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Abstract
The early detection of lung cancer is a major clinical challenge. Long noncoding RNAs (lncRNAs) have important
functions in tumorigenesis. Plasma lncRNAs directly released from primary tumors or the circulating cancer cells
might provide cell-free cancer biomarkers. The objective of this studywas to investigatewhether the lncRNAs could be
used as plasma biomarkers for early-stage lung cancer. By using droplet digital polymerase chain reaction, we
determined the diagnostic performance of 26 lung cancer–associated lncRNAs in plasma of a development cohort of
63 lung cancer patients and 33 cancer-free individuals, and a validation cohort of 39 lung cancer patients and 28
controls. In the development cohort, 7 of the 26 lncRNAs were reliably measured in plasma. Two (SNHG1 and RMRP)
displayed a considerably high plasma level in lung cancer patients vs. cancer-free controls (allP b .001). Combined use
of the plasma lncRNAs as a biomarker signature produced 84.13% sensitivity and 87.88% specificity for diagnosis of
lung cancer, independent of stage and histological type of lung tumor, and patients' age and sex (all P N .05). The
diagnostic value of the plasma lncRNAsignature for lung cancer early detectionwas confirmed in the validation cohort.
The plasma lncRNA signaturemay provide a potential blood-based assay for diagnosing lung cancer at the early stage.
Nevertheless, a prospective study is warranted to validate its clinical value.
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pproximately 155,870 Americans will die from lung cancer each year,
ore than the other 3 leading cancers combined (breast, prostate, and
lorectal cancers). Over 85% lung cancers are non–small cell lung
ncers (NSCLCs). NSCLC mainly consists of adenocarcinoma (AC)
d squamous cell carcinoma (SCC). Tobacco smoking is themajor cause
NSCLC. The early detection of lung cancer in a large randomized trial
ing low-dose CT (LDCT) has revealed a 20% reduction inmortality as
mpared to chest X-rays [1]. Therefore, LDCT is recently recommended
be used for lung cancer early detection among smokers [2,3].However,
CT is associated with overdiagnosis, excessive cost, and radiation
posure [2,3]. The development of noninvasive or circulating
omarkers that can accurately and cost-effectively diagnose early-stage
ng cancer is required [4].
Long noncoding RNAs (lncRNAs) have minimum transcript
ngth of 200 bp and play vital roles in various biological processes
,6]. lncRNAs can regulate different molecular signaling pathways
a changing gene expression, and therefore, their dysregulations are
plicated in numerous mechanisms of carcinogenesis [7,8].
ysregulation of some lncRNAs has been found in relation to
cogenesis and metastasis of lung tumor [9–11]. Importantly,
asma lncRNAs directly released from primary tumors or the
rculating cancer cells might provide biomarkers for human
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alignancies [12]. To date, several plasma lncRNAs have been
entified that show the potential to distinguish lung cancer patients
om noncancer subjects [12–20]. Yet none of them has been
cepted in the clinical settings for lung cancer diagnosis, mainly due
the low sensitivity and specificity.
Recent studies have characterized 21 lncRNAs whose aberrations
e associated with lung cancer [10,21–46]. Furthermore, using
hole-genomic next-generation sequencing (NGS) to analyze
RNA profile of primary lung tumor tissues, we recently identified
ditional five lung cancer–related lncRNAs [47,48]. These lung
mor–associated lncRNAs may provide a comprehensive list of
omarker candidates for developing circulating lung cancer
omarkers. The objective of this study was to investigate whether
e lung cancer–associated lncRNAs could be used as plasma
omarkers for lung cancer.

