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Proper Management of People with Obesity during 
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Since December 2019, countries around the world have been struggling with a novel coronavirus, severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). Case series have reported that people with obesity experi-
ence more severe coronavirus disease 2019 (COVID-19). During the COVID-19 pandemic, people have tended to 
gain weight because of environmental factors imposed by quarantine policies, such as decreased physical activ-
ity and increased consumption of unhealthy food. Mechanisms have been postulated to explain the association 
between COVID-19 and obesity. COVID-19 aggravates inflammation and hypoxia in people with obesity, which 
can lead to severe illness and the need for intensive care. The immune system is compromised in people with 
obesity and COVID-19 affects the immune system, which can lead to complications. Interleukin-6 and other cy-
tokines play an important role in the progression of COVID-19. The inflammatory response, critical illness, and 
underlying risk factors may all predispose to complications of obesity such as diabetes mellitus and cardiovascu-
lar diseases. The common medications used to treat people with obesity, such as glucagon-like peptide-1 ana-
logues, statins, and antiplatelets agents, should be continued because these agents have anti-inflammatory 
properties and play protective roles against cardiovascular and all-cause mortality. It is also recommended that 
renin–angiotensin system blockers are not stopped during the COVID-19 pandemic because no definitive data 
about the harm or benefits of these agents have been reported. During the COVID-19 pandemic, social activities 
have been discouraged and exercise facilities have been closed. Under these restrictions, tailored lifestyle modi-
fications such as home exercise training and cooking of healthy food are encouraged.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is a positive-stranded RNA virus and has 82% homology with that 
of human SARS-CoV. Genomic analyses indicate 89% nucleotide 
identity with bat SARS-like-CoVZXC21 and suggests that SARS-
CoV-2 evolved from bats. The potential for amplification from the 
mammalian host intermediate between bats and humans is un-
known. SARS-CoV-2 enters human cells mainly by binding to the 
angiotensin-converting enzyme 2 (ACE2),1 which is highly ex-

pressed in lung alveolar cells, cardiac myocytes, the vascular endo-
thelium, and other cells.2 SARS-CoV-2 is transmitted primarily af-
ter viral particles are inhaled and enter the respiratory tract.3

Generally, people with coronavirus disease 2019 (COVID-19) 
caused by SARS-CoV-2 develop signs and symptoms on average of 
5–6 days after infection. The disease induces mild symptoms in the 
initial stage but can cause severe illness including systemic inflam-
matory response syndrome, acute respiratory disease syndrome, 
multiorgan involvement, and shock.4 According to the most recent 
data, the fatality rate is 6.0% worldwide. A high mortality rate has 
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been observed in certain groups such as older populations and 
people with underlying health issues such as cardiovascular disease 
(CVD) and diabetes mellitus (DM).5 A few early studies have re-
ported that obesity is associated with the severity of COVID-19.6-8 
However, the features of COVID-19 in people with obesity have 
not been elucidated and it has not been determined whether obesi-
ty is an independent risk factor for susceptibility to infection with 
SARS-CoV-2 or the severity of COVID-19 or both.

ASSOCIATION BETWEEN COVID-19 AND 
OBESITY

We obtained data from a retrospective multicenter study in which 
all 28 of the first confirmed patients with COVID-19 in the Repub-
lic of Korea were enrolled. Five of these patients had a body mass 
index (BMI) >30 kg/m2 (18%).9 Zheng et al.10 investigated 214 
patients with laboratory-confirmed COVID-19 from three hospitals 
in Wenzhou, China, and compared patients with obesity and meta-
bolic-associated fatty liver disease (MAFLD) with those with non-
obese MAFLD. They found that obesity in patients with MAFLD 
was associated with a ~6-fold increased risk of severe COVID-19 
illness. Using retrospective data obtained for 103 patients hospital-
ized with COVID-19 at three hospitals in Rhode Island, USA, Kal-
ligeros et al.8 reported an association between severe obesity (BMI 
≥ 35 kg/m2) and intensive care unit (ICU) admission. In that study, 
a history of heart disease and obesity (BMI ≥ 30 kg/m2) was inde-
pendently associated with the need for invasive mechanical ventila-
tion. Publications that have investigated the associations between 
the extent of obesity and other conditions in patients with COV-
ID-19 are summarized in Table 1.

