum insulin data both at baseline and week 24 were included in this 
analysis. Overall, the mean age was 69.0 ± 9.4 years; 75% were male; the mean HbA1c was 6.8 ± 0.7%; and the mean 
left ventricular ejection fraction was 59.0 ± 14.1%, with parameters roughly balanced between treatment groups. 
Canagliflozin treatment significantly reduced insulin concentrations at week 24 (p < 0.001), and the between-group 
difference (canagliflozin minus glimepiride) in those changes was − 3.52 mU/L (95% confidence interval, − 4.85 to 
− 2.19; p < 0.001). Decreases in insulin concentrations, irrespective of baseline insulin level, were significantly associ-
ated with improvement in NYHA class in patients treated with canagliflozin.

Conclusion: Our findings suggest that canagliflozin treatment in patients with T2D and HF ameliorated excess insu-
lin overload, contributing to the improvement of clinical HF status.
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Introduction
Insulin resistance and hyperinsulinemia play a central 
role in the pathogenesis of obesity and metabolic syn-
drome, including type 2 diabetes (T2D), resulting in an 
increased risk of cardiovascular disease (CVD) [1–3]. 
Such insulin abnormalities can also adversely affect car-
diac function and serve as independent risk factors for 
incident heart failure (HF) [4, 5]. Conversely, excess 
inflammation in the visceral adipose tissue evoked in 
HF induces systemic insulin resistance, and the result-
ing hyperinsulinemia exacerbates HF by continuous acti-
vation of insulin signaling in cardiac tissue [6, 7]. Thus, 
insulin abnormalities and HF form a vicious cycle, and 
accordingly represent strong candidate targets of HF 
therapy.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors 
have a unique mode of action to lower plasma glucose 
levels in an insulin-independent manner via an increase 
in urinary glucose excretion, which in turn can mitigate 
glucotoxicity and hyperinsulinemia [8]. Several experi-
mental studies have also shown that SGLT2 inhibition 
attenuates systemic insulin resistance through com-
plex actions in adipose tissues, liver, and skeletal mus-
cles [9–12]. Clinical studies have demonstrated that 
SGLT2 inhibitor treatment induces favorable metabolic 
responses and improves insulin sensitivity in several tis-
sues in patients with T2D [13–16].

Recent meta-analyses of cardiovascular (and/or renal) 
outcome trials (CVOT) with SGLT2 inhibitors showed 
that these agents reduce the risk of worsening HF and 
cardiovascular death in patients with T2D at high risk 
of cardiovascular events [17, 18]. More recent CVOTs 
also demonstrated that SGLT2 inhibitor therapy 
reduces the risk of HF-related clinical events specifi-
cally in patients with HF, irrespective of diabetes status 
[19, 20]. Given the close link between impaired insulin 
actions and HF, the correction of insulin resistance and 
hyperinsulinemia induced by SGLT2 inhibition likely 
contributed to the clinical benefits observed in those 
CVOTs [21]. However, the effects of SGLT2 inhibition 
on serum insulin concentrations and its relationship of 
SGLT2 inhibition with clinical impact remain poorly 
elucidated in those CVOTs, even in patients compli-
cated with HF. Therefore, herein, we sought to inves-
tigate the effect of the SGLT2 inhibitor canagliflozin 
on serum insulin concentrations and the associations 
of such changes with HF-related clinical parameters 

of interest, using data obtained from the randomized 
CANDLE trial for patients with T2D and HF [22].

Methods
Study design and subjects
This was a post-hoc analysis of the CANDLE trial 
(UMIN000017669), an investigator-initiated, multi-
center, prospective, randomized, open-label clinical 
trial in which the primary endpoint was the effect of 
24  weeks of canagliflozin therapy, relative to glime-
piride therapy, on N-terminal pro-brain natriuretic 
peptide (NT-proBNP) concentrations in patients 
with T2D and chronic HF (CHF) [22]. The CANDLE 
trial was approved by the institutional review boards 
of the individual sites and conducted in accordance 
with the Declaration of Helsinki. All participants pro-
vided written, informed consent prior to screening and 
randomization.

