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A B S T R A C T

Process models are a growing tool for pharmaceutical manufacturing process design and control. The Industry
4.0 paradigm promises to increase the amount of data available to understand manufacturing processes. Tools
such as Artificial Intelligence (AI) might accelerate process development and allow better predictions of process
trajectories. Several examples of process improvements realized through the application of process models have
been shown in lyophilization, chromatography, fluid bed drying, bioreactor control, continuous direct
compression, and wet granulation. An important consideration of implementing a process model is determining
the impact of the model on the quality of the product and the risks associated with model maintenance over the
product lifecycle. Several regulatory documents address risk-based considerations for process models. This work
discusses existing risk-based frameworks for model validation and lifecycle maintenance that could aid the
adoption of process models in pharmaceutical manufacturing. Hypothetical case studies illustrate the implica-
tions of applying a model risk framework to facilitate model validation and lifecycle maintenance in the
manufacture of pharmaceuticals and biological products.

1. Introduction

In 2002, FDA laid the foundation for implementation of a modern,
risk-based pharmaceutical quality assessment (U.S. Food and Drug
Administration, 2004). Part of FDA’s initiative encouraged manufac-
turers to use the latest scientific advances in pharmaceutical
manufacturing technology throughout the lifecycle of a product to
improve the efficiency of developing and manufacturing drugs. This has
also been encouraged by EU as part of the EU directive 2001/83 and
various CHMP (Committee for Medicinal Products for Human Use)
guidelines e.g., CHMP guideline on manufacture of the finished dosage
form (EU CHMP, 2015). As scientific and engineering knowledge about
pharmaceutical manufacturing has grown, the use of models to aid
process development, enhance process control and forecast future pro-
cess and product quality outcomes has increased. The types of models

being developed have also evolved. Models can be broadly categorized
into three main types (Kourti et al., 2014).

• Mechanistic models (also known as first principles models or theo-
retical models) are mathematical representations of physical,
chemical, or biological phenomena which drive processes.

• Empirical models build on available data which may be collected
with intent (causal) or available as historical process data. Artificial
Intelligence (AI) based models that are mainly based on heuristics
are categorized as empirical models.

• Hybrid models bridge theoretical knowledge with available data sets
to generate a working representation of a process. An AI model
(Executive Order 14110 of October 30, 2023) coupled with a
mechanistic model is an example of a hybrid model. (See Fig. 1.)
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The type of model to apply to a process can depend on the modeling
objective, available data, and scientific understanding. Models have
been implemented for developing and controlling processes and sub-
mitted in regulatory submissions. Such models include, for example but
are not limited to, multivariate response surface models to characterize a
process design space, chemometric models as part of Process Analytical
Technology (PAT) for process monitoring and product release (Chat-
terjee et al., 2017), and residence time distribution (RTD) models to
monitor material traceability, set feeder limits and aid in diversion of
non-conforming material in continuous manufacturing processes for
solid oral products.

Pharmaceutical manufacturing is moving towards the Industry 4.0
paradigm, which is characterized by a high degree of digital connec-
tivity and in which modeling might be an integral component of process
monitoring and control (Arden et al., 2021). The move towards Industry
4.0 increases the availability of plant-wide information and data-rich
processes, that can, for example, enable model-based process design
and scale-up, process monitoring and fault detection, and advanced
process control. This has opened the possibility of using models to create
a digital twin of the manufacturing process, which can serve as a virtual
representation of the process that mimics its behavior.

Even with the expanded use of process models, stakeholders report
challenges with the development, implementation, verification/valida-
tion, registration, and lifecycle management of models (BioPhorum,
2021). Regulatory policy documents provide some information to sup-
port the development, validation, and submission of models; such doc-
uments include: (a) the International Council for Harmonization of
Technical Requirements for Pharmaceuticals for Human Use (ICH)
Quality Implementation Working Group Points to Consider (R2), Dec
2011 (ICH quality implementation working group - points to consider (R2) -
ICH-endorsed guide for ICH Q8/Q9/Q10 implementation, 2011a), (b) FDA
guidance for industry on Development and Submission of Near Infrared

Analytical Procedures (FDA NIR guidance) (U.S. Food and Drug,
Administration Center for Drug Evaluation and Research, 2021a), (c) the
EMA guideline on the use of near infrared spectroscopy by the phar-
maceutical industry and the data requirements for new submissions and
variations (EMA CHMP, 2014a), (d) the EMA Preliminary QIG Consid-
erations regarding Pharmaceutical Process Models (EMA Preliminary
QIG Considerations regarding Pharmaceutical 5 Process Models, 2024),
and (e) ICH Q13: Continuous Manufacturing of Drug Substances and
Drug Products (ICH, 2023). However, other risk frameworks consider
the model’s risk and may prove helpful in guiding the development,
validation, and maintenance of process models, such as American So-
ciety Mechanical Engineers Verification and Validation 40 standard.
This paper provides: (i) a review of case studies from literature on the
application of process models for pharmaceutical process development,
monitoring, and control, (ii) a review of existing risk frameworks for
process models, and (iii) a speculative discussion of the application of a
risk-based framework to several process model case studies.

2. Applications of process models for pharmaceutical
manufacturing

Process models are increasingly utilized to accelerate and improve
process design, scale-up, site transfer, process monitoring, and process
control. The following examples illustrate how process models have
been applied across different types of pharmaceutical manufacturing
processes.