During the COVID-19 pandemic, dietary patterns have changed 
to include increased reliance on delivered foods, and access to healthy 
food options has diminished.11 Delivered foods are mostly fast foods, 
such as pizza, hamburgers, fried chicken, and sugar-sweetened bev-
erages or carbonated soda.12 These items are probably more obeso-
genic than home-cooked foods.13 Increased consumption of these 
foods is associated with increased risk of obesity and DM.14,15

People with obesity or who are overweight are reported to be 
less active.16,17 In addition, during the COVID-19 pandemic, com-
munity health centers, gyms, swimming pools, and parks have been 

closed by law in many countries as part of their quarantine strategy. 
These changes in the food and social environments may have con-
tributed to an increase in body weight in people with obesity as 
well as in the general population.

ASSOCIATIONS BETWEEN COVID-19 AND 
OBESITY-RELATED DISEASES INCLUDING 

DM AND CVD

A study of 44,672 confirmed Chinese patients with COVID-19 
reported an overall case-fatality rate of 2.3% (1,023 deaths among 
44,672 confirmed cases).4 In that study, the fatality rates were 8.0% 
in people aged 70–79 years and 14.8% in those aged 80 years and 
older. In China, the fatality rate is higher among those with preex-
isting comorbid conditions—10.5% for those with CVD, 7.3% for 
those with DM, and 6.0% for those with hypertension.18 An early 
study of 1,099 patients with COVID-19 from 552 hospitals in Chi-
na found that 23.7% of patients had one or more underlying dis-
eases: hypertension in 15.0%, coronary heart disease in 2.5%, and 
DM in 7.4%. Comparison between patients with severe disease 
(n = 173; mean age, 52 years) with those with nonsevere disease 
(n = 926; mean age, 45 years) showed that patients with coronary 
heart disease and DM exhibited more severe disease than those 
without. For example, the rates of severe versus nonsevere diseases 
were 5.8% vs. 1.8% among the patients with coronary heart disease, 
23.7% vs. 13.4% among those with hypertension, and 16.2% vs. 
5.7% among those with DM.19

A meta-analysis of six studies that included a total of 1,527 pa-
tients with COVID-19 reported the prevalence rates of hyperten-
sion, CVD, and DM as 17.1%, 16.4%, and 9.7%, respectively.20 In a 
retrospective case series study in Lombardy, Italy, the most com-
mon underlying medical conditions among patients admitted to 
the ICU with COVID-19 were hypertension (49%), CVD (21%), 
and DM (17%).21 According to the data from the Italian National 
Institute of Health, the fatality rate of COVID-19 was 35.5% in pa-
tients with DM.22 Early data from the US Centers for Disease Con-
trol and Prevention on March 28, 2020, reported that DM was the 
most prevalent health condition (10.9% prevalence) in people in-
fected with SARS-CoV-2. The prevalence of DM was 32% among 
patients admitted at ICU.23 In contrast, an epidemiological data re-
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ported that patients with DM are not at higher risk of SARS-CoV-2 
infection than the general population.22

Glucose and glutamine are good sources of energy for viruses.35 
A high glucose condition affects immune function, and conversely, 
dysregulated immune status is linked to macrovascular complica-
tions.36,37 A high blood glucose level in people with DM may pro-
vide a favorable environment for viruses to proliferate. In addition, 
infection with SARS CoV-1 has been reported to cause hyperglyce-
mia in people without preexisting DM.38 It is possible that DM, 

particularly when not well controlled, may increase the risk of com-
plications arising from COVID-19 and the risk of death.21,39

POTENTIAL LINK BETWEEN COVID-19 
AND OBESITY

In addition to old age, smoking, and underlying CVD and DM, 
obesity is considered to be a risk factor for COVID-19 (Fig. 1). 
Several factors may affect the relationship between COVID-19 and 

Table 1. Summary of the literature on the clinical implications of obesity in the prognosis and severity of COVID-19

Study (year) Country Total no. of patients Patient with obesity, n (%) BMI cutoff Summary of results

Petrilli et al. (2020)24 US 5,279 BMI ≥ 30 kg/m2: 1,865 (35.3),  
30.0–39.9 kg/m2: 1,554 (29.4), 
≥ 40 kg/m2: 311 (5.9)

