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Microglia are the resident immune cells of the central nervous system

(CNS) and play a key role in neurological diseases, including intracerebral

hemorrhage (ICH). Microglia are activated to acquire either pro-inflammatory

or anti-inflammatory phenotypes. After the onset of ICH, pro-inflammatory

mediators produced by microglia at the early stages serve as a crucial

character in neuroinflammation. Conversely, switching the microglial shift to

an anti-inflammatory phenotype could alleviate inflammatory response and

incite recovery. This review will elucidate the dynamic profiles of microglia

phenotypes and their available shift following ICH. This study can facilitate

an understanding of the self-regulatory functions of the immune system

involving the shift of microglia phenotypes in ICH. Moreover, suggestions for

future preclinical and clinical research and potential intervention strategies

are discussed.
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Introduction

Intracerebral hemorrhage (ICH) is a destructive disease
because of its increased mortality and morbidity rates,
accounting for nearly 10%–20% of stroke cases worldwide
(Dasari et al., 2021; Liu et al., 2022; Yang et al., 2022). After
ICH, vessel rupture of brain parenchyma contributes to the
aggregation of red blood cells (RBCs) and the formation of
hematoma to oppress brain tissue structure forming primary
brain injury (PBI). Erythrocyte hemolysis in hematoma results
in secondary brain injury (SBI) and non-reversing neurological
deficits duet o the toxic hemolytic products (Ziai, 2013).
Surgical treatment is not conducive to a hematoma in the
majority of hemorrhage strokes due to doubtful clinical
effectiveness and side effects of surgery (Hemphill et al.,
2015). Evidence suggests that inflammatory responses firmly
participate in and contribute to the SBI pathophysiological
processes following ICH (Chen S. et al., 2015). During
this pathological process, the CNS resident microglia and
monocytes derived macrophages infiltrate from the circulation
at the hemorrhagic site. These microglia/macrophages act as
primary modulator for the hematoma resolution and alleviation
of neuroinflammation in SBI (Bai et al., 2020; Liu et al.,
2022).

Microglia, as the primary immune cells, account for 5% to
10% of brain cells in the central nervous system (CNS) and
are referred to as the brain’s macrophage (Eldahshan et al.,
2019; Bian et al., 2020). Following physiological conditions,
microglia interact with other cells, including neurons, astrocytes,
and oligodendrocytes, displaying their function in the brain
following ICH (Prinz et al., 2019). It is essential in sustaining
brain homeostasis. When different neuropathologic changes
disrupt normal function in the brain, activated microglia exert
their regulatory effects (Wan et al., 2016). The highly diverse
property of microglia and their phenotypes depend on the kinds
of stressors or neuropathology (Wolf et al., 2017). Specifically,
microglia polarization produces pro-inflammatory (IL-1β, IL-6,
TNF-α, CXCL8, CCL2, and CCL5) or anti-inflammatory (IL-4,
IL-10, IL-13, IL-1Ra, and TGFβ) mediators during the different
pathological phases, participating in ICH progression (Friedman
et al., 2018; Bai et al., 2020).

Pathological analyses following ICH have uncovered that
microglia mediated neuroinflammation can be recognized
as a major contributor to inflammatory injury following
ICH (Yang et al., 2014a; Zhang Z. et al., 2017). The severe
microglial neuroinflammation caused by the hematoma
and hemolysis after ICH contributes to brain injury
(Vinukonda et al., 2019; Wang et al., 2019a). Chang et al.
(2017) have proven that microglia quickly responded to
hemorrhagic damage after 1–1.5 h of ICH onset and showed
a microglial protective phenotype. In this study, IL-10
mediated microglia phagocytosis and hematoma resolution
(Chang et al., 2017).

Different microglial phenotypes play a primary and complex
function in the SBI-induced inflammatory damage and brain
rehabilitation following ICH. Therefore, the neuroprotective
effect of microglia can be regarded as a hopeful target in
the inflammatory response following ICH therapy. Jing et al.
(2019) have reported that after blocking the erythrocyte
CD47, activated microglia can be enhanced to phagocytose the
hematoma and reduce neurological deficits, brain edema, and
neuronal reduction (Chang et al., 2018). Microglial depletion
contributes to intense brain tissue damage, including brain
swelling, neuronal loss, and neurological defects following
ICH (Jin et al., 2017; Sekerdag et al., 2018; Yang X. et al.,
2018). The reactive microglia show a biphasic influence on
responding to inflammation processes following ICH, which
acts as a double-edged sword displaying offensive and defensive
effects in brain injury. This study focuses on current empirical
investigations on reactive microglia in the ICH-induced SBI
pathological process to elucidate how the pivotal elements affect
this process, providing an optimistic viewpoint for improving
novel medicinal strategies.