aterials and Methods

atients and Clinical Specimens
This study was approved by the Institutional Review Boards of
niversity of Maryland Baltimore and Veterans Affairs Maryland
ealth Care System. We recruited lung cancer patients and cancer-
ee smokers by using the inclusion and/or exclusion criteria
commended by the US Preventive Services Task Force for lung
ncer screening in heavy smokers [49]. We collected blood in BD
acutainer spray-coated K2EDTA Tubes (BD, Franklin Lakes, NJ)
d prepared plasma using the standard operating protocols
veloped by The NCI-Early Detection Research Network [50,51].
he specimens were processed within 2 hours of collection by
ntrifugation at 1300×g for 10 minutes at 4°C. A total of 102
SCLCpatients and 55 cancer-free smokers were recruited. Among the
ncer patients, 24 patients were female and 78 were male. Twenty-
ree had stage I NSCLC, 18 with stage II, 28 with stage III, 28 with
age IV, and 5 with unknown stage. Of the cancer-free smokers, 14
tients were female and 41 were male. There were no significant
fferences of age, gender, and smoking status between the NSCLC
tients and cancer-free smokers. The cases and controls were randomly
ouped into two cohorts: a development cohort and a validation
hort. The development cohort consisted of 63 lung cancer patients
d 33 cancer-free smokers, while the validation cohort comprised 39
ng cancer patients and 28 cancer-free smokers. The demographic and
inical variables of the two cohorts are shown in Tables 1 and 2.
ble 1. Characteristics of NSCLC Patients and Cancer-Free Smokers in a Development Cohort

NSCLC Cases (n = 63) Controls (n = 33) P Value

e 67.93 (SD 9.16) 63.79 (SD 16.12) .18
x .36
Female 15 8
Male 48 25
oking pack-years (median) 32.1 31.76 .19
age
Stage I 14
Stage II 10
Stage III 17
Stage IV 18
Unknown 4
istological type
Adenocarcinoma 32
Squamous cell carcinoma 31
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NA Isolation and Quantitative Reverse Transcriptase
olymerase Chain Reaction (qRT-PCR)
RNA was extracted from the specimens by using Trizol LS reagent
nvitrogen, Carlsbad, CA) and RNeasy Mini Kit (Qiagen, Hilden,
ermany) [52–54]. RT was carried out to generate cDNA by using
RT Kit (Applied Biosystems, Foster City, CA) as described in our
blished works [52–54]. PCR was performed to measure expressions
target genes by using a PCR kit (Applied Biosystems) on a Bio-Rad
5 Multicolor RT-PCR Detection System (Bio-Red, Hercules,
A). Expression levels of the genes were determined using
mparative cycle threshold (CT) method with miR-1228 as an
ternal control. The targeted genes with CT values N35 were
nsidered to be below the detection level of qRT-PCR [55].
roplet Digital PCR (ddPCR)
ddPCR for analysis of the genes was performed as described in our
evious work. Briefly, TaqMan reaction mix (Applied Biosystems)
ntaining sample cDNA was partitioned into aqueous droplets in oil
a the QX100 Droplet Generator (Bio-Rad) and then transferred to a
-well PCR plate. A two-step thermocycling protocol (95°C × 10
inutes; 40 cycles of 94°C × 30 seconds and 60°C × 60 seconds,
d 98°C × 10 minutes) was undertaken in a Bio-Rad C1000 (Bio-
ad). The PCR plate was loaded on Droplet Reader (Bio-Rad), by
hich copy number of each gene per μl PCR reaction was directly
termined. We used QuantaSoft 1.7.4 analysis software (Bio-Rad)
d Poisson statistics to compute droplet concentrations (copies/μl).
nly genes that had at least 10,000 droplets were considered to be
bustly detectable by ddPCR in plasma and subsequently underwent
rther analysis [56,57]. All assays were done in triplicates, and one
-template control and two interplate controls were carried along in
ch experiment.
tatistical Analysis
Pearson correlation analysis was applied to assess relationship
tween gene expressions and demographic and clinical characteristics
the lung cancer patients and control individuals. The area under
ceiver operating characteristic curve (AUC) analyses were used to
termine sensitivity, specificity, and corresponding cutoff value of each
ne [58]. All P values shown were two sided, and a P value of b .05 was
nsidered statistically significant.
ble 2. Characteristics of NSCLC Patients and Cancer-Free Smokers in a Validation Cohort