≥ 30 kg/m2 (30.0–39.9 kg/m2, 
≥ 40 kg/m2)

Increased risk for hospital admission in BMI  
≥ 40 kg/m2 (OR, 2.5; 95% CI, 1.8–3.4);  
increased risk for critical illness in BMI  
≥ 40 kg/m2 (OR, 1.5; 95% CI, 1.0–2.2)

Klang et al. (2020)25 US 3,406 BMI 30–39.9 kg/m2: 957,  
≥ 40 kg/m2: 274

30–39.9 kg/m2

≥ 40 kg/m2
Higher mortality (OR, 5.1; 95% CI, 2.3–11.1) in BMI 

≥ 40 kg/m2

Cai et al. (2020)26 China  383  41 (10.7) Overweight: 24.0–27.9 kg/m2, 
obesity: ≥ 28 kg/m2

Increased disease severity of COVID-19: OR, 1.84; 
95% CI, 0.99–3.43; in overweight: OR, 3.40; 95% 
CI, 1.40–2.86 

Caussy et al. (2020)27 France  291  33 (11.3) Severe obesity: ≥ 35 kg/m2 Higher requirement for IMV in patients with severe 
obesity compared to lean patients (81.8% vs. 
41.9%, P= 0.001)

Huang et al. (2020)28 China  202 24 (14.0) ≥ 28 kg/m2 Increased severity of COVID-19 in BMI  
≥ 28 kg/m2 (OR, 9.22; 95% CI, 2.73–31.13) 

Palaiodimos et al. 
(2020)29

US  200 BMI 25–34 kg/m2: 116 (58),  
≥ 35 kg/m2: 46 (23)

< 25 kg/m2

25–34 kg/m2

≥ 35 kg/m2 

Higher in-hospital mortality for BMI ≥ 35 kg/m2 (OR, 
3.78; 95% CI, 1.45–9.83; vs. BMI 25–34 kg/m2)

Ong et al. (2020)30 Singapore  182 BMI 25–30 kg/m2: 29 (31.9),  
30–35 kg/m2: 7 (7.7),  
> 35 kg/m2: 4 (4.4)

< 25 kg/m2 
≥ 25 kg/m2

Higher disease severity of COVID-19 in BMI  
≥ 25 kg/m2 

Simonnet et al. 
(2020)7

France  124   59 (47.5) Obesity: BMI > 30 kg/m2 Higher requirement for IMV in higher BMI (P< 0.01), 
being greatest in patients with BMI > 35 kg/m2 
(85.7%)

Peng et al. (2020)31 China  112   33 (29.5) Obesity: BMI > 25 kg/m2 Higher proportion of in BMI > 25 kg/m2 in mortality 
cases compared to non-mortality cases (88.24% 
vs. 18.95%, P< 0.001)

Kalligeros et al. 
(2020)8

US   103   49 (47.5) Obesity: BMI ≥ 30 kg/m2,  
severe obesity: ≥ 35 kg/m2   

Higher ICU admission (OR, 5.39; 95% CI, 1.13–25.64) 
in severe obesity; increased IMV requirement in 
obesity (OR, 6.85; 95% CI, 1.05–44.82) and in  
severe obesity (OR, 9.99; 95% CI, 1.39–71.69)

Kim et al. (2020)9 Korea    28    5 (17.9) Obesity: > 30 kg/m2 There were no data about impact of obesity on  
COVID-19.

Zheng et al. (2020)10 China    66   45 (68.2) Obesity: > 25 kg/m2 More severe COVID-19 illness in obesity and fatty 
liver disease (OR, 5.8; 95% CI, 1.19–27.91)

Bhatraju et al. 
(2020)32

US    24   13 (54.2) BMI of 23 patients were given. High ICU admission rate (56.5%) in patients with  
BMI > 30 kg/m2

Broderick et al. 
(2020)33

UK   10   9 (90) > 40 kg/m2 High tracheostomy rate in the weaning phase (90%) 
in patients with BMI > 30 kg/m2 

Sutin et al. (2020)34 US 2,094 587 (28) ≥ 30 kg/m2 BMI was not related to concern about COVID-19.