Microglial function following ICH

ICH-induced hematoma is a significant factor resulting
in brain damage following ICH. The compression and
dissection of mechanical impairment obstruct adjacent brain
parenchyma structures. Simultaneously, within hours to
days, extravasated erythrocytes release blood products with
neurotoxicity, including cytotoxic hemoglobin, heme, and iron
in the hematoma, which initiate SBI inducing sustained cerebral
edema and brain tissue damage following ICH (Zhao et al., 2009;
Wang G. et al., 2018). This process can be regulated through
the activation of peroxisome proliferator-activated receptor γ

(PPAR-γ) and modulation of the CCR4/ERK/Nrf2 signaling
pathway to promote phagocytosis and shift microglia for
conferring immune balance (Deng et al., 2020; Tschoe et al.,
2020; Zhuang et al., 2021).

The collapse of the blood-brain barrier (BBB) and its
resulting brain swelling is a notable life-threatening event in the
pathophysiology of hemorrhagic stroke (Su et al., 2017; Fang
et al., 2020). Ample evidence has shown that it is essential that
microglial activation displays a significant role in SBI after ICH
(Carson et al., 2006). It has been reported that M1 polarization
of microglia provokes the production of pro-inflammatory
factors, such as TNF-α, and IL-6, which aggravate the
inflammatory response (Wang, 2010; Zhou et al., 2014). Chen
A. Q. et al. (2019) have shown that M1-type microglia-
induced TNF-α mediates endothelial necroptosis leading to
BBB disruption. After being given the anti-TNF-α treatment,
pathologic changes, including endothelial necroptosis and BBB
destruction, and stroke outcomes were significantly alleviated
following ischemic stroke (Chen A. Q. et al., 2019). Besides, some
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medicines displaying neuroprotective function attenuated the
LPS-induced NO release, TNF-α secretion, and NFκB expression
of microglia to mediate BBB protection and neural repairation
by promoting the production of anti-inflammatory cytokines
(Zlokovic, 2008; Liu et al., 2017; Chen J. et al., 2019). Similarly,
IL-4 and IL-10 induced an alternative microglia phenotype
with anti-inflammatory function, which can be recognized as
therapeutic targets to modulate the BBB physiology in ICH
(Ronaldson and Davis, 2020).

Microglia phenotypes and their
polarization after ICH

Previously, microglia polarization associated with M1 and
M2 phenotypes was widely used in previous research work.
Due to the development of omics technology in experiments,
recently, a novel class of microglia polarization bridges
the standard M1/M2 contradiction, resulting in an intense
controversy to further study microglia polarization (Ransohoff,
2016).

First, Chiu et al. (2013) utilized flow cytometry and
deep RNA sequencing to indicate that microglia isolated
from the SOD1 (G93A) mutant mouse model of amyotrophic
lateral sclerosis (ALS) differed from SOD1 (WT), LPS-induced
microglia, and M1/M2 macrophages. This study freshly
provided a new definition for ALS-specific microglia’ functional
phenotypes in isolated spinal cord microglia of ALS mice
model (Chiu et al., 2013). Besides, single-cell RNA-sequence
(scRNA-seq) analyses have suggested assembled expression of
M1 and M2 markers and complex microglia-state changes
in the total mouse lifespan and the damaged brain (Ajami
et al., 2018; Hammond et al., 2019; Masuda et al., 2019).
Furthermore, accurate classification of different microglia
subpopulations is founded upon species-related differences
and different pathological environments. Different subtypes of
microglia are associated with a core pattern of activation, in
which the pro-inflammatory-activation state shifts toward an
anti-inflammatory situation in maintaining tissue homeostasis
or resulting in CNS pathology (Voet et al., 2019; Lassmann,
2020). However, due to the complicated existence of microglial
phenotypes found by novel technologies in diseases, the
established meaningful program of microglial polarization of
M1 and M2 phenotypes hindered research progress and should
need to be debated (Ransohoff, 2016). Overall, an elusive
definition of microglial polarization exists, and it is oversimple
to describe M1 or M2 phenotypes for the complex biology of
microglia.

Recently, a study performed by Keren-Shaul et al. (2017)
specified a subtype of microglia named disease-associated
microglia (DAM), which develops in two steps in Alzheimer’s
disease (AD)-transgenic (Tg-AD) and triggering receptor
expressed on myeloid cells 2 (TREM2)–/– Tg-AD mouse