Details of the study design and inclusion and exclu-
sion criteria have been reported previously [23]. Briefly, 
the key eligibility criteria were (i) adults, (ii) T2D, and 
(iii) CHF with New York Heart Association (NYHA) 
class I to III, with no change in NYHA class and 
background therapies for HF within 4  weeks prior to 
screening. Key exclusion criteria included type 1 diabe-
tes, severe hepatic and/or renal dysfunction (estimated 
glomerular filtration rate [eGFR] < 45  mL/min/1.73m2 
or on dialysis), NYHA class IV, history of diabetic 
ketoacidosis, diabetic coma, or hypoglycemic attack 
within 6 months prior to study enrollment, and history 
of CVD within 3 months prior to eligibility assessment.

Eligible participants were randomly allocated to 
receive either canagliflozin (100  mg daily) or glime-
piride (starting dose 0.5 mg daily) add-on therapy at a 
ratio of 1:1 using a web-based minimization method 
balanced for age (< 65, ≥ 65  years), hemoglobin A1c 
(HbA1c) level (< 6.5%, ≥ 6.5%), and left ventricular 
ejection fraction (LVEF; < 40%, ≥ 40%) at the time of 
screening. All participants received the study therapy 
for 24  weeks. In participants assigned to the glime-
piride group, adjustment of the glimepiride dose was 
allowed according to individual glycemic management 
and the local investigator’s judgment. Background 
medications for T2D, CHF, and other comorbidities 
were, in principle, unchanged during the study interval 
within clinically permissible ranges.

Trial registration: University Medical Information Network Clinical Trial Registry, number 000017669, Registered on May 
25, 2015.
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Measurements and endpoints
The details of the original outcome measures in the 
CANDLE trial have been described previously [23]. 
Briefly, vital sign recording and blood sample collec-
tion were mandatory at baseline and at week 24. Routine 
laboratory data, including glycemic parameters were, 
in principle, collected in the early morning when fast-
ing and measured at each local site. Based on a previ-
ous report showing that fasting levels of plasma insulin 
were 11.2 ± 6.0 mU/L in Japanese patients with T2D [24], 
serum insulin values > 20  mU/L were considered inap-
propriate for fasting conditions and thereby excluded 
from the present analysis. The homeostasis model assess-
ment of insulin resistance (HOMA-IR) was calculated 
as serum insulin (mU/L) × plasma glucose (mg/dL)/405. 
NT-proBNP concentrations were measured at baseline 
and week 24 in a blinded manner at central commercial 
laboratories (SRL Inc., Tokyo, Japan). The percentage 
change in estimated plasma volume (ePV) from base-
line to week 24 was calculate with the Strauss formula 
[25–27].

In the present analysis, we compared the effects of 
24  weeks of canagliflozin therapy, relative to glimepir-
ide, on serum insulin levels and other glycemic param-
eters. In addition, we assessed the relationship between 
changes in the insulin levels and other clinical param-
eters of interest, including NT-proBNP, obtained in the 
CANDLE trial. Furthermore, we compared the effects 
of two study therapies on those parameters by baseline 
serum insulin level. Among the prespecified full analysis 
set (FAS) of the CANDLE trial dataset, participants who 
were non-insulin users and had available serum insu-
lin data (≤ 20 mU/L) both at baseline and week 24 were 
included in the present analysis.

Statistical analysis
Baseline demographics and clinical characteristics are 
expressed as number (%) for categorical variables and 
as mean ± standard deviation or median [interquartile 
range] for continuous variables where appropriate. Com-
parisons between the treatment groups were made using 
linear regression models for changes in serum insulin 
levels and glycemic parameters from baseline to week 24. 
Associations between changes from baseline to week 24 
in serum insulin concentrations and clinical parameters 
of interest were assessed by calculating Pearson’s corre-
lation coefficients. To investigate the influence of base-
line serum insulin levels on treatment effects for those 
parameters at week 24, data were analyzed using linear 
regression models for NT-proBNP and linear mixed 
models for other parameters in subgroups according to 
baseline serum insulin level. The ratio (canagliflozin vs. 

glimepiride) of the proportional change from baseline to 
week 24 in NT-proBNP was estimated based on a natu-
ral logarithmic scale [28]. A p-value for the interaction 
between the study treatments and baseline serum insu-
lin category on the NYHA class was calculated using an 
ordinal logistic regression model analysis.