COVID-19, coronavirus disease 2019; BMI, body mass index; OR, odds ratio; CI, confidence interval; IMV, invasive mechanical ventilation; ICU, intensive care unit.
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obesity. Studies have reported that the immune system is frequently 
compromised in people with obesity and that COVID-19 affects 
the immune system, and these links may also worsen the complica-
tions of obesity.55,56 Of note, an excess production of interleukin 6 
(IL-6) and other cytokines released in response to COVID-19 can 
induce a “cytokine storm” (hypercytokinemia), which is believed 
to increase the fatality of COVID-19.57 COVID-19 can also prog-
ress to severe respiratory illness and hypoxia, which may predis-
pose people to being immobile and to gaining weight.

Increased risk of infection and inflammation in people 
with obesity

Obesity represents a state of chronic low-grade inflammation. 
Hyperplastic or hypertrophied adipose tissues directly secret vari-
ous inflammatory products (Fig. 1), such as inflammatory cyto-
kines, transforming growth factor-β, adipokines, monocyte che-
moattractant protein 1 (MCP1), C-X-C motif chemokine ligand 5, 
hemostatic proteins, proteins affecting blood pressure, and angio-
genic molecules.58,59 The main inflammatory cytokines derived 
from adipose tissues are tumor necrosis factor α (TNF-α), IL-6, 
and IL-1. Increased TNF-α level in people with obesity reflects a 

Figure 1. Potential mechanisms linking obesity to the vulnerability and severity of coronavirus disease 2019 (COVID-19). *Possibly related to the closing of public and pri-
vate facilities such as community health centers, gyms, swimming pools, parks, and schools on the basis of quarantine strategies during the COVID-19 pandemic; †Possibly 
related to the quarantine policies and financial effects during the COVID-19 pandemic. Socioeconomic factors: ↓physical activity,40 ↓opportunities for exercise,41 ↑unhealthy 
food consumption.11 Systemic factors: ↑inflammatory cytokine production,42-44 compromised immune system,45 ↑insulin resistance,46 impaired glucose regulation,46 ↓cardiac 
function,47 ↓tissue perfusion,48 activation of renin–angiotensin system.49,50 Biomechanical factors: ↓lung compliance,51 ↓functional residual capacity,51 ↑airway hyperre-
sponsiveness,52 ↑small airway collapse,52 ↑esophageal and gastric pressure,53 ↑obstructive sleep apnea,54 ↑hypoxemia.54 CVD, cardiovascular disease; HT, hypertension; 
NAFLD, nonalcoholic fatty liver disease; DM, diabetes mellitus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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potential role of this cytokine in obesity-associated inflammation, 
particularly insulin resistance. IL-1 can activate transcription factors 
such as nuclear factor kappa-B (NF-κB), which increase inflamma-
tory signaling and overexpression of vascular endothelial growth 
factor. Increased IL-6 level in obesity plays an important role in in-
flammation-associated carcinogenesis through the Janus kinase sig-
nal transducer and activator of transcription signaling pathway.60 In 
addition, IL-8, IL-10, interferon-gamma (IFN-γ), and inducible 
protein 10 are associated with obesity.42 The delayed IFN responses 
during persistent chronic inflammation and obesogenesis may re-
flect reciprocal causality between obesity and virus susceptibility.43 
Many cytokines released by dysfunctional hypertrophic adipocytes 
in obesity increase the recruitment of macrophages, which produce 
high amounts of proinflammatory molecules.

A cumulative effect of chronic inflammation and hypercytokin-
emia seems to bring about a hyperinflammatory response through 
macrophage active syndrome, especially in patients with severe 

COVID-19 (Fig. 2).44 Inflammation subsequently leads to hypoxia 
and ischemia, which results in an oxidative stress state involving re-
lease of inflammatory proteins and reactive oxygen species that im-
pair mitochondrial function. As a result, protein synthesis by hy-
pertrophic and hypoxic white adipocytes is altered toward the pro-
duction of cytokines and other inflammatory proteins, which may 
lead to metabolic disease.61,62 A vicious cycle between elevated re-
lease of cytokines and a state of increased metabolic inflammation, 
which leads to cytokine storm, occurs in patients infected with 
SARS-CoV-2 (Fig. 2). In patients with COVID-19, cytokine storm 
has been proposed to be the cause of the multiorgan failure in pa-
tients with severe disease.63,64 For example, hyperglycemia was re-
ported in 51% of patients with SARS-CoV-2 infection.65 Hypergly-
cemia or type 2 DM, which is closely associated with obesity, has 
been suggested as an independent predictor of poor prognosis in 
patients with SARS-CoV-2.66