brains by transcriptional single-cell analysis (Da Mesquita and
Kipnis, 2017; Ozaki et al., 2022). Microglial activation to
DAM is instigated in an independent program away from
TREM2, followed by activation in a TREM2-dependent manner.
Such a special microglial type has the prospect of confining
neurodegeneration, which may have meaningful implications
for future therapy of AD and other neurodegenerative illnesses
(Keren-Shaul et al., 2017; Deczkowska et al., 2018). Subsequently,
genome-wide transcriptomic analyses (GWTAs) indicated
DAM’s existence under various pathological disorders, including
aging and ALS pathology (Keren-Shaul et al., 2017). Although
the microglia DAM and M1 phenotype gene profiles are partially
overlaid, the apparent differences in their molecular signatures
exist (Garcia-Revilla et al., 2019). Interestingly, a transcriptomic
framework of microglial activation uncovered that DAM
demonstrates double anti-inflammatory and pro-inflammatory
sub-profiles in (AD and aging models; Rangaraju et al., 2018;
Gao et al., 2019). The progressive transition from homeostatic
microglia to reactive DAM relies on TREM2, which is mainly
located on the microglia surface in brain tissue (Arcuri et al.,
2017; Mecca et al., 2018; Xu et al., 2022). The activated
TREM2 alleviated microglia neuroinflammation, neurological
deficits, and neuronal loss by activating the PI3K/Akt signaling
pathway in perihematomal areas following ICH (Chen et al.,
2020).

Moreover, in 2019, Gao et al. (2019) reported that the
regulators, including CEBPα, IRF1, and LXRβ, modulate
pro- and anti-inflammatory DAM genes via Erk signaling.
However, some researchers reported that DAM represents a
switch depending on TREM2, a risk gene, and such a switch
substantially alters microglial function (Brown and St George-
Hyslop, 2017). Therefore, it is pretty clear that microglia is
exquisitely sensitive to brain tissue pathological changes.

Multiple investigations have explored microglial
spatiotemporal fixed subclasses during evolution and illness,
determining the precise molecular hallmarks and various
cellular kinetics utilizing single-cell analyses (Prinz et al.,
2017; Masuda et al., 2019). Olah et al. (2020) have suggested
the existence of four microglial subclasses and clarified the
importance of these subclasses according to the scRNA-seq
from the human cerebral cortex samples associated with
AD. Lately, a study by Ochocka and his colleagues has
demonstrated microglia cellular and functional heterogeneity
utilizing scRNA-seq and flow cytometry. Their investigation
obtained numerous microglial groups and gene expression
profiles underlying a distinct group image with different roles.
Reactive microglia displayed the distinct spatial distribution
in naïve and GL261 glioma-bearing mice through performing
the scRNA-seq of CD11b+ myeloid cells (Ochocka et al.,
2021). Furthermore, the technologies of transcriptomes and
epigenetic landscapes have been utilized by Gosselin et al.
(2017) to examine separated human microglia derived from
surgically resected brain tissue, uncovering an environment-
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dependent transcriptional network that can sufficiently specify
microglia-specific schedules of gene expression. These results
can identify significant microglia-subclasses associated with
neurodegenerative diseases and behavioral disorders and can
be used to understand microglia’s roles in human brain diseases
(Gosselin et al., 2017).

Diverse pathologic occurrences or changes in the brain
activate microglia, whose intricate functions facilitate the
presence of individual pro- and anti-inflammatory effects in
ICH. The meaning of defining microglial subclasses through
single-cell analysis is to confirm precise microglia function and
identify microglia-subclasses molecules mediating astrocyte-
microglial communication. In addition, the importance of
clustering negotiate its potentially coordinated functions with
astrocytes and discover new ways to address the complexity of
biology in inflammatory conditions and different pathologies
(Vainchtein and Molofsky, 2020). During the ICH progress,
microglial activation and polarization modulators have clinical
and translational implications, including critical signaling
pathways, transcription factors (TFs), and particularly microglia
M1- and M2-subclasses markers, providing evidence for
coordinating microglial function to alleviate ICH-induced brain
damage (Lan et al., 2017). The pro-inflammatory microglia-
induced damage-enhancing mediators, such as inflammatory
cytokines, chemokines, matrix metalloproteinases, and reactive
oxygen species, overwhelmed the anti-inflammatory microglia
with potential reparative roles after the onset of ICH (Bai
et al., 2020). Therefore, confirming the modulators and these
influencing factors makes it attractive to induce the microglia
polarization to a neuroprotective subclass, which provides novel
insight into alleviating the microglia pathologic changes after
ICH. According to the above analyses of microglia polarization
in ICH and studies about surface markers of microglial subtypes
(Klebe et al., 2015; Keren-Shaul et al., 2017; Rangaraju et al.,
2018; Bai et al., 2020), it is critical to shift the microglia
pro-inflammatory to the anti-inflammatory subclass to improve
the outcomes following SBI (Figure 1).