NSCLC Cases (n = 39) Controls (n = 28) P Value

e 66.58 (SD 9.93) 63.68 (SD 13.27) .25
x .45
Female 9 6
Male 30 22
oking pack-years (median) 33.39 29.64 .26
Stage
Stage I 9
Stage II 8
Stage III 11
Stage IV 10
Unknown 1
istological type
Adenocarcinoma 22
Squamous cell carcinoma 17
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Figure 1. Expression levels of SNHG1 and RMRP in plasma samples of 63 lung cancer patients and 33 cancer-free controls. (A) SNHG1
and RMRP displayed a higher plasma level in lung cancer patients vs. cancer-free controls (all P b .001). (B) The receiver operating
characteristic curves of SNHG1 and RMRP produced an AUC of 0.90 and 0.80, respectively, in diagnosis of lung cancer.
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esults

eveloping a Plasma lncRNA Signature for Lung Cancer Early
etection
We first measured expression levels of the 26 lncRNAs
upplementary Table 1) in plasma by using qRT-PCR in a discovery
hort of 63 cases and 33 controls. The lncRNAs had a CT value of
5 in 75% plasma samples. However, the internal control gene,
iR-1228, stably displayed a CT value of 20-22 across the plasma
mples. The results suggested that the amplification curves for the
cRNAs were not reliably generated, and their expression levels in
asma were too low to be detectable by qRT-PCR. We have proven
at ddPCR is a direct method for absolutely and quantitatively
easuring ncRNAs with a higher sensitivity compared with qRT-
R [56,57,59]. Therefore, we used ddPCR to determine expression

vel of the lncRNAs in the plasma samples. Seven (26.9%) of the 26
cRNAs could generated at least 10,000 droplets in each well of the
asma samples. Therefore, the seven lncRNAs could be successfully
ead” by ddPCR for the absolute quantification in the plasma
mples. The seven genes are SNHG1, MALAT1, HOTAIR, H19,
EG3, MEG8, and RMRP.
Among the seven genes, SNHG1 and RMRP had a higher
pression level in plasma of lung cancer patients versus cancer-free
ble 3. Diagnostic Performance of One-Gene vs. a Plasma lncRNA Signature for Lung Cancer Diagno

Accuracy

HG1 81.25% (72.00%-88.49%)
RP 71.88% (61.78%-80.58%)

plasma lncRNA signature 85.42% (76.74%-91.79%)

breviation: CI, confidence interval.
ntrols (all P ≤ .05) (Figure 1A). Conversely, other five lncRNAs
d not display a different plasma level in lung cancer cases versus
ncer-free controls (all P ≥ .05). Furthermore, the plasma expression
vels of the SNHG1 and RMRP were independent of stages and
stological types of lung cancer. In addition, SNHG1 and RMRP
hibited AUC values of 0.90 and 0.80, respectively, in distinguish-
g NSCLC patients from healthy individuals (Figure 1B). Using
ouden's index [60], we set up optimal cutoff for the two genes at
11 and 0.12, respectively. As a result, the use of the individual genes
one produced 61.00%-78.78% sensitivities and 87.88%-90.91%
able 3). Combined use of the two genes based on at least one
sitive result in either SNHG1 or RMRP produced the highest
assification accuracy (85.42%) compared to any one used alone (all
b .05) (Table 3). The two genes used in combination produced a
nsitivity of 84.13% and a specificity of 87.88% for diagnosis of lung
ncer, thus considerably improving the detection rate by a single gene
ith only a 2% decline in specificity (Table 3). Furthermore, the
timated correlation determined by Pearson correlation analysis among
vels of the two lncRNAs was very low (R2 = 0.011, P = .53), further
pporting that the combined analysis of the two genes outperformed a
gle one. In addition, combined analysis of the two plasma biomarkers
d not show special association with stage and histological type of lung
ncer and patients' age, gender, and smoking status (all P N .05).
sis in a Development Cohort

Sensitivity (95% CI) Specificity (95% CI)

77.78% (65.54%-87.28%) 87.88% (71.80%-96.60%)
61.90% (48.80%-73.85%) 90.91% (75.67%-98.08%)
84.13% (72.74%-92.12%) 87.50% (71.80%-96.60%)

Image of Figure 1


V
In

th
dd
co
N
83
di
si
M
w
an
co
pl

D
C
fo
ln
sp
fr
re
de
m
ac
ex
ap
no
iii
ob
ca
qR
to
th
W
nc
vo
in
nu
pr
ta
on
ca
re
de
ar
pl
qu
as

fr

on
he
m
pe
ca
in
pr
pu
ch
sy
N
N
as
ln
bi
pr
of
de
ad
bl
si
th
di
be
em

fu
pa
lu
ad
pa
of
an
on
pa
co
th
[6
[6
w
ds
R
pr
tis
ex
ex
fin
cl

co
th
m

Table 4. Diagnostic Performance of One-Gene vs. a Plasma lncRNA Signature for Lung Cancer Diagnosis in a Validation Set