Several mechanisms have been proposed to explain how SARS-

Figure 2. Potential processes after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with obesity. COVID-19, coronavirus disease 2019. 
References: ↓lung function,51 interstitial lung damage68; ↑metabolic rate,69 ↑tissue hypoxia70; ↑blood glucose concentration,46 ↑glucotoxicity71; ↑thromboembolic risk,72 deep 
vein thrombosis & pulmonary embolism73; immune modulation45; ↑inflammation,42-44,60 ↑systemic inflammation42-44,60; ↑cytokine production,42,43,60 ↑oxidative stress and cyto-
kine storm.74
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CoV-2 infection induces inflammation and promotes insulin resis-
tance (Fig. 2).46 Patients with COVID-19 exhibit increased produc-
tion and secretion of inflammatory markers, such as C-reactive 
protein (CRP), D-dimer, ferritin, and IL-6.67 In general, virus infec-
tion increases IL-6 levels and this increase is associated with in-
creased risk of diabetic complications.75 Given its proinflammatory 
role in innate immunity, IL-6 level may correlate with disease sever-
ity and a procoagulant profile.76 By increasing oxidative stress, IL-6 
can damage proteins, lipids, and DNA, and this damage may alter 
the organism’s structure and function. Viral-induced production of 
IFN-γ by natural killer cells causes insulin resistance in myocytes 
by downregulating insulin receptor transcription, thus causing in-
sulin resistance.46

Compromised immune system in people with obesity
The mechanisms linking the poor prognosis of COVID-19 with 

obesity overlap with the pathways that regulate immune function 
(Fig. 2). Obesity leads to a state of chronic, low-grade inflammation 
that is associated with infiltration of inflammatory cells into adipose 
tissue under conditions of overnutrition.77,78 People with obesity 
have altered innate and adaptive immune responses, which are 
characterized by a state of chronic and low-grade inflammation and 
a higher circulating concentration of proinflammatory leptin and 
lower concentration of anti-inflammatory adiponectin.55 Consistent 
with this unfavorable hormone milieu, obesity alone can impair the 
immune responses to microbial agents, such as blunted macrophage 
activation and proinflammatory cytokine production upon macro-
phage stimulation.77 This reduced macrophage activation after ex-
posure to an antigen may explain the poor vaccination success rate 
observed in people with obesity.79 B and T cell responses are also 
impaired in people with obesity, and this can increase the suscepti-
bility to and delay the resolution of viral infection.77 Diet-induced 
obesity has been shown to impair memory CD8+ T-cell responses 
to influenza virus infection, which resulted in increased mortality 
and viral titers in the lung, and worsened lung pathology.80

Physical inactivity is another important problem among people 
with obesity (Fig. 2). Reduced physical activity by itself40 or medi-
ated by insulin resistance81 has been reported to impair the immune 
response to microbial agents at several steps, including macrophage 
activation and inhibition of proinflammatory cytokines. Obesity is 

associated with accelerated immune dysregulation, which may re-
late indirectly to the COVID-19 prognosis. The effects of obesity 
on immune function may be important to COVID-19 susceptibili-
ty and severity.

Proinflammatory cytokines of the T helper 1 signature are 
known to promote insulin resistance in obesity. Šestan et al.46 re-
ported that virus-induced IFN-γ increases muscle insulin resistance 
and anti-viral CD8+ T-cell responses. Virus-induced IFN-γ may di-
rectly target skeletal muscle by downregulating its insulin receptors. 
Hyperinsulinemia increases antiviral immunity through direct 
stimulation of CD8+ effector T-cell function. In prediabetic mice 
with hepatic insulin resistance caused by diet-induced obesity, in-
fection resulted in loss of glycemic control.46 Therefore, upon en-
countering pathogens, the immune system transiently reduces in-
sulin sensitivity of skeletal muscle to promote antiviral immunity 
and induce hyperinsulinemia, which result in glucose intolerance.

Taken together, these findings suggest that obesity is associated 
with accelerated immune system aging and/or dysregulation and 
that these changes may relate indirectly to the COVID-19 progno-
sis. The immune modulation induced by obesity may be important 
to the susceptibility and severity of COVID-19 (Fig. 2).