2.1. Lyophilization process design and scale-up

Lyophilization is a common processing operation to increase the
shelf-life of labile drug products. Primary drying is the rate-limiting step
of the lyophilization process. The optimum primary drying cycle de-
pends upon formulation, and primary container, and often requires an
iterative and resource-intensive experimental approach for process
design optimization, and scale-up. Technical runs to manage the risk
during the scale-up of biological products can cost up to $1MM/run for
material, facility, resources, and testing (Tchessalov et al., 2021a).
Hybrid models have been developed and published for the primary
drying phase of lyophilization based on fundamental heat and mass
transfer equations (Tchessalov et al., 2021b). A modeling workflow
described by an industry consortium consisted of a non-steady state one-
dimensional primary drying model, determination of vial heat transfer
coefficients, determination of mass transfer coefficients, and establish-
ment of equipment limitations. This model also includes an empirical
parameter to represent the difference between primary drying observed
in laboratory and commercial manufacturing environments, needed due
to differences in supercooling. Industry has reported several cases where
primary drying models have been used to support development and
scale up (Tchessalov et al., 2021c; Zhu et al., 2018). In one such case, a
company was able to optimize lyophilization cycle parameters shelf
temperature, chamber pressure, and primary drying time by simulating
multiple process conditions. The model built on small-scale experiments
and predicted the process conditions for the scaled-up commercial scale
equipment. The model predictions were confirmed with a single tech-
nical run, and the optimized process reduced the commercial drying
cycle time from 80 to 42 h (Tchessalov et al., 2021d).

2.2. Chromatography process design and scale-up

In the biopharmaceutical industry, the development and character-
ization of chromatography processes are typically based on statistical
models derived from experimental studies. The resulting models might
fail to predict, for example, non-linear behavior in preparative chro-
matography with complex protein feed streams and can be limited to the
conditions used to develop the model. The fundamentals of mechanistic
models for ion-exchange chromatography for proteins are well-

Fig. 1. Hypothetical model risk assessment of process model case studies using
the ASME V&V 40 framework. The y-axis captures decision consequences, the
significance of an adverse outcome that could result from an incorrect decision,
with increasing consequences moving up along the y-axis. The x-axis captures
model influence, the contribution of the model to the decision relative to other
available data, with increasing influences moving to the right along the x-axis.
The blue circles denote the result of the hypothetical risk assessment for each
case study. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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established and the application of these models continues to advance for
complex proteins such as monoclonal antibodies (Rischawy et al.,
2019a). In such, transport dispersive models describe mass transfer and
steric mass action models describe protein adsorption and can account
for variation in salt concentration and pH, which are typically required
for industrial applications. Hybrid models combining a mechanistic
isotherm with data driven parameters might also be used to account for
the complex interactions between the resin and protein (Ding et al.,
2023). Advances in the modeling of protein adsorption may even be able
to predict non-ideal peak shapes observed at high protein concentrations
by accounting for protein-protein interactions (Kumar et al., 2021). One
of the modeling challenges for industrial applications (e.g., pH-
dependent multicomponent steric mass action isotherm models is the
large number of parameters that need to be estimated. Inverse calibra-
tion approaches allow for the estimation of unknown parameters but can
lead to ill conditioning that can result in wide ranges for estimated pa-
rameters. Calibration approaches have been proposed in the literature to
address this issue by reducing model uncertainty and increasing the
model’s predictive power (Rischawy et al., 2019b; Saleh et al., 2020a).
In one industrial application, the process model approach was used to
identify critical process parameters for a cation exchange chromatog-
raphy (CEX) of a bispecific monoclonal antibody (mAb). CEX is a typical
polishing step that is relatively work-intensive and often the most crit-
ical unit operation to meet product quality goals. Model-based process
development approaches can be especially impactful for complex
monoclonal antibody formats, for which conditions from previous pro-
cess development programs may not apply (Rischawy et al., 2019c). In
another application of using mechanistic modeling to scale-up CEX
process steps (Saleh et al., 2020b), the model was a root cause investi-
gation tool that offered improvements over typically used experimental
scale-down models by capturing effects of bed height, loading density,
feed composition, and mobile phase properties (Saleh et al., 2020c).

2.3. Continuous direct compression process design

Flowsheet models for continuous manufacturing processes not only
incorporate models of the individual unit operations, but also account
for interactions between unit operations. Academic, industry, and reg-
ulatory groups have published examples of flowsheet models of
continuous manufacturing processes for solid oral drug products (Mor-
eno-Benito et al., 2022a; Tian et al., 2019; Galbraith et al., 2019; Garcia-
Munoz et al., 2017; Wang et al., 2017; Rogers et al., 2014). In one re-
ported case, a flowsheet model of a continuous direct compression line
for a solid drug product was developed, which combined: (i) mass bal-
ances, (ii) RTD models to account for composition dynamics, and (iii)
empirical models to predict blend and tablet properties (Moreno-Benito
et al., 2022b). The connection between the RTD and the flowsheet model
with operating conditions was based on Discrete Element Models (DEM),
which is based on the numerical simulation of the motion and forces on
each particle individually. This allows the RTD to adapt with changes in
the process during a simulation. Additionally, the flowsheet’s empirical
model obtained from process data captures changes in bulk density of
intermediate blends as a function of process variables and material
properties. This bulk density has a significant impact on quality attri-
butes like tablet mass and hardness. The flowsheet model was used to
optimize the design space and de-risk product and process development
considering both steady state operation and the dynamic behavior of the
process. To do this, simulations were used: (i) to conduct a virtual design
of experiments for a range of operating conditions at steady state
operation, (ii) to assess the impact of high and low frequency compo-
sition disturbances, and (iii) to perform sensitivity analysis of material
properties and operating conditions on quality attributes. Simulations
were performed with different probability functions to describe the most
appropriate operating ranges, uncertainty levels, and potential vari-
ability in the inputs. The model results were used for optimizing the
formulation and process design, while reducing the number of runs