All statistical analyses were performed using R soft-
ware, version 3.6.3 (R Foundation for Statistical Comput-
ing, Vienna, Austria) at a two-sided significance level of 
0.05. No adjustments for multiplicity were considered in 
the present analyses.

Results
Participants
The flow chart of study participants is shown in Fig.  1. 
Among the FAS population (canagliflozin, n = 113; 
glimepiride, n = 120), two subjects were using insulin at 
baseline and were excluded from the analysis. In addi-
tion, 67 subjects were excluded due to lack of serum 
insulin data at baseline or week 24, and 35 subjects were 
excluded for serum insulin level > 20  mU/L. Finally, a 
total of 129 subjects (canagliflozin, n = 64; glimepiride, 
n = 65) were included in the present analysis. Baseline 
demographic and clinical characteristics of the analy-
sis population are shown in Table 1. Regarding the HF-
related parameters, the level of NT-proBNP was modest 
(median 228.0 [interquartile range 72.0− 421.0] pg/mL). 
Most patients had preserved LVEF and low/mild NYHA 
classes. Ischemia was the cause of HF in about half of the 
subjects. Regarding the T2D-related parameters, mean 
HbA1c was 6.8 ± 0.7%, and about half of the subjects had 
been receiving DPP-4 inhibitors, while about 40% of the 
subjects had not been taking any glucose-lowering agents 
at baseline.

Comparison of glycemic and insulin indices 
between groups
The mean changes from baseline to week 24 in HbA1c 
were 0.12% (95% confidence interval [CI], − 0.06 to 0.30) 
in the canagliflozin group and − 0.30% (95% CI, − 0.48 
to –0.11) in the glimepiride group (between-group dif-
ference [canagliflozin minus glimepiride] 0.42% [95% CI, 
0.16 to 0.68]; p = 0.002). The mean changes in glucose 
levels were –6.84 mg/dL (95% CI, − 14.03 to 0.34) in the 
canagliflozin group and − 13.08 mg/dL (95% CI, − 20.20 
to − 5.95) in the glimepiride group (between-group dif-
ference 6.23 mg/dL [95% CI, − 3.89 to 16.35]; p = 0.227). 
These results were similar to those observed in the over-
all CANDLE trial population [22].

The mean insulin levels at baseline were 8.4 ± 3.9 mU/L 
in the canagliflozin group and 8.4 ± 4.7  mU/L in the 
glimepiride group. Serum insulin concentrations at week 
24 were significantly reduced in the canagliflozin group 
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Full analysis set (n=233)

Assigned to canagliflozin (n=113) Assigned to glimepiride (n=120)

Analyzed (n=64) Analyzed (n=65)

Lack of insulin data at baseline or week 24 (n=67)

Serum insulin level >20 mU/L (n=35)

Insulin users (n=2)

Fig. 1 Flow chart of study participants

Table 1 Baseline demographic and clinical characteristics of participants

*Data are mean ± standard deviation or median (interquartile range) unless otherwise noted

BMI body mass index, DPP-4 dipeptidyl peptidase-4, eGFR estimated glomerular filtration rate, LVEF left ventricular ejection fraction, NT-proBNP N-terminal pro-brain 
natriuretic peptide, NYHA New York Heart Association, T2D type 2 diabetes

Variable* Overall (n = 129) Canagliflozin (n = 64) Glimepiride (n = 65)

Age, years 69.0 ± 9.4 68.7 ± 9.6 69.4 ± 9.3

Female, n (%) 32 (24.8) 16 (25.0) 16 (24.6)