Implication of alterations in the renin–angiotensin 
system associated with obesity during the COVID-19 
pandemic

The renin–angiotensin system (RAS) appears to be activated in 
people with obesity.49,50 Normally, when blood flow decreases to 
the kidneys, the juxtaglomerular cells of the kidneys release renin, 
which activates the RAS.82 In obesity, there is inappropriate activa-
tion of the RAS in the context of increased sodium intake, sodium/
water retention, central blood volume, and blood pressure (Fig. 1).49 
This metabolic dysregulation is associated with the expansion in 
visceral adipose tissue content, which leads to increased production 
of angiotensinogen (up to 30% of circulating angiotensinogen) and 
possibly elevated plasma renin activity.49,50 Massiera et al.83 showed 
that angiotensinogen-deficient mice exhibit impaired weight gain, 
which supports the association between obesity and the RAS.

A large amount of visceral adipose tissue induces release of insu-
lin, which activates angiotensin type 1 receptors and influences the 
release of TNF-α and IL-6 from adipocytes, resulting in activation 
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of the RAS pathway.84 Of note, the organ involvement of SARS 
correlates with the organ expression of ACE2. In addition, the lo-
calization of ACE2 expression in the endocrine pancreas suggests 
that coronavirus enters islets using ACE2 as its receptor and dam-
ages islets, which leads to hyperglycemia.38 These data suggest that 
the RAS may be involved in the association between obesity and 
COVID-19.

Other practical considerations
People with obesity might be at a disadvantage after admission 

to the hospital or ICU, or when given medications in the ICU, 
which might contribute to their increased all-cause mortality. Older 
age and comorbidities such as CVD and DM can increase the se-
verity of COVID-19, and other factors, such as use of steroid, can 
increase the amount of weight gained in people with obesity.84

Wearing proper masks is an important strategy to stop the spread 
of SARS-CoV-2.85 However, masks made in only one size may not 
be effective for people of different body sizes. For this reason, mask 
fitting tests for N95 masks are now used in some hospitals. In addi-
tion, people with morbid obesity can have difficulty with mask 
ventilation.86 The facial features of people with obesity may differ 
from those without,87,88 and it may be more difficult to find the 
right mask size for people with obesity.

Social distancing is recommended as the most effective way of 
slowing the spread of COVID-19. In a physically identical space, 
larger objects will be placed closer to each other. For this reason, it 
may be difficult for people with obesity to maintain social distance 
from other people, which may increase the risk of exposure to the 
virus. People with obesity tend to spend less time in work, recre-
ation, and rest activities, and more time in activities of daily living 
than do those without obesity (Fig. 1).41 Restricting outdoor and 
indoor sports activities may have a greater impact on obese popula-
tions who are less likely to be physically active. The unprecedented 
boom in delivery industry, such as food-delivery services, may also 
contribute to the adoption of an unhealthy diet, which may have a 
stronger effect on people with obesity. Special attention to lifestyle 
factors, such as a healthy diet, may be needed for people with obe-
sity and COVID-19.

THERAPEUTIC CONSIDERATIONS FOR 
PEOPLE WITH OBESITY AND  

OBESITY-RELATED DISORDERS

Glucagon like peptide-1 analogues
Glucagon-like peptide-1 (GLP1) analogues have an anti-inflam-

matory effect. For example, the mRNA levels of GLP1 receptors 
are downregulated in monocytes that have differentiated into mac-
rophages.89 Treatment with exendin-4 decreases monocyte/macro-
phage accumulation and mRNA expression of inflammatory mark-
ers such as TNF-α and MCP1 in the arterial wall of ApoE–/– mice.90 
Overexpression of GLP1 in balloon-injured vessels reduces mono-
cyte infiltration and improves reendothelialization, which contrib-
ute to reduced neointimal formation.91 In mice fed a high-fat diet, 
treatment with liraglutide (30 μg/kg twice daily) decreases TNF-α 
expression and translocation of its downstream signal NF-κB–
p6592 and adhesion of human monocytes to TNF-α-activated hu-
man endothelial cells.92 In vitro MCP1 expression and NF-κB–p65 
translocation also decrease significantly after GLP1 treatment.91 
GLP1 analogues can shift the polarization profile of macrophages 
from M1 toward M2,93 supporting the anti-inflammatory proper-
ties of GLP1 analogues.