necessary in experimental campaigns. This led to active pharmaceutical
ingredient (API) savings, fewer resource requirements, and faster pro-
cess development.

2.4. Continuous direct compression process monitoring and control

Process models can also be used as part of the control strategy for
process monitoring and control. An RTD-based process model was
developed and validated for monitoring API concentration in a contin-
uous direct compression control strategy. The process model was based
on a tank-in-series RTD model with empirical equations that related
process input parameters to the output mean residence time (Hurley
et al., 2022a). The process model was validated for GMP manufacturing
and was able to achieve a prediction error of 1.4% for tablet API con-
centration as measured by high performance liquid chromatography.
The model was incorporated into the control strategy, which involved
updating product rejection limits to incorporate different sources of
error (Hurley et al., 2022b). Another approach for implementing a soft
sensor for monitoring API concentration utilized a flowsheet of mech-
anistic models based onmass balance operations for each unit operation.
Fault detection logic was incorporated to identify certain operations
events and re-adjust the model accordingly. The output of the model was
the API concentration leaving each unit operation and confidence
bounds for the estimate (Kamyar et al., 2021a). The model was validated
for use in a commercial manufacturing process; across a wide range of
operating conditions and material properties the prediction error was
less than 1.5% at steady state. During dynamic operations the measured
API concentration fell within the model prediction confidence limits,
suggesting the confidence limits could be used as a conservative measure
of concentration during these periods (Kamyar et al., 2021b). Cogoni
et al., demonstrated how the mechanistic soft sensor can be combined
with near infrared (NIR) spectroscopy to predict API concentration for a
continuous direct compression process (Cogoni et al., 2021a). NIR
measurements are often sensitive enough to sample physical properties
caused by raw materials or process conditions, thus incorporating pro-
cess and physicochemical knowledge can increase the robustness of the
on-line API concentration estimate. This hybrid approach showed
improved accuracy, while retaining precision for perturbation detection,
when compared to offline analytical measurements (Cogoni et al.,
2021b).

2.5. Fluid bed drying process control

Soft sensors generate a signal from software instead of hardware. Soft
sensors use available material attribute and process parameter mea-
surements to predict attributes that are not measured by a physical
sensor. Once soft sensors are developed, there is the potential to incor-
porate them into a model as part of process control. For example, Lauri
Pla et al., developed a soft sensor for online prediction of moisture
content in fluid bed dryers. The soft sensor was a hybrid model where
mass and energy balances provided the form of the model, and model
parameters were calibrated from experimental data (Lauri Pla et al.,
2018a). The model used real-time temperatures, air flow, and humidity
data as inputs (Lauri Pla et al., 2018b). The model has been incorporated
into an advanced process control application wherein the moisture
prediction is used to adjust inlet air temperature and flow to maintain an
optimized drying path during the process (Huang et al., 2020a). The
advanced process control application, when implemented for a com-
mercial manufacturing process, reduced fluid bed drying cycle times by
20% and reduced variability in tablet weight and hardness by 50% and
30%, respectively (Huang et al., 2020b).

2.6. Bioreactor process control

Process intensification efforts have improved bioreactor cell den-
sities, product output, and process efficiency. Intensified processes have
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a greater nutrient demand, in particular for glucose and other metabo-
lites that can impact yield and quality. Glucose is essential for cell
metabolism and if not maintained within the target ranges can nega-
tively impact cell viability and product quality attributes (Liu, 2015).
The glucose concentration in the bioreactor can be measured in real-
time using Raman spectroscopy (Craven et al., 2014). Gibbons et al.,
reported that a Raman-based feedback control of glucose concentration
in a fed-batch bioreactor increased product titer by 25% and improved
the glycation profile for a CHO cell line in development (Gibbons et al.,
2023). An example of a biotechnology application came from Rashedi
et al., who developed an advanced process control application to
maximize cell growth and biotherapeutic production while maintaining
product quality in a fed-batch bioprocess (Rashedi et al., 2022a). The
process model was based on glucose mass balance coupled with a linear
empirical model that predicts the future states of the bioreactor based on
the previous state and the glucose level. The advanced process control
application as part of the overall control strategy that included controls
for pH, dissolved oxygen, and temperature increased yield and resulted
in fewer protein impurities over the current recipe-based control strat-
egy approach. As a result of these improvements the advanced process
control application had the potential to reduce production costs by 5%
(Rashedi et al., 2022b). Metabolic and glycosylation models have also
been used for media design and bioreactor optimization (Reddy et al.,
2023).