BMI, kg/m2 24.9 ± 3.4 24.9 ± 3.3 24.9 ± 3.5

eGFR, mL/min/1.73m2 64.7 ± 14.3 64.6 ± 14.1 64.7 ± 14.7

NT-proBNP, pg/mL 228.0 (72.0− 421.0) 224.0 (72.0− 375.0) 239.0 (80.0− 455.0)

LVEF, % 59.0 ± 14.1 60.7 ± 12.4 57.3 ± 15.5

 < 50%, n (%) 26 (20.2) 11 (17.2) 15 (23.1)

NYHA class, n (%)

I 100 (77.5) 50 (78.1) 50 (76.9)

II 27 (20.9) 14 (21.9) 13 (20.0)

III 1 (0.8) 0 (0.0) 1 (1.5)

Unknown 1 0 1

Heart failure cause, n (%)

 Ischemia 66 (51.2) 37 (57.8) 29 (44.6)

 Non-ischemia 63 (48.8) 27 (42.2) 36 (55.4)

 Glucose, mg/dL 137.7 ± 31.5 135.3 ± 27.8 140.0 ± 34.8

 HbA1c, % 6.8 ± 0.7 6.8 ± 0.7 6.9 ± 0.8

Medication for T2D, n (%)

 Metformin 23 (17.8) 8 (12.5) 15 (23.1)

 DPP-4 inhibitor 62 (48.1) 33 (51.6) 29 (44.6)

 Other 26 (20.2) 12 (18.8) 14 (21.5)

 Insulin 0 (0.0) 0 (0.0) 0 (0.0)

 Medication-naïve 53 (41.1) 26 (40.6) 27 (41.5)
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and increased in the glimepiride group, with a between-
group difference of −  3.52  mU/L (95% CI, −  4.85 to 
−  2.19; p < 0.001, Fig.  2A). Canagliflozin treatment also 
reduced HOMA-IR, while glimepiride treatment did not, 
with a between-group difference − 0.95 (95% CI, − 1.54 
to − 0.36; p = 0.002, Fig. 2B).

Association between changes in serum insulin 
concentrations and clinical parameters of interest
Pearson’s correlations between changes in serum insulin 
concentrations and clinical parameters of interest from 
baseline to week 24 are shown in Table  2. In the cana-
gliflozin group, changes in serum insulin concentrations 
were significantly correlated with those in systolic blood 

pressure (SBP), but not in other parameters, such as 
body mass index, lipid profiles, and NT-proBNP. Changes 
in serum insulin concentrations were also significantly 
associated with categorical changes in the NYHA class 
in the canagliflozin group, but not in the glimepiride 
group (Fig. 3A). This was also observed in the analyses to 
assess the association between changes in HOMA-IR and 
NYHA class (Fig. 3B).

Effects of baseline serum insulin concentration on clinical 
measures of interest
Between-group differences in changes from base-
line to week 24 on clinical measures of interest 
in subgroups stratified by baseline serum insulin 

Fig. 2 Changes from baseline to week 24 in serum insulin concentrations and HOMA-IR. A Serum insulin concentrations. B HOMA-IR. The data 
are expressed as the absolute change (mean and 95% confidence interval) from baseline to week 24. HOMA-IR homeostasis model assessment of 
insulin resistance
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concentration (median 7.5 mU/L) are shown in Table 3. 
The treatment effects on those parameters did not dif-
fer between subgroups with baseline serum insulin 
concentration < 7.5  mU/L and ≥ 7.5  mU/L (all p for 
interaction > 0.09). The treatment effects on categorical 
changes in the NYHA class at week 24 were also simi-
lar according to the median serum insulin concentration 
at baseline (p for interaction = 0.095, Fig.  4, left). These 
findings were also similar when applying the HOMA-IR 
(Additional file 1 and Fig. 4, right).