Liraglutide therapy has an anti-inflammatory effect by increasing 
nitric oxide production in endothelial cells.93 Liraglutide and sema-
glutide treatment reduce the development of atherosclerosis 
through mechanisms involving inflammatory pathways in ApoE–/– 
and LDL receptor–/– mice.94 In humans, GLP1 and GLP1 ana-
logues have been shown to be beneficial for the treatment of 
chronic inflammatory diseases such as nonalcoholic fatty liver dis-
ease,95 atherosclerosis,91 and neurodegenerative disorders.96 Taken 
together, these findings suggest that GLP1 analogues have a protec-
tive role against atherosclerosis that is mediated by a dampening of 
the inflammatory pathways.97 Therefore, alleviation of inflammato-
ry processes in the vascular system by these agents is a rationale for 
the recommendation to prescribe GLP1 analogues during the CO-
VID-19 pandemic.

Dipeptidyl peptidase-4 enzyme and inhibitors
Dipeptidyl peptidase-4 (DPP4) inhibitors are one of the most 

frequently prescribed medications for patients with DM regardless 
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of BMI. DPP4 inhibitors have both positive and negative effects on 
the immune system. For example, the use of DPP4 inhibitors was 
reported to increase the rate of certain types of infection,98 but ba-
sic and clinical studies support its anti-inflammatory properties.99

DPP4 are oligopeptides and play an important role in various bi-
ological processes, such as proliferation, T-cell immunity, and glu-
cose homeostasis.100 The interaction between coronaviruses and 
this cellular type-II transmembrane protein DPP4 (CD26) has 
generated great interest recently. DPP4 serves as the receptor for 
Middle East respiratory syndrome coronavirus (MERS-CoV) in 
the same way as ACE2 is the receptor for SARS-CoV and SARS-
CoV-2.101 Experimental studies have suggested that certain poly-
morphisms of DPP4 are associated with a reduced rate of MERS-
CoV infection.102 This finding may explain the perplexing absence 
of MERS-CoV cases in Africa, despite the presence of the virus in 
camels, presumably because of the frequent presence of protective 
polymorphisms of DPP4 in Africans.102 In one in vitro study, sita-
gliptin, vildagliptin, and saxagliptin could not block the entry of 
coronaviruses into cells.103 Although ACE2 is the main receptor for 
SARS-CoV-2, a recent modeling study did not rule out its interac-
tion with CD26 or DPP4.103 At present, there is insufficient evi-
dence either for or against the use of DPP4 inhibitors in patients 
with DM and COVID-19.104

ACE2 and potential therapeutic implications
The physiological role of ACE2 counter-regulates the renin–an-

giotensin–aldosterone system (RAAS).105 Independent of the 
RAAS, ACE2 also regulates intestinal amino acid homeostasis and 
the gut microbiome.106 In COIVD-19, ACE2 on the respiratory 
epithelium serve as a main entry of SARS-CoV-2.107 Interaction of 
SARS-CoV with ACE2 is initiated via trimers of the SARS spike 
protein, which extends into a hydrophobic pocket of the ACE2 cat-
alytic domain that is independent of its peptidase activity.108 ACE2 
is highly expressed in the lung as well as in the heart, endothelium, 
kidney, and gastrointestinal tract, and the tissue distribution of 
ACE2 overlaps with the tissue tropisms of SARS-CoV-2.109 This 
means that ACE2 expression may be implicated in the severe ill-
ness caused by COVID-19. Higher expression of ACE2 in patients 
with hypertension and CVD has been postulated as a factor that 
increases the susceptibility to SARS-CoV-2.108

By contrast, there is evidence that ACE2 may have a beneficial 
role in COVID-19. Both SARS-CoV infection and challenge with 
recombinant SARS spike protein trigger marked downregulation 
of ACE2 expression in the lung.110 Downregulation of ACE2 re-
sults in susceptibility of lung injury111 and unopposed RAAS acti-
vation.112 In animal models, elimination of ACE2 was associated 
with severe lung injury, which could be recovered by recombinant 
ACE2 protein.111 In addition, ACE2-knockout mice exhibited car-
diac dysfunction, which could be reversed by concomitant deletion 
of ACE.113 Reduced ACE2 expression in cardiac injury has been 
confirmed in SARS infection114 and myocardial infarction.111 Given 
that the involvement of the cardiopulmonary system is a key factor 
for the severity of COVID-19, ACE2 may play a role in the prog-
nosis of COVID-19.