Accuracy Sensitivity (95% CI) Specificity (95% CI)

SNHG1 80.33% (68.16%-89.40%) 76.92% (60.67%-88.87) 86.36% (65.09%-97.09%)
RMRP 72.13% (59.17%-82.85%) 61.54% (44.62%-76.64%) 90.91% (70.84%-98.88%)
A plasma lncRNA signature 83.62% (71.91%-91.85%) 82.05% (66.47%-92.46%) 86.36% (65.09%-97.09%)
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alidating the Plasma lncRNA Marker Signature in an
dependent Set of Lung Cancer Patients and Controls
To evaluate the diagnostic performance of the biomarker signature,
e two lncRNAs (SNHG1 and RMRP) were assessed by using
PCR in plasma of additional 39 NSCLC patients and 28 healthy
ntrols. The two genes used in combination could differentiate the
SCLC patients from healthy controls with 82.05% sensitivity and
.36% specificity (Table 4). Furthermore, no statistically significant
fference was found in the sensitivity and specificity of the biomarker
gnature for stages and histological types of NSCLC (all P N .05).
oreover, there was no association of expressions of the two genes
ith the age, gender, or smoking status of the lung cancer patients
d normal individuals (all P N .05). Taken together, the results
nfirm the potential of combined use of the two lncRNAs as a
asma biomarker signature for the early detection of lung cancer.

iscussion
irculating cell-free lncRNAs biomarkers show promise as biomarkers
r cancer diagnosis. However, unlike other ncRNA (e.g., microRNAs),
cRNAs have the lowest levels in plasma among several different RNA
ecies [61], presenting a major challenge in the development of cell-
ee lncRNAs as cancer biomarkers. For instance, Schlosser et al.
cently demonstrated that expressions of lncRNAs were robustly
tectable in tissues yet undetectable or sporadically measurable in the
atched plasma by using qRT-PCR, a routine platformused for nucleic
id detection [61]. Regular qPCR has some limitations in determining
pression of ncRNAs: i) It is an indirect and labor-consuming
proach. ii) It requires an internal control gene for normalization. Yet
ne of the investigated genes has been accepted as a standard control.
) Its sensitivity for a low copy number of genes is very low.Our current
servations are consistent with Schlosser's finding [61]: of the 26 lung
ncer–associated lncRNAs, none is reliably measurable in plasma using
T-PCR. Therefore, conventional qPCRmight not be an appropriate
ol for the development of lncRNAs as circulating biomarkers given
at circulating lncRNAs in body fluids are present in low abundance.
e have shown that ddPCR is a directmethod for sensitivelymeasuring
RNAs [56,59] since it depends on limiting partition of the PCR
lume, where a positive result of a large number of microreactions
dicates the presence of a single molecule in a given reaction [62]. The
mber of positive reactions, together with Poisson's distribution,
oduces a straight and high-confidence measurement of the original
rget concentration. Importantly, ddPCR does not require a reliance
rate-based measurements (CT values), endogenous controls, and