Discussion
Major findings in the present analysis of data from 
the randomized CANDLE trial in patients with T2D 
and CHF were as follows: (1) 24  weeks of treatment 
with canagliflozin, relative to glimepiride, significantly 
reduced serum insulin concentrations and HOMA-IR, 
(2) the decrease in insulin concentrations was signifi-
cantly correlated with reductions in SBP (3) the decreases 
in insulin concentrations, and even HOMA-IR, were also 
significantly associated with improvement in the NYHA 
class in patients treated with canagliflozin, and (4) those 
effects of canagliflozin treatment on clinical measures 
did not differ according to baseline levels of insulin and 
HOMA-IR. These findings suggest that canagliflozin-
induced attenuation of excess insulin overload explains, 
in part, the clinical benefits on HF-related outcomes 
observed in recent CVOTs with SGLT2 inhibitors.

Systemic insulin resistance also causes chronic activa-
tion of local insulin signaling and energy disturbances 
in cardiac tissues, resulting in the development and 

deterioration of HF [4–7]. Thus, insulin abnormali-
ties and insulin resistance are key drivers of the devel-
opment of HF in T2D, and thereby represent possible 
therapeutic targets [29–31]. However, there is little clini-
cal evidence on whether therapeutic interventions for 
insulin resistance can improve HF-related status and 
outcomes [32]. Currently, two conventional glucose-low-
ering agents, metformin and thiazolidinedione, are well 
known to improve insulin resistance and cause cardio-
vascular benefits [33, 34]. Metformin treatment is associ-
ated with clinical benefits in patients with T2D and HF 
[35], although thiazolidinedione is not recommended in 
patients with or at risk of HF due to enhanced sodium 
reabsorption at the renal proximal tubule and a result-
ant increased risk of incident HF [36, 37]. However, the 
potential risk of HF in patients with T2D is still higher 
than that in a non-T2D population, which imposes an 
excess risk of morbidity and mortality [38, 39].

SGLT2 inhibitors are glucose-lowering agents that 
increase urinary glucose excretion [8]. This unique mode 
of action of SGLT2 inhibitors mitigates glucose toxicity 
independently of insulin secretion, thereby protecting 
pancreatic beta-cell function and relieving excess insu-
lin overload. To date, several experimental and clinical 
studies have demonstrated an improvement in insulin 
resistance with SGLT2 inhibition [9–16]. Recent CVOTs 
with SGLT2 inhibitors demonstrated a consistent reduc-
tion in the risk of HF-related events in patients with T2D 
at high risk of CVD or HF irrespective of diabetes sta-
tus [17–20]. These findings indicate that the therapeutic 
effects of SGLT2 inhibitors on HF-related outcomes are, 
at least in part, beyond glycemic control. Intriguingly, it 
is speculated that a modest increase of ketone body lev-
els via SGLT2 inhibition plays beneficial roles in cardiac 
energetic alterations and amelioration of insulin resist-
ance [21]. Thus, an improvement in insulin resistance 
accompanied by SGLT2 inhibitor treatment is likely to, 
at least in part, mediate the reduction in the risk of HF-
related events.

In a recent substudy from the Empire HF trial for 
patients with left ventricular systolic dysfunction 
(LVEF ≤ 40%) with or without T2D [40], Jensen et al. for 
the first time revealed that 12  weeks of empagliflozin 
treatment, relative to placebo, improved both hepatic and 
peripheral insulin resistance, accompanied by significant 
reductions in body weight and lean mass. Results of the 
Empire HF trial previously demonstrated that empagli-
flozin also reduced estimated extracellular volume, ePV, 
and pulmonary capillary wedge pressure [26, 41], sug-
gesting key mechanisms of SGLT2 inhibition underly-
ing early and sustained clinical benefits for HF-related 
events. In the present study from the CANDLE trial, 
we also found that canagliflozin treatment alleviated 

Table 2 Pearson’s correlations between changes in serum 
insulin concentrations and clinical parameters of interest from 
baseline to week 24

*  Log-transformed

ePV, estimated plasma volume; HDL-C, high-density lipoprotein cholesterol; 
LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure. Others, 
see Table 1