2.7. Continuous wet granulation process monitoring and continuous
improvement

For highly automated pharmaceutical manufacturing systems that
have many sensors connected to various unit operations to collect in-
process information, large volumes of data are generated during
routine operation. In such cases, multivariate statistical process control
tools can be employed to gain process understanding and to monitor and
control the process. In one example, multivariate statistical process
modeling by means of chemometric methods was used to monitor a
continuous wet granulation tableting process (Zomer et al., 2018a).
Models were developed for each of the different units that make up the
continuous tableting line, from material feeding and granulation up to
tablet compression. The models predicted dynamics of each system
during routine operation. The models can detect the beginning of pro-
cess issues such as i) prolonged offsets in material feeding during
granulation; ii) variable inlet air conditions and filters occlusion in the
dryer leading to uneven discharge of material for down-stream pro-
cessing; iii) filters occlusion and tear during transfer; and iv) offsets and
variability in materials discharge prior to blending. This information
was used to make corrective actions in real time when needed. In
addition, the information was leveraged retroactively to optimize the
process as a part of continual improvement (Zomer et al., 2018b).

2.8. Cell therapy products product and process design

Comprehensive multi-omics characterization (including various
analytical methods such as mass cytometry, transcriptomics, metab-
olomics, lipidomics, and secretomics) of various related cell-based
products could be used as multivariate inputs/predictors and corre-
lated to patient clinical outcomes/responses (Zylberberg et al., 2017;
Torres-Garcia et al., 2021a). De-identified patient information and
clinical outcomes pre- and post-treatment may be used to improve the
correlative models further towards identifying cell therapy product-
type-specific critical quality attributes (CQAs) that could prove useful
for quality-by-design implementation in cell manufacturing (Lipsitz
et al., 2016; Toye et al., 2021). Several data analysis approaches have
been proposed to develop predictive models between multi-omics
characterization data and clinical outcomes for such cell therapies,
which include linear/nonlinear regression, canonical correlation anal-
ysis, and supervised or unsupervised machine learning algorithms (e.g.,

principal component analysis) (Torres-Garcia et al., 2021b; Yeago et al.,
2023; Yon et al., 2022; Xu et al., 2022a). As an example, recent efforts
leveraged an image-based machine learning detection model to auto-
mate the quantification of the quality of the immunological synapse
between the chimeric antigen receptor T cells (CAR-T cells) and the
tumor antigen on glass-supported planar lipid bilayer platforms. Using
some patient samples from clinical trials, it was found that Machine
Learning (ML)-quantified CAR-T immunological synapse quality data
correlated with clinical responders and non-responders (Xu et al.,
2022b).

Research grants reviewed by the Center for Biologics Evaluation and
Research (CBER) have reported preliminary supporting information
from developed predictive models using canonical correlation analysis
(CCA) and nonlinear, symbolic regression using single-cell gene
expression level of various cell-based products as inputs/predictors and
their immunosuppressive bioactivity as output/performance (Van
Grouw et al., 2023a). Additionally, some early phase clinical studies
have indicated the utility of additional characterization of cellular
products in facilitating product and process design through data-driven
modeling (Roy et al., 2024). Such additional product characterization
may include viability, apoptosis profile, single-cell RNA transcriptomics,
broad spectrum lipidomics-metabolomics (mass spec), single-cell mass
cytometry, and performance in cell-based immunosuppression assays
(Van Grouw et al., 2023b) (Doron et al., 2020; Srinivasan et al., 2022a;
Mautner et al., 2023).

3. Risk-based frameworks for process model validation and
lifecycle maintenance

The previous section described a range of examples of process models
being used to accelerate and improve process design, scale-up, site
transfer, process monitoring, and process control. Even with these
published examples, it is recognized there is an opportunity to more
broadly adopt process models to achieve these benefits. As the science of
pharmaceutical and biological manufacturing continues to develop, this
section describes risk-based frameworks for model validation and life-
cycle maintenance that can support moving these advancements into
practice.

3.1. Existing model risk frameworks

The ICH Quality Implementation Working Group (IWG) established
the principle that the level of oversight for a model should be
commensurate with the level of risk to product quality and classified
models as high, medium, or low impact (ICH quality implementation
working group - points to consider (R2) - ICH-endorsed guide for ICH Q8/
Q9/Q10 implementation, 2011b). Based on this principle, models for
process design or product development can be considered low impact.
Models for process monitoring are typically classified as medium
impact, as there are additional mechanisms beyond the model to assess
product quality such as traditional release tests. Models that are used for
predicting a quality attribute for release of the drug product are
generally considered high impact as these models can be a significant
indicator of product quality (e.g., models that support real time release
testing). This approach can be considered a one-dimensional approach
for assessing model risk, as the risk is determined solely based on the
model’s influence on product quality decisions.