Potential therapeutic targets and
strategies of microglia-induced
neuroinflammation after ICH

Many studies have emphasized the autogenous regulation
of microglia during ICH progress. Wu et al. (2017) have shown
that the expression of soluble epoxide hydrolase increased in
microglia following ICH, resulting in neuroinflammatory
responses, and inhibiting its expression can suppress
microglia-mediated neuroinflammation. The deficiency of
TWIK-related K+ channel 1 (TREK-1) can induce increased
recruitment of microglia and neutrophils and the production
of pro-inflammatory factors following ICH-induced SBI; the

TREK-1 can be harnessed into a promising therapeutical target
in BBB dysfunction and microglia neuroinflammation for the
treatment of ICH (Fang et al., 2019). Besides, the integrin Mac-1
expressed by microglia acting together with the endocytic
receptor LRP1 in the neurovascular unit promoted thrombolytic
tissue plasminogen activator (tPA)-induced platelet-derived
growth factor-cc (PDGF-cc) activation, which increased the
permeability of BBB following ischemic stroke (Su et al., 2017).

On the contrary, microglia are implicated in
anti-inflammatory and phagocytic effects to improve neurologic
deficits following ICH. The relationship between regulatory T
lymphocytes (Tregs) and microglia neuroinflammatory reaction
has been verified. A study by Zhou et al. (2017) demonstrated
that Tregs alleviated ICH-mediated neuroinflammation
because of the shift of the M2 anti-inflammatory from the
M1 pro-inflammatory subclass via the regulation of the IL-
10/GSK3β/PTEN axis after ICH (Wang et al., 2015; Taylor et al.,
2017).

Regulatory mechanisms in
microglia-induced neuroinflammation in
ICH

After ICH, the functions of anti-inflammatory microglia
are performed through diverse signal axes that constitute
a complicated network implicated in numerous biological
procedures. Investigating the related biological signaling
pathways and their molecular foundation is beneficial to
illustrating attractive methods to moderate targets, thus
improving the neuropathological deficits in ICH-induced brain
damage.

Some studies have verified that adenosine monophosphate-
activated protein kinase (AMPK) regulated the balance for
the switch between a pro- and an anti-inflammatory subclass,
which serves as a primary sensor of brain injuries and diseases,
and is considered a candidate molecule (Ohnishi et al., 2007;
Saito et al., 2019). Adiponectin receptor 1 (AdipoR1) is always
expressed by microglia, and the expression level of endogenous
C1q/TNF-related protein 9 (CTRP9), activating AdipoR1 to
regulate the AMPK signaling pathway, plays an increasing
trend during the first 24 h after ICH (Zhao et al., 2018).
Administration of CTRP9 treatment improved AdipoR1 and
p-AMPK protein expression levels and decreased the protein
expression levels of inflammatory cytokines and phosphorylated
NFκB (P-NFκB), attenuating neuroinflammation via
AdipoR1/AMPK/NFκB signaling pathway (Zhao et al.,
2018). Activated AdipoR1 by CTRP9 treatment attenuated
neuropathological deficits and improved BBB dysfunction by
activating the APPL1/AMPK/Nrf2 signal axis in a collagenase-
induced ICH mouse model (Xu et al., 2018; Zhao et al., 2021).
This evidence suggested that CTRP9 could be recognized as
an encouraging therapy to ameliorate BBB dysfunction in ICH
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FIGURE 1

Polarization of activated microglia following intracerebral hemorrhage (ICH). The polarization of activated microglia in response to stimulation
with erythrocyte lysates after ICH can be broadly classified into three categories. Each category has its related cytokines, chemokines, and
surface markers: (1) pro-inflammatory microglia elevate the pro-inflammatory factors and destruc tive effects on the brain; (2) anti-inflammatory
microglia mainly exert neuroprotective effects; (3) disease-associated microglia (DAM). Recent, an increasing number of studies by single-cell
RNA-sequence and Various other omics methods have revealed that microglia can also be polarized into neuroprotective and neurodestructive
phenotypes, remaining to be further investigated.

patients. Likewise, the activation of melanocortin receptor 4
(MC4R) improves neuropathological function via the AMPK
signal, and intervening MC4R can be effective in animal
experiments and utilized as a potential therapeutic approach for
ICH management (Chen et al., 2018).

As mentioned above, Treg cells restrain microglia-mediated
neuroinflammation from improving neurological function by
activating NFκB through the JNK/ERK pathway (Yang et al.,

2014b; Lan et al., 2017; Zhou et al., 2017). The treatment of
hyperbaric oxygen preconditioning (HBOP) has attenuated the
production of pro-inflammatory cytokine levels and p-JNK,
suggesting potential relevance between JNK phosphorylation
and downregulation of immunoactivity and protein levels of
M1 markers (Yang L. et al., 2015; Wang et al., 2019b). As
many limitations, including hesitations concerning effectiveness,
surgical damages, complications, and drug side effects, exist
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in current clinical practice, there are few standardized clinical
interventions for ICH treatment. Therefore, hyperbaric oxygen
therapy provides a potential alternative medicine to treat ICH,
and the mechanisms of HBOP for intervening in ICH need
additional investigation and confirmation.