Parameter Canagliflozin (n = 64) Glimepiride (n = 65)

Coefficient p-value Coefficient p-value

SBP 0.335 0.007 − 0.001 0.995

BMI 0.102 0.425 0.053 0.678

ePV 0.053 0.679 − 0.141 0.261

eGFR 0.128 0.314 0.024 0.850

HbA1c − 0.199 0.116 − 0.044 0.727

Uric acid 0.098 0.442 0.136 0.280

Triglycerides 0.036 0.778 0.138 0.273

HDL-C − 0.245 0.051 − 0.079 0.532

LDL-C − 0.135 0.287 − 0.170 0.177

NT-proBNP* − 0.032 0.807 − 0.060 0.636
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hyperinsulinemia and insulin resistance in patients with 
T2D and HF almost exhibiting HF with preserved ejec-
tion fraction (HFpEF). Importantly, we also previously 
reported that canagliflozin treatment reduced ePV in 
the overall CANDLE trial population, and even in the 
HFpEF subpopulation [22]. These findings suggest that 
SGLT2 inhibitor treatment provides favorable hemody-
namic and metabolic alterations in patients with HF, irre-
spective of LVEF category. This may support the robust 
clinical benefits seen in CVOTs for both HF phenotypes, 
systolic dysfunction and HFpEF, although profound 

pathophysiological mechanisms and molecular actions of 
SGLT2 inhibitors are likely to differ between phenotypes 
[31]. Given the multifaceted mechanisms potentially 
underlying such clinical benefits of SGLT2 inhibition [42, 
43], however, whether improvement of hyperinsuline-
mia and insulin resistance via SGLT2 inhibition directly 
affects clinical manifestations and prognosis in patients 
with HF remains poorly understood.

Hyperinsulinemia up-regulates the expression of car-
diac and renal sodium-hydrogen exchanger (NHE) iso-
forms, leading to cardiac dysfunction and renal sodium 

Fig. 3 Associations between changes in insulin indices and NYHA class. The data are expressed as the median (interquartile range) change from 
baseline to week 24 in serum insulin concentrations A and HOMA-IR B in subgroups stratified by the categorical changes in NYHA class at week 24. 
HOMA-IR homeostasis model assessment of insulin resistance, NYHA New York Heart Association
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retention and excess body fluid burden [31, 44]. Recent 
experimental studies revealed that SGLT2 inhibition 
blocked NHE activation [45–47], and that is considered 
a promising mechanism underlying the clinical ben-
efits of SGLT2 inhibitors for HF [31, 48]. Additionally, 
in our study, canagliflozin treatment alleviated hyper-
insulinemia and insulin resistance, and those changes 

were associated with SBP reduction and improvement 
in NYHA class. This suggests that SGLT2 inhibitor 
treatment improved the clinical manifestations of HF 
via correction of hyperinsulinemia and insulin resist-
ance located upstream of HF concomitant with T2D. 
To our knowledge, this is the first clinical report to 
show an SGLT2 inhibitor-mediated association between 

Table 3 Between-group differences in changes at week 24 for clinical measures of interest in subgroups stratified by baseline serum 
insulin concentration

*Log-transformed. Data are shown as mean (95% confidence interval)

Abbreviations, see Tables 1 and 2

Parameter Treatment effect measures Baseline serum insulin 
concentration < 7.5 mU/L