An alternative approach for determining model risk is described in
the American Society Mechanical Engineers Verification and Validation
40 (ASME V&V 40) standard (Assessing the credibility of computational
modeling through verification and validation: Application to medical
devices V&V 40, 2018a). Per this standard, model risk is the possibility
that the model may lead to a false/incorrect conclusion about process
performance that results in an adverse outcome. Assessing model risk
begins with defining the specific context of use for the model to deter-
mine the model influence. The context of use is a statement that
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describes the role of the model in relation to other data to address a
specific question of interest. Some examples of context of use:

• A crystallization population balance model used to enhance the un-
derstanding of process conditions on crystal size and yield during
process development

• A RTD model that is used for orchestrating diversion of non-
conforming material

• A near infrared spectroscopy procedure with chemometric calibra-
tion model used to measure tablet assay for product release

In the ASME standard, risk can then be assessed using a two-
dimensional approach that combines model influence with decision
consequence. Model influence is the contribution of the model to the
decision relative to other available evidence. Decision consequence is
the significance of an adverse outcome that could result from an
incorrect decision, i.e., the model’s impact on product quality (Fig. 1).

3.2. Risk-based model verification and validation

A process model is a mathematical description of an element of the
physical manufacturing process. The objective of verification is to
ensure that the mathematical model is implemented correctly and then
accurately solved. Validation is the process of assessing the degree to
which the model is an appropriate representation of the physical system.
Therefore, validation activities are principally concerned with demon-
strating the correctness of the underlying model assumptions and the
degree to which sensitivities and uncertainties of the computational
model are understood (Assessing the credibility of computational
modeling through verification and validation: Application to medical
devices V&V 40, 2018b). The evaluation of sensitivities aims at deter-
mining the degree to which the computational model outputs are sen-
sitive to the model inputs. Assessing uncertainties helps quantify the
degree to which known or assumed uncertainties in the model inputs are
propagated to uncertainties in the simulation results.

In general, the extent of model validation activities is based onmodel
risk. Validation is generally demonstrated by comparing the model
predictions with experimental data measured using a reference method.
Therefore, appropriate validation activities require attention to both the
computational model and the experimental data, along with an appro-
priately rigorous evaluation of the model results. The ASME V&V 40
describes a framework for connecting model verification and validation
activities to model risk for medical device applications (Assessing the
credibility of computational modeling through verification and valida-
tion: Application to medical devices V&V 40, 2018c). In addition, the
Center for Devices and Radiological Health at the FDA published a draft
guidance on assessing the credibility of computational models in med-
ical device submissions based on the ASME standard (Assessing the
Credibility of Computational Modeling and Simulation in Medical De-
vice Submissions: Guidance for Industry and Food and Drug Adminis-
tration Staff, 2023).

The scope of the ASME V&V 40 standard encompasses physics-based
computational models for medical device applications; however, the
framework is general enough that it might be applied in other fields such
as pharmaceutical manufacturing. For example, CDER staff published a
white paper showing how the risk-informed credibility assessment
framework described in the ASME V&V 40 standard can be applied to
physiologically-based pharmacokinetic models used for model-informed
drug development (Kuemmel et al., 2019a). CDER scientists have
applied the ASME framework to the validation of process development
models (Liu et al., 2020). The ASME V&V 40 standard has also been
applied to a variety of empirical, mechanistic, and machine learning
models used in biopharmaceutical manufacturing (Bideault et al.,
2021).

There were some challenges noted in the application of the ASME
V&V 40 framework to other disciplines. For example, different

terminology is used in various disciplines to describe model validation.
This might lead to a misunderstanding of terms like validation and
verification across disciplines (e.g., across computational science and
regulatory science communities) (Kuemmel et al., 2019b; Shepard et al.,
2015). Another challenge is translating certain validation activities
described in the standard to empirical models such as the assessment of
model form and model inputs. For example, machine learning models
may estimate the relationships between input and output variables
without the modeler programing a specific set of equations or model
form. In these cases, the assumptions are contained in the data used to
develop the empirical model. Thus, for empirical models considerations
for the training and testing data such as the representativeness of the
data for the context of use need to be incorporated. Efforts are underway
to extend this framework to Computational Modeling for Advanced
Manufacturing (VVUQ 50), Artificial Intelligence and Machine Learning
(VVUQ 70), and Pharmaceutical Products (VVUQ80) (The American
Society of Mechanical Engineers, 2024).

There have been efforts to define good modeling or simulation
practice (Erdemir et al., 2020; Rischawy et al., 2019d), to address model
development and validation challenges. FDA has noted there is oppor-
tunity to establish Good Simulation Practice to foster harmonization
across the FDA and with international regulatory bodies (U.S. Food and
Drug Administration, 2021). Good modeling practices may include, for
example, starting with a precise definition of the problem to be modeled
and the relevant performance requirements, discussion of assumptions,
then carrying out sensitivity and uncertainty analysis with the final
model, and finally documentation of all the performed activities. These
practices in general correspond with model credibility factors outlined
in the ASME V&V 40 standard.

Similar efforts are underway for the development of Good Machine
Learning Practices (GMLP) for AI models. Stakeholder feedback to a
Center for Devices and Radiological Health (CDRH) discussion paper
provided strong support for the idea and importance of GMLP (U.S. Food
and Drug Administration, 2019). In 2021, FDA in partnership with
Health Canada and MHRA published 10 guiding principles for good
machine learning practice for medical device development (U.S. Food,
and Drug Administration, Health Canada, 2021). FDA is engaged with
multiple organizations on the development of GMLP as applied to soft-
ware as a medical device (SaMD) application. Further assessment and
engagement is warranted to understand how these efforts can inform
application of AI models to pharmaceutical manufacturing.