Toll-like receptor 4 (TLR4) confer an essential function in
the innate immune response, known as a pattern recognition
receptor (Fang et al., 2013). The deficiency of TLR4 attenuated
perihematomal inflammatory response associated with a
decrease in the recruitment of pro-inflammatory microglia in
a striatal blood injection-induced ICH mice model (Sansing
et al., 2011; Wang et al., 2013). Moreover, TLR4 also inhibits
the microglial phagocytic capacity for RBCs, contributing to
the deceleration of CD36-mediated hematoma absorption
and severe neurological deficits in ICH (Fang et al., 2014;
Li Q. et al., 2021). Autophagy mediated by TLR4 activated
microglia-induced neuroinflammation in mice with ICH (Yang
Z. et al., 2015). The function of TLR4 has been elaborated in
detail following ICH in many studies. Therefore, therapeutic
strategies targeting TLR4 are relatively promising interventions
and may represent future candidates for ICH therapy.

DNA damage motivates the body’s innate immune response.
As a DNA sensor, cGMP-AMP synthase (cGAS) can detect the
disease-damaged DNA and triggers its downstream stimulator
of interferon gene (STING), subsequently phosphorylating
interferon regulatory factor 3 (IRF3) to upregulate the
production of type I interferon (IFN; Lei et al., 2022). cGAS is
a critical regulator of inflammatory and autophagy responses,
and Sharma et al. (2020) found that cGAS is upregulated to
mediate inflammation through increasing inflammatory genes
(Ccl5 and Cxcl10) and autophagy responses via activating
the two major autophagy initiators, LC3A and LC3B, in
striatal damage of brain. It has been reported that tPA
administration augments neutrophil extracellular traps (NETs)
markers in the ischemic mice brain cortex and their plasma.
DNase I and deficiency of peptidyl arginine deiminase 4
(PAD4), which can inhibit NETs, reversed tPA-mediated
upregulation of cGAS.However, cGAMP application suppressed
DNase I-mediated antihemorrhagic effects by downregulating
the STING and INF in tPA-treated mice following ischemic
stroke (Wang et al., 2021). Moreover, Jiang et al. (2021) have
elucidated that cGAS knockdown improved M2 phenotype
polarization of microglia to attenuate microglial inflammatory
response by hindering the cGAS-STING signal axis in
mice with stroke, highlighting that such signal axis can
be used as a potential therapeutic target. Subsequently, the
experiment performed by Shi et al. (2022) also demonstrated
that inhibiting the cGAS-STING pathway through a cGAS
inhibitor integrated versatile immunosuppressive nanoparticle
in microglia contributed to improving an anti-inflammatory
phenotype polarization in rats following stroke.

It is well known that c-type lectin-like receptors (CLRs)
are mainly expressed in myeloid cells as a family of

transmembrane pattern recognition receptors (Drouin et al.,
2020). CLRs’ dysregulation results in the production of
inflammatory mediators and the development of inflammatory
diseases following excessive injury. Microglial macrophage-
inducible C-type lectin (Mincle), a critical member in CLRs,
widely expressed on antigen-presenting cells (APCs), including
macrophages, binds nuclear spliceosome-Associated Protein 130
(SAP130) from necrotic cells to enhance neuroinflammation
(Del Fresno et al., 2020; He et al., 2022). After the injury,
Mincle and its activated downstream spleen tyrosine kinase
(Syk) boost inflammatory gene expression levels in alcohol-
induced liver injury mice (Kim et al., 2018). Besides, activated
Mincle/Syk signal worsened intestinal mucosal inflammation
by enhancing macrophage pyroptosis, and inhibition of the
Mincle/Syk signaling pathway displayed a potential therapeutic
function to attenuate inflammatory response in Crohn’s Disease
(Gong et al., 2020). Furthermore, many investigations have
suggested that inhibiting the Mincle/Syk signal axis exerts
a neuroprotective role associated with various brain diseases
in preclinical research. Different intervention treatments,
including Syk inhibitor BAY61-3606, acupuncture, and MSCs
engraftment, have been used to attenuate microglia-mediated
neuroinflammation by impeding Mincle/Syk signaling pathway
in microglia following hemorrhage stroke, ischemic stroke,
and traumatic brain injury (TBI; He et al., 2015, 2022; de
Rivero Vaccari et al., 2015; Liu X. Y. et al., 2018; Li Y. et al.,
2021). According to the above analysis, the Mincle/Syk signaling
pathway can be utilized as a promising therapeutical target
in ICH.

Although much pre-clinical research has proved the
mechanisms against microglial neuroinflammation, there is still
a need for further investigation of promising interventions to
promote its use in clinical research (Figure 2).