Baseline serum insulin 
concentration ≥ 7.5 mU/L

p-value for 
interaction

SBP, mmHg Difference (canagliflozin minus 
glimepiride) in change

3.082 (− 2.423 to 8.587) − 1.621 (− 7.026 to 3.784) 0.232

BMI, kg/m2 − 0.933 (− 1.474 to − 0.393) − 1.590 (− 2.130 to − 1.050) 0.092

ePV, % − 6.500 (− 12.933 to − 0.066) − 7.477 (− 13.847 to − 1.106) 0.832

eGFR, mL/min/1.73m2 0.679 (− 2.552 to 3.910) − 1.736 (− 4.938 to 1.465) 0.298

HbA1c, % 0.229 (− 0.055 to 0.513) 0.498 (0.214 to 0.782) 0.189

Uric acid, mg/dL − 1.057 (− 1.485 to − 0.655) − 0.859 (− 1.266 to − 0.452) 0.498

Triglycerides, mg/dL 0.372 (− 29.247 to 29.990) 4.462 (− 25.061 to 33.985) 0.848

HDL-C, mg/dL 4.559 (1.366 to 7.752) 1.812 (− 1.352 to 4.976) 0.231

LDL-C, mg/dL 0.924 (− 7.180 to 9.029) 5.555 (− 2.498 to 13.608) 0.427

NT-proBNP* Ratio (canagliflozin vs. glimepir-
ide) of proportional change

0.946 (0.752 to 1.190) 0.977 (0.782 to 1.222) 0.840

Fig. 4 Changes from baseline in NYHA class at week 24 in subgroups stratified by baseline median serum insulin concentrations (left) and HOMA-IR 
(right). The numbers next to the bars indicate the frequency of cases in which NYHA improved or worsened at week 24. Between-subgroup 
differences in the treatment effect on NYHA class are analyzed as  Pfor interaction. HOMA-IR, homeostasis model assessment of insulin resistance; NYHA, 
New York Heart Association
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improvement in insulin resistance and relief of HF symp-
toms. However, our finding in this post-hoc analysis of 
the CANDLE trial may be still a hypothesis-generating. 
Further studies are needed to investigate whether the 
improvement in insulin homeostasis with SGLT2 inhibi-
tor treatment has a direct impact on improving cardiac 
function and prognosis in patients with HF.

This present study has several potential limitations. First, 
this was a post-hoc analysis of the CANDLE trial that was 
not designed or powered to evaluate the effects of canagli-
flozin treatment on insulin-related parameters. Especially, 
the number of non-insulin users in the present analysis 
was small, although most participants (97%) to the entire 
CANDLE trial were non-insulin users. Second, although 
the study protocol specified fasting blood sampling, some 
insulin data were unlikely indicative of fasting sampling. 
To minimize the possibility of non-fasting blood sam-
pling, the present analysis excluded subjects with insulin 
levels ≥ 20 mU/L, based on a previous report that fasting 
levels of plasma insulin were 11.2 ± 6.0 mU/L in Japanese 
patients with T2D [24]. Third, in general it would be quite 
reasonable that the HOMA-IR resultantly reduces after 
SGLT2 inhibitor treatment that decreases both serum 
insulin and glucose levels. It is currently uncertain whether 
HOMA-IR is a suitable method to assess insulin resistance 
in individuals receiving treatment with an SGLT2 inhibi-
tor [49]. However, in the CANDLE trial, no data on other 
insulin resistance indices were assessed with gold-standard 
methods, such as the hyperinsulinemic-euglycemic clamp 
test, the Matsuda-DeFronzo index [50], and adipose insu-
lin resistance index [51]. Further research would be there-
fore needed to assess the effects of SGLT2 inhibitor on 
those indices and their association with clinical HF status. 
Fourth, we have no detailed clinical information on events 
that would affect insulin levels, such as changes in glucose-
lowering agents or addition of insulin treatment, during 
the follow-up period. Fifth, we were not able to evaluate 
an association of reductions in insulin levels and improve-
ments in insulin resistance with the risk of HF-related 
events in the CANDLE trial. Finally, the CANDLE trial 
included Japanese patients with clinically stable T2D and 
HF, mostly of the HFpEF phenotype; therefore, generaliz-
ability of our findings to other clinical situations and popu-
lations is uncertain.

Conclusion
Our findings suggest that in patients with T2D and HF, 
canagliflozin treatment ameliorated excess insulin over-
load and insulin resistance, contributing to the improve-
ment in clinical HF status. This may explain, in part, 
the clinical benefits of SGLT2 inhibitors on HF-related 
outcomes.
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