3.3. Risk-based model maintenance

Management of changes to models that are used to support the
control strategy of a medicinal product is an integral element of the
product lifecycle. Model maintenance can be defined as a set of planned
activities over the product’s lifecycle to monitor and maintain the
model’s performance to continually ensure its suitability for its intended
purpose. After a model has been successfully implemented as a
component of the overall control strategy, it is necessary to periodically
evaluate the performance of the model to ensure it remains fit for pur-
pose. As new information becomes available over the lifecycle of the
product, updates to the model can be made as required. For example,
some data-centric models are highly sensitive to variation in model in-
puts (e.g., incoming raw material properties).

A risk-based approach for model maintenance can be designed to
account for the importance of the model in the control strategy and its
potential to affect product quality. Clear metrics for model updates can
be established depending on the impact of the model. For example, some
types of empirical models calculate diagnostics (e.g., Hotelling T-
squared) that assess how the new input data compares with the data
used to develop the model. Such diagnostic metrics can be used to
support model maintenance. Model maintenance information might
include risk-based frequency of comparing model prediction with the
reference method, triggers for model updates, and the approach for
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model recalibration. Periodic assessment of model predictions can
enable a performance-based maintenance approach in which model
outputs are specified (e.g., acceptance criteria for prediction errors and
model bias rather than focusing on model parameters) (Q12 Technical
and Regulatory Considerations for Pharmaceutical Product Lifecycle
Management Guidance for Industry, 2021).

The model maintenance approach is dependent on the type of model.
The impact of changes on process models can be determined based on
two factors (U.S. Food and Drug, Administration Center for Drug Eval-
uation and Research, 2021b):

• Impact of the change on model’s performance
• Impact of the change on product quality

In general, the level of oversight by a manufacturer for a model over
its lifecycle is dependent on its context of use and model risk, as well as
compliance with phase appropriate GMP. The model risk can be
considered in the assessment of the impact of the change on product
quality. Scientific understanding of the model along with development
and manufacturing data can be used to assess the impact of the change
on the model’s performance. The overall assessment of the impact of the
change can inform what validation activities, if any, need to be con-
ducted to ensure the process model remains suitable for the intended
use. The manufacturer then documents the assessment and the final
determination on if and how the model will be updated. It is to be noted,
that this publication does not cover considerations for regulatory noti-
fication of model updates, made throughout the product lifecycle.

4. Model risk assessment case studies

Above, we hypothesized that the ASME V&V 40 standard might be
applied in pharmaceutical manufacturing settings. Here we apply the
ASME framework to hypothetical pharmaceutical manufacturing case
studies, based on known uses of process models in literature, and
examine the determination of risk. Per the ASME V&V 40, we address
some aspects that might be relevant to establish risk-informed credi-
bility of pharmaceutical process models, such as the model’s question of
interest, context of use, and risk. We also discuss the model’s
maintenance.

4.1. Example 1

NIR Models: NIR for at-line measurement of active content of a
tablet to predict tablet content uniformity data for real time release
testing (RTRT) and to trigger diversion of non-conforming tablets.

4.1.1. Background on question of interest
An NIR model, which is an integral part of an NIR procedure, is a

mathematical expression that describes how the NIR spectral data, ob-
tained by directly interrogating samples, are related to the property-of-
interest. These NIR models are chemometric models which use a
multivariate approach to characterize the relationship between the
spectral variation in the calibration set and the sample’s characteristics
(e.g., the sample’s active ingredient concentration). NIR models can be
either qualitative or quantitative.

4.1.2. Context of use
In the pharmaceutical industry, there are many examples of the

implementation of in-line or at-line NIR for monitoring blend uniformity
or tablet assay. In this context, NIR is used for at-line measurement of
active content of tablet to predict tablet content uniformity data that is
used for real time release testing (RTRT) and to trigger diversion of non-
conforming tablets.

4.1.3. Determination of model risk
NIR model for measuring content uniformity.

• Model Influence: High
The model is an integral component of the control strategy as it is

used to support RTRT and to detect non-conforming product and
initiate tablet diversion.

• Decision Consequences: High
The model is used to predict a CQA of the final drug product.

Model prediction is used for product release.

The final overall model risk might be high.

4.1.4. Model maintenance
Section VIII of FDA NIR guidance and section 7 of the EMA CHMP

NIR guidance and its annex provide general recommendations for risk
assessment of changes to NIR analytical procedures during lifecycle
management (U.S. Food and Drug, Administration Center for Drug
Evaluation and Research, 2021c; EMA CHMP, 2014b). As described in
the guidance, periodic evaluation of NIR procedures is warranted as
these are highly sensitive to the manufacturing process and incoming
material attributes. For example, a major change might include an up-
date of the procedure with a change in the acceptance criteria for vali-
dation, as it will have a high impact on the performance of the procedure
(accuracy) and on the product quality (e.g., potency).

4.2. Example 2

Residence Time Distribution Model: RTD model used in
conjunction with LIW feeder data to predict drug product assay and to
orchestrate deviations.

4.2.1. Background on question of interest
A RTD model describes the in-process mixing through a probability

distribution of the time material spends in the process. The RTD process
model can incorporate relevant incoming material properties and pro-
cess conditions, as well as equipment configuration. Real-time material
feed rates then can be combined with the RTD model to predict in-
process homogeneity of the powder blend and the API concentration
in the final blend and/or tablets. Additionally, an in-line NIR in the feed
frame monitors API concentration. The model can also be used to track
material impacted by disturbances throughout the process and orches-
trate diversions. A RTDmodel is generally a hybrid model, based on first
principles from chemical engineering.