libration curves and therefore overcome the obstacles linked to the
gular qPCR in quantification of genes in plasma. Here we
monstrate that 7 of the 26 lung cancer–associated lncRNAs that
e not detectable by qRT-PCR are robustly measurable by ddPCR in
asma. Therefore, ddPCR may address the limitations of the qPCR in
antification of lncRNAs in plasma and hence help develop the genes
cell-free cancer biomarkers.
The previous plasma lncRNA-based assays were mostly developed
om the limited number of lung cancer–associated lncRNAs and
ly consisted of a single lncRNA gene [12–20]. Since lung tumor is a
terogeneous group of neoplasms and develops from a multitude of
olecular changes, a single lncRNA-based assay may not achieve the
rformance required to move forward for clinically detecting lung
ncer. The development of a panel of multiple biomarkers by
tegrating analysis of multifaceted and diverse lncRNAs would
ovide a synergistic test for lung cancer diagnosis. By searching
blished data, we found 21 lncRNAs whose malfunction was well
aracterized in lung tumorigenesis [10,21–46]. Furthermore, by
stematically and comprehensively defining ncRNA changes of
SCLC in surgical lung tumor tissues using whole-transcriptome
GS [47,48], we recently identified additional five lung cancer–
sociated lncRNAs [47]. Both the published and our NGS-defined
cRNAs of lung tumors may provide a comprehensive set of
omarker candidates for lung cancer. From the 26 lncRNAs, our
esent study identified and optimized a plasma signature consisting
two lncRNAs that created a higher diagnostic value for lung cancer
tection than did individual lncRNAs used alone [12–20]. In
dition, the diagnostic performance of the biomarkers was further
indly validated in a different cohort, suggesting that the plasma
gnature might be a robust assay for lung cancer diagnosis. Moreover,
e performance of this plasma lncRNA signature for lung cancer
agnosis was independent of tumor stage and histology. This might
an important characteristic if the plasma lncRNA signature is
ployed for identifying early-stage lung cancer.
The two lncRNAs (SNHG1 and RMRP) have diverse and important
nctions in lung tumorigenesis through regulating different molecular
thways. Elevated expression of SNHG1 was frequently observed in
ng cancer tissues and significantly correlated with larger tumor size,
vanced stage, lymph node metastasis, and poor overall survival of the
tients [63]. Furthermore, SNHG1 could promoteNSCLCprogression
lung cancer viamiR-101-3p/SOX9/Wnt/β-catenin regulatory network
d miR-145-5p/ MTDH axis [63,64]. In addition, SNHG1 plays an
cogenic role in lung squamous cell carcinoma through ZEB1 signaling
thway by inhibiting TAp63 [65]. RMRP is best known for being a
mponent of the nuclear RNase MRP complex, which participates in
e processing of ribosomal RNA to generate the shortmature 5.8S rRNA
6] and cleaves B-cyclin mRNA, lowering B-cyclin levels during mitosis
7]. In addition, RMRP interacts with telomerase to form a complex
ith RNA-dependent RNA polymerase activity capable of synthesizing
RNA precursors processed by DICER1 into siRNAs [68]. Moreover,
MRP is important for mitochondrial DNA replication and RNA
ocessing [69].Upregulation ofRMRP is found in lung adenocarcinoma
sues [70]. RMRP might act as an oncogenic lncRNA to promote the
pression of KRAS, FMNL2, and SOX9 by inhibiting miR-206
pression in lung cancer [70]. Our current study extends the previous
dings by developing them as a biomarker signature that might be
inically useful in the early detection of lung cancer.
There are some limitations in this present study. 1) The size of the
horts is small. Furthermore, the plasma samples were obtained from
e hospital-based patients with clinical diagnosis. The participants
ight not be representative of high-risk populations (e.g., heavy
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okers) in screening setting for lung cancer. We will perform a
ospective and multisite lung cancer screening trial to validate the
agnostic value of the plasma lncRNA signature. 2) The early diagnosis
lung cancer by using LDCT could reduce the mortality [3].
owever, LDCT has a low specificity for the early detection of lung
ncer, presenting a major clinical challenge [71]. We are evaluating
hether the plasma lncRNA signature could improve the specificity of
CT for the early detection of NSCLC by specifically distinguishing

alignant from benign pulmonary growths. 3) The cell-free circulating
mor DNA, microRNAs, or DNA methylation provides other
portant types of biomarkers for lung cancer [54,72–75,76–78].
ur ongoing efforts are to investigate whether integrating the lncRNA
gnature with other types of biomarkers might improve the early
tection of lung cancer. 4) In the current study, SNHG1 or RMRP
pression level in plasma is independent of histological types of lung
ncer. Furthermore, the combined use of the two genes is also not
sociated with histological types of lung cancer. The findings in plasma
mples are inconsistent with the two previous studies in tissue
ecimens that showed that SNHG1 or RMRP was associated with
C or AC, respectively [65,70]. A new study using paired plasma and
mor tissue specimens from the same lung cancer patients is needed to
lidate the discrepancy and further understand the mechanism
derlying the divergence.

onclusions
plasma lncRNA signature was developed that could differentiate
rly-stage NSCLC patients from cancer-free smokers. Nevertheless,
dertaking a prospective study to further validate this plasma
omarker signature in a large cohort is required.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.tranon.2018.07.016.
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