People with obesity often also develop hypertension or heart 
failure.112 A large multicenter study has confirmed that hyperten-
sion can increase the risk of severe COVID-19 by as much as 1.7 
times.19 RAAS inhibitors are the mainstay for treatment of hyper-
tension and heart failure. Because RAAS inhibitors can increase the 
tissue expression of ACE2 in animal models,115 RAAS inhibitors 
may increase the susceptibility to COVID-19 and its severity after 
exposure to SARS-CoV-2.108 However, all classes of antihyperten-
sive medication including RAAS inhibitors are not associated with 
a substantial increase in the risk of severe illness in COVID-19.116 
The effect of RAAS inhibitors on ACE2 level or activity in human 
studies is controversial. Generally, ACE inhibition does not affect 
ACE2-directed angiotensin II metabolism,117,118 and only specific 
RAAS inhibitors appear to increase the ACE2 level.119,120 By con-
trast, RAAS inhibitors may potentiate the protective function of 
ACE2 against cardiopulmonary injury.121 A recent study of 417 
COVID-19 patients showed that ACE inhibitors or angiotensin re-
ceptor blocker therapy was associated with a lower rate of severe 
disease, less systemic inflammation, and lower peak viral load com-
pared with the use of other antihypertensive drugs.122

Despite uncertainties regarding RAAS inhibitors on the infectiv-
ity of SARS-CoV-2, there is clear potential for harm related to the 
withdrawal of RAAS inhibitors in patients concerned that RAAS 
inhibitors may be harmful in those with an unstable status, such as 
heart failure123 or myocardial infaction.124 Experts strongly recom-
mend that patients should not stop taking their RAAS inhibitor 
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during the COVID-19 pandemic.125

Hydroxymethylglutaryl-CoA reductase inhibitors
Hydroxymethylglutaryl-CoA reductase inhibitors or statins have 

anti-inflammatory properties. In the Justification for the Use of 
Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin 
trial, rosuvastatin reduced the relative risk of major cardiovascular 
events by 44% in people without hyperlipidemia but with elevated 
high-sensitivity CRP level.126 In a viral pneumonia mouse model, 
simvastatin directly modulated antiviral inflammatory responses in 
lung tissues.127 In that study, simvastatin treatment attenuated air-
way inflammation, such as RANTES (regulated on activation, nor-
mal T-cell expressed and secreted) expression and neutrophil re-
cruitments.127 Rosuvastatin therapy also has additional benefits in-
cluding anti-inflammatory effects beyond the lipid-lowering prop-
erty, which suggests that this drug has pleiotropic effects.128 These 
data support the favorable effects of statins on respiratory diseas-
es.129 Statin therapy should be continued during the COVID-19 
pandemic if there is no definite contraindication.

CONCLUSION

During the COVID-19 pandemic, people with obesity should 
maintain a heathy lifestyle. Regular exercise is essential to maintain-
ing immunity.130 Healthy eating is also crucial for strengthening the 
immune system and reducing inflammation.130 People with obesity 
who experience symptoms such as cough, sputum, fever, or a sud-
den increase in blood glucose level should consult their physician 
immediately. The clinical guidelines for the management of obesi-
ty-related disorders should be followed closely. Health-care provid-
ers should make sure that their patients with obesity do not stop 
taking antiobesity agents, particularly GLP1 analogues, or medica-
tions for obesity-related disorders such as statin and ACE inhibitors 
or angiotensin receptor blockers, provided there is no contraindica-
tion to these patients taking these agents.

In conclusion, COVID-19 is a global pandemic and may pose 
considerable health hazard, especially for people with obesity. Obe-
sity is a risk factor for poor outcomes of viral infection because of 
the deleterious effects of obesity on the immune system, which can 
lead to mortality in people with obesity with COVID-19. During 

the COVID-19 pandemic, it is important for people with obesity 
to maintain a healthy lifestyle, and their medications should be ad-
justed properly. Close monitoring of patients with obesity is re-
quired because of the restrictions imposed by the quarantine poli-
cies on physical activity and healthy eating. The optimal manage-
ment strategy for these people warrants further investigation. 
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