Therapeutic targets and strategies for
microglia-induced neuroinflammation in
ICH

Increasing genetic and epigenetic evidence has
demonstrated that miRNAs confer crucial functions in
regulating gene expression and microglia polarization after
ICH (Yang Z. et al., 2018). Yang Z. et al. (2018) found that
let-7a regulates microglia M2 polarization at 3 days after ICH
in mice by intervening in a target gene named Casein Kinase
2 Interacting Protein 1 (CKIP-1). In this study, overexpressing
let-7a lessened the protein expression level of CKIP-1, enhancing
microglia M2 polarization (IL-10 and Arg-1) and alleviating the
inflammatory response, while inhibiting let-7a augmented the
protein expression level of CKIP-1, contributing to microglia
M1 polarization (IL-1β and TNF-α). Overexpression of
miRNA-7 can restrain TLR4 protein expression level from
alleviating the microglia inflammatory response in ICH rats and
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FIGURE 2

Potential interventions for the neuroinflammation following ICH. Interventions induce the polarization of pro-inflammatory microglia towards
the anti inflammatory phenotype through different mechanisms, exerting beneficial effects. The mechanisms associated with ICH include the
AdipoR1/MC4R-AMPK pathway, JNK-ERR pathway, TLR4 pathway, cGAS-STING pathway, and Mincle-Syk pathway, activation of which enhances
the microglial neuroinflammation. After the corresponding intervention inhibits these pathways, the Ml phenotype shifts to the M2 phenotype of
microglia.

a lipoprotein-induced microglial inflammation model (Zhang
et al., 2018). Further studies have suggested that targeting
TLR4 exerted a neuroprotective role in resisting ICH-induced
brain injury by impeding the Prx1/TLR4/NFκB signaling axis at
3 days after ICH, providing a promising anti-neuroinflammatory
approach for hemorrhagic stroke (Liu et al., 2016). Meanwhile,
studies have reported that miRNA-182-5p and miRNA-27a
modulate the inflammatory response by targeting TLR4 in
a middle cerebral artery occlusion (MCAO) rat model and
lipopolysaccharide (LPS)-stimulated microglia respectively (Lv
et al., 2017; Wang J. et al., 2018). In their studies, overexpression
of miRNA-182-5p and miRNA-27a downregulated the protein
expression level of TLR4 resulting in the increase of released
inflammatory factors.

Recent evidence has clarified that blockage of miRNA-222
attenuated inflammation in erythrocyte lysate-induced
microglia and improved brain water content (BWC),
neuropathologic deficits, and inflammatory response in
ICH mice. In this study, integrin subunit β8 (ITGB8) was
specified as a direct target modulated in the negative by miRNA-
222, alleviating inflammation and apoptosis in microglia
(Bai and Niu, 2020). Previously, the choline of inflammatory

response was inhibited by miRNA-132 by intervening in
acetylcholinesterase (AChE). A study by Zhang Y. et al. (2017)
found that overexpressing miRNA-132 with an injection of
lentiviruses encoding miR-132 into the right caudate nuclei
before 14 days inhibited the activation of pro-inflammatory
microglia, improved BBB dysfunction, and decreased neuronal
loss at day 3 in autologous blood-induced ICH. Additionally,
miRNAs, the pivotal mediators in autophagic activation-
induced inflammation of microglia, can posttranscriptionally
and negatively modulate gene expression and function (Wang
et al., 2017). Wang et al. (2017) and Yu et al. (2017a) found
that miRNA-144 can enhance hemoglobin-mediated activation
of the microglial autophagic inflammatory response by
directly targeting mTOR’ 3’ untranslated regions (UTRs) to
downregulate the gene and protein expression level of mTOR
in a hemoglobin-mediated primary hippocampal microglial
cell inflammatory model or autologous blood-induced ICH
mice after 24 h. Similarly, miR-124 improved microglia
M2 phenotype polarization to alleviate inflammatory injury
by targeting the 3’-UTR of C/EBP-α in vitro and in vivo
experiments (Yu et al., 2017b). The administration of miR-124
mimics significantly alleviated BWC, neurological deficits,
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C/EBP-α gene, and protein expression levels compared with
those in the injection of miR-124 inhibitor in mice with ICH at
3 days. Furthermore, a similar negative regulation of miR-124
to C/EBP-α in gene and protein expression levels was also
observed in transduced microglia with miR-124 mimics or
miR-124 inhibitors, which were stimulated with erythrocyte
lysates.

Up to now, autophagy is a dualistic function, and it is difficult
to assess whether it has harmful or beneficial effects after ICH.
Excessive autophagy has been reported to worsen endoplasmic
reticulum stress (ERS)-mediated brain impairment at 6 h
following ICH. However, autophagy strengthened the protective
function of ERS by removing the cell debris at 7 days following
ICH-induced SBI in rats (Duan et al., 2017). Tan et al. (2020)
have elucidated that enhancing autophagy attenuated oxidative
stress damage after ICH via increasing the expression levels of
antioxidant proteins; on the contrary, the autophagy inhibitor
reversed the neuroprotection after ICH. Recently, some studies
showed that autophagy positively modulates inflammation in
ICH (Shi et al., 2018; Xiao et al., 2020).