4.2.2. Context of use
RTD models are generally proposed in continuous manufacturing

applications. These models are used to gain an understanding of mate-
rial flows within the system, determine sampling frequency, and identify
an approach for diverting non-conforming material. The manufacturing
train is either modeled using the convection diffusion equation or a tank
in series approach to describe the mixing in a continuous direct
compression process. Model inputs are the loss in weight (LIW) from the
material feeders, and potentially other process parameters such as
throughput and blending speed. Model parameters are experimentally
determined during development and can be dependent upon process
parameters, equipment configuration, and material attributes of the
blend.

In this context, we consider an RTD model used in conjunction with
LIW feeder data to predict drug product assay and to orchestrate de-
viations. NIR measurements of blend uniformity in the tablet feed frame
are present to confirm the quality of the in-process material.

4.2.3. Determination of model risk
The RTD model enables diversion of non-conforming product and

thus impacts product quality. The model predicts active ingredient
concentration in the tablet based on the LIW feeder data and a flowsheet
model of the process. Given, the presence of in-line NIR, the model is not
the sole indicator of product quality.
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• Model Influence: Medium
The model plays an important role orchestrating deviation, but the

NIR measurement of uniformity confirms the quality of the in-
process material prior to the compression unit operation.

• Decision Consequences: Medium
In-line NIR for monitoring API concentration and downstream

controls in the form of release testing are in place, hence, the model
is not the sole predictor of drug product quality.

The final overall model risk might be medium.

4.2.4. Model maintenance
The RTD model would appropriately be updated and verified if there

are any changes to input parameters to the model during the lifecycle of
the product, for example, a change in geometry of the continuous mixer.
Verification can be done by comparing model predictions to measured
API concentration (off-line HPLC analysis) using an intentionally
introduced negative step change in API concentration.

The impact of changes to the model can be determined based on the
model risk (medium), and on the impact of the change on the model’s
performance and on product quality. For example, minor changes might
include changes to a fitted model parameter if there is a change in one of
the input parameters (e.g., flowability of in-coming materials due to a
change in supplier) since this has low impact both on model’s perfor-
mance and on product quality. Moderate changes might include changes
in model structure corresponding to a change in equipment configura-
tion or equipment design since this has high impact on the model’s
performance but low impact on product quality.

4.3. Example 3

AI Model for Process Control: Machine learning is used to predict
product concentration with a day advance for a fed-batch bioreactor
process.

4.3.1. Background on question of interest
Machine learning algorithms in biopharmaceuticals could be used

for correlating real time process data to predict a product attribute. In
fed-batch processes to produce therapeutic proteins, the bioreactor is
filled with media and inoculated with cells. As the cells grow and
consume the initial media in the system, fresh feeds of nutrients are
introduced as required throughout the run. The addition of nutrients
throughout the process prevents the depletion of nutrients and allows
additional cell growth. The dynamics of the distinct phases of produc-
tion (e.g., lag phase, exponential growth phase, and stationary phase)
make it challenging to use a single modeling approach for the entire
process. Predictive modeling using machine learning algorithms can be
designed to learn from data over time.

4.3.2. Context of use
Machine learning is used to predict product concentration with a day

advance for a fed-batch bioreactor process (Bayrak et al., 2018). The
dynamics of a fed batch cell culture bioreactor in the protein production
phase are based on discrete offline measured variables including viable
cell density, viability, glucose, salts, and amino acids, continuous inputs
including pH, temperature, dissolved oxygen, and daily protein con-
centration. An adaptive model selection algorithm is developed to select
between five machine learning models (Support Vector Machines,
Gaussian Process Regression, Partial Least Squares Regression), regres-
sion trees (RT) and ensemble trees (ET). The predicted product con-
centration enables operators to take preventive actions to avoid an
undesired trajectory for the process. Model predictions are confirmed
with offline measurement of product concentration.

4.3.3. Determination of model risk

• Model Influence: Medium
The model plays an important role in operating the bioreactor and

can trigger process interventions to prevent a failed batch.
• Decision Consequences: Low

Model predictions are confirmed with offline product concentra-
tion testing. Downstream controls are in place to detect non-
conforming product. Product-specific risk factors may shift the de-
cision consequences depending on the sensitivity of critical product
quality attributes to the process trajectory.

The final overall model risk might be low-medium.

4.3.4. Model maintenance
Model predictions are confirmed with periodic offline product con-

centration testing which can enable a performance-based model main-
tenance approach. The root mean square prediction error and model
prediction bias acceptance criteria can be specified. The impact of
changes to models can be determined based on the model risk (low-
medium), and on the impact of the change on model’s performance and
product quality. For this example, minor changes might be retraining the
model with data from additional bioreactor production runs that result
in changed model parameters. Moderate changes might be loosening
acceptable model performance criteria (e.g., the root mean square pre-
diction error) or changing model structure (e.g., additional model inputs
to maintain model performance).

4.4. Example 4

Multi-Omics Analyses and Predictive Modeling: Identifying CQAs
of cell therapy products by leveraging ML to correlate cell product
characterization data to patient outcomes.