The interleukins (ILs) levels regarding the ICH advancement
are modulated through the intervention of microglial functions.
Xu et al. (2020) have found that the treatment of intranasal
delivery of IL-4 nanoparticles activating the IL-4/STAT6 axis
improved extended functional recuperation and hematoma
resolution in collagenase- and blood-induced ICH mice models.
On the contrary, IL-15, as a pro-inflammatory cytokine,
coordinates the homeostasis and microglia immunoreactive
intensity after CNS inflammatory occurrences, and upregulation
of the expression level of IL-15 in astrocytes exacerbates
brain edema, neurological deficits, and microglia inflammatory
factors’ expression by mediating the crosstalk between astrocytes
and microglia in patients and mice with ICH (Shi et al., 2020).
Besides, Yu et al. (2016) have found that an IL-17A-neutralizing
antibody in opposition to IL-17A can attenuate microglial
activation and block ICH-induced cytokine expression levels,
including TNF-α, IL-1β, and IL-6. The study by Shi et al.
(2018) further illustrated that microglial autophagy and
neuroinflammation could be boosted by IL-17A; utilization
of an IL-17A-neutralizing antibody remarkably diminished
brain edema and enhanced neurological deficits in mice with
ICH; suppressing ATG5 and ATG7, the essential autophagy
genes of autophagy, decreased microglial autophagy and
inflammation (Yuan et al., 2017). Another study also found
that intraventricular injection of IL-33 ameliorated neuronal
and white matter damage-induced neurological dysfunction
following ICH by promoting the microglia M2 polarization
(Chen Z. et al., 2019).

Considerable evidence suggests that NFκB translocates
to the nucleus after ICH, which produced pro-inflammatory
factors, including TNF-α and IL-6, which respond to the
series of pathological changes. It indicates that inhibiting
the NFκB signaling pathway through different interventions,

such as miRNAs, GATA-binding protein 4, and some Chinese
medicines, provides a more available anti-neuroinflammatory
strategy and therapy for ICH treatment (Dong et al., 2011; Hu
et al., 2011; Liu et al., 2016; Shang et al., 2019; Xu et al., 2019).
Therefore, regulation of NFκB activity confers hopeful clinical
usefulness in ICH.

Many studies have proved that the inhibition of glycogen
synthase kinase-3β (GSK-3β) exerts a neuroprotective function
in animal experiments after ICH (Zhao et al., 2017, 2019;
Zheng et al., 2017). The inhibition of GSK-3β significantly
improved the hematoma resolution and cognitive deficits
through the enhancement of microglia phagocytosis and
differentiation of M2-phenotype microglia in rats with ICH
(Liu Z. et al., 2018; Li R. et al., 2019). The study by Zhao
et al. (2019) demonstrated that 6-bromoindirubin-3’-oxime
(BIO), utilized as a typical inhibitor of GSK-3β blocking GSK-
3βTyr216 phosphorylation, exerted a protective effect against
microglia activation-induced neuroinflammation by increasing
the number of anti-inflammatory microglia. Besides, it has been
shown that LiCl treatment downregulated GSK-3β to decrease
the death of mature oligodendrocytes (OLGs) and enhance the
expression of brain-derived neurotrophic factor (BDNF; Li et al.,
2020).

It has been shown that activation of PPAR-γ by rosiglitazone
protected against BBB damage and ameliorated hemorrhage
transformation maybe favor microglial polarization toward
anti-inflammatory phenotype (Luo et al., 2006; Li Y. et al.,
2019). Phagocytosis is necessary to improve the hematoma
resolution, which attenuates hemorrhage-induced toxic
effects on surrounding brain parenchyma and may be
essential for healing following ICH. Zhao et al. (2007)
found that PPAR-γ activators remarkably improved PPAR-
γ-regulated gene expression, including CD36 and catalase,
whereas diminishing pro-inflammatory gene expression,
including TNF-α, IL-1β, MMP-9, and iNOS, and neuronal
impairment by activating phagocytosis of microglia.
Conversely, such phagocytosis function was particularly
impeded through PPAR-γ gene knockdown or anti-CD36
antibody following ICH (Zhao et al., 2007). Besides, PPAR-γ
activation is also essential for improving the phagocytic
capability of the microglia anti-inflammatory phenotype
by CD36 (Zhao et al., 2009). Similarly, an exogenous
PPAR-γ activator named 15 (S)-hydroxyeicosatetraenoic
acid facilitated functional healing and neuroprotection
after ICH (Xu et al., 2017). Founded on a thorough
fundamental investigation, PPAR-γ activators have been
broadly utilized in clinical therapy. Activated PPAR-γ by
simvastatin, improving microglia-mediated erythrocyte
phagocytosis, and displaying neuroprotective function,
has been verified in ICH patients (Chen et al., 2017;
Wang Y. et al., 2018).