4.4.1. Background on question of interest
Unlike small molecule drugs, API for cell therapies are live cells that

respond to surrounding conditions and possess a qualitative functional
fitness corresponding to the donor. Researchers and developers recog-
nize the need for CQAs for cell-based therapies that correspond to
functional performance and relate to clinical efficacy (Van Grouw et al.,
2023c).

Using comprehensive characterization and targeted/personalized
performance assays, multiple product attributes can be correlated to
results from performance assays using computational predictive
modeling (Van Grouw et al., 2023d; Srinivasan et al., 2022b). This might
increase the probability of identifying novel CQAs that are indicative of
clinically relevant function. Indeed, deep characterization of heteroge-
neous cell-based therapy products through multi-omics approaches (i.e.,
combining data from genomics, transcriptomics, epigenetics, and pro-
teomics) may enhance the understanding of product variability and
identify CQAs that are predictive of clinical efficacy.

4.4.2. Context of use
The goal of this modeling approach is to identify CQAs of several cell

therapy products based on input data derived from characterization
studies that are predictive of their clinical performance for a specific
indication. In this example, novel CQAs specific to each cell therapy
product will be identified using complex, high-dimensional correlation-
based predictive modeling strategies. CQAs are identified from corre-
lating multi-omics, high-content analyses to measured performance
outputs from in vitro and/or in vivo assays. The modeling approach
leverages ML to correlate extensive cell product characterization data to
patient outcomes (for the specified clinical indication) obtained from
clinical investigations.
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4.4.3. Determination of model risk

• Model Influence: Low
The model plays a role in product design or process development.

• Decision Consequences: Low-Medium
Model prediction is used for identifying CQAs of cell-based therapy

products that may be used to inform the development of in-process
monitoring and/or lot release specifications.

The final overall model risk might be low.

4.4.4. Model maintenance
For many cell therapies (including gene-edited cells), the identifi-

cation of product attributes that are predictive of clinical efficacy re-
mains a significant challenge (Levy et al., 2020). Though this example is
more focused on product design and process development and not a
process model per se, there are still potential maintenance consider-
ations over the lifecycle of product. For example, a high impact change
might be a revision of the model resulting in identifying additional CQAs
or changing existing CQAs based on including additional training data
into the model when more batch data and/or clinical data are available
after product approval.

The following figure illustrates the evaluation of the overall model
risk as a function of the model influence and decision consequence as
discussed above for each of the four examples.

5. Conclusion

Process models play an increasing role in pharmaceutical product
development and manufacturing. Published examples illustrate that
process models have been applied for product design, process design and
scale-up, process monitoring, and process control across multiple types
of pharmaceutical manufacturing processes. Stakeholders have noted
challenges related to model validation, model lifecycle maintenance,
and international harmonization which has the potential to slow the
adoption of process models (Cogoni et al., 2021c). Continuing advances
in AI may raise additional model validation and maintenance challenges
(U.S. Food and Drug, Administration Center for Drug Evaluation and
Research, 2023).

The ICH guidance for industry Q8, Q9, & Q10 Questions and Answers;
Appendix Q&As from Training Sessions (July 2012) established the prin-
ciple that the level of oversight and documentation for a model should
be commensurate with the level of risk associated with the use of the
specific model in assuring the quality of the product. The ASME V&V 40
standard is aligned with this principle and describes how amanufacturer
should use the model’s context of use to assess model risk on product
quality considering both model influence and decision consequences.
The ASME V&V 40 standard provides a framework for evaluating model
risk by considering the influence of the model and its decision conse-
quence. A model verification and validation plan might then be devel-
oped based on this risk determination. To illustrate, consider two NIR
chemometric models used for in-process monitoring of blend uniformity
for two different drug products. In one case, the model is used for a high-
dose drug product at low risk for content uniformity issues. In the other
case, the model is used for a low-dose drug product with high content
uniformity risk. Both models are used as in-process controls, and as such
the models have the same influence on the assessment of blend unifor-
mity. However, factoring in the inherent risks to product quality, and
decision consequence might lead to the determination that these models
have different levels of risk (low risk for the high-dose drug product;
medium risk for the low-dose drug product).

An approach to model lifecycle management might also be based
upon risk, considering the impact of change on the model’s performance
and the potential impact of the change on product quality. Scientific
knowledge of the model and understanding of the product and process
might be used to anticipate events that impact the model’s performance

and thus be used to develop change control management plans including
performance-based approaches. Case studies illustrate how one might
determine model risk and how risk could inform model validation and
lifecycle maintenance. In general, detailed plans about model mainte-
nance are maintained onsite as a component of the manufacturing site’s
Pharmaceutical Quality System (PQS). The manufacturer documents the
assessment and the final determination on if and how the model will be
updated, in accordance with the model maintenance plan.

Continued engagement among academics, industry and regulators
will help refine model risk frameworks for pharmaceutical
manufacturing. Published cases studies that describe model risk
assessment, the specific verification and validation studies conducted,
and the subsequent evaluation of model credibility will continue to
provide value to the field. The adoption of a reliable model risk frame-
work may help to increase the implementation of process models in
pharmaceutical manufacturing and contribute to the consistent supply
of high-quality medicines.
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