Matrix metalloproteinases (MMPs) upregulated following
ICH symbolize a universal superfamily of structurally associated
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FIGURE 3

Summary of targets for ICH microglial polarization. Different available interventions can be used to inhibit microglial neuroinflammation. The
targets cover signaling pathway proteins, single proteins, genes, and miRNAs. Through modulating these targets, the M1 phenotype of microglia
can be switched to the M2 phenotype.

zinc-dependent endopeptidases and can lessen the extracellular
matrix (EM). Activated microglia are involved in MMPs’
synthesis and secretion (Lattanzi et al., 2020). The influence
of MMPs on EM collapse initiated through inflammation is
a basis of stroke, which has been reported in many studies
(Florczak-Rzepka et al., 2012). Wells et al. (2005) studied the
function of MMPs in mice with ICH and found that MMP-12
levels were the most elevated. The following experiments
showed that MMP-12 null mice demonstrated substantial
neurological recuperation of forelimb and decreased reliance
on the ipsilateral forelimb relative to WT mice, and more
Iba1 immunostaining positive cells conferred with macrophage
morphology were conscripted to the injured site in WT mice.
This evidence suggests that MMP-12 is harmful and results
in the development of SBI following ICH (Wells et al., 2005).
Subsequent studies found that MMP-12 expression in the
peri-hematoma decreased when given stem cell therapy and
minocycline after ICH. Simultaneously, microglia infiltration-
induced inflammatory response decreased (Wasserman and
Schlichter, 2007; Liang et al., 2014). Therefore, MMP-induced
microglial activation has evolved an underlying intervening
target for ICH. Minocycline induces activated M1 microglia
into the M2 microglia phenotype (Miao et al., 2018). However,
Wasserman et al. (2007) found that although minocycline
therapy virtually ameliorates the increase of MMP-12 and TNF-
α early, its effectiveness is yielded at 1 week. These results
suggested that we should be cautious in inferring ICH from
the encouraging effects of minocycline therapy in other brain
injury decreases (Wasserman et al., 2007). Other studies also
found that stem cell therapy significantly reduced microglial
infiltration and MMP-12 expression in surrounding hemorrhage
sites following ICH (Liang et al., 2014; Chen M. et al.,
2015).

Increasing evidence reveals that the released ferrous iron
from erythrolysis is a primary pathogenic factor in hematoma
after ICH (Li et al., 2022). The iron toxicity-mediated microglial
activation pro-inflammatory response is a substantial reason
for brain impairment in ICH. Deferoxamine (DFA) is an
iron chelator that can penetrate the BBB and binds to
iron. Decreasing iron accumulation through intraperitoneal
administration of DFA can moderately promote the outcomes
and reduce microglial activation after ICH (Wu et al., 2011;
Hatakeyama et al., 2013; Hu et al., 2019). As an inhibitor of
microglial activation, minocycline can decrease injured brain
iron to prevent neuronal death in ICH (Zhao et al., 2011;
Cao et al., 2018). Similarly, as an iron chelator having brain
permeability, VK-28 can polarize microglia to a microglial
M2 phenotype, reduce BWC, decrease white matter injury, and
improve neurobehavioral deficits following ICH (Li et al., 2017;
Dai et al., 2019). Observational research proved that it is evident
that the complicated regulatory system modulated microglia
function, comprehending it critically to clarify phenotypic and
genotypic deviations and acquire promising therapies following
ICH.

More therapeutic targets have now participated in regulating
microglial neuroinflammation; however, further pre-clinical
investigation is still needed to promote their use in clinical
research (Figure 3).

Conclusion

This review objectively discusses and assesses the function of
microglia activation in modulating ICH-induced brain damage.
Increasing evidence suggests that pro- or anti-inflammatory
microglia phenotypes have dissimilative functions and

Frontiers in Molecular Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1013706
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#articles
https://www.frontiersin.org


Yang et al. 10.3389/fnmol.2022.1013706

meanings, which help us fully comprehend microglia function
by regulating related intracellular and extracellular signaling
pathways. Moreover, we provide an overall comprehension of
cellular and molecular mechanisms responsible for regulating
microglia activation after ICH. Although the number of
trustworthy clinical trials is reasonably limited and the
molecular genetic investigations regarding microglia phenotypic
shifts are lacking, our work confers optimistic discernment
on a practical intervening approach targeting microglia
function in ICH-induced brain injury. Additional studies on
therapeutic strategies related to microglia activation-induced
neuroinflammation are critical for estimating the possibility of
the encouraging treatment noted above.
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