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The tumor biomarkers already have proven clinical value and have become an integral part
in cancer management and modern translational oncology. The tumor tissue
microenvironment (TME), which includes extracellular matrix (ECM), signaling molecules,
immune and stromal cells, and adjacent non-tumorous tissue, contributes to cancer
pathogenesis. Thus, TME-derived biomarkers have many clinical applications. This review
is predominately based on the most recent publications (manuscripts published in a last 5
years, or seminal publications published earlier) and fills a gap in the current literature on
the cancer biomarkers derived from the TME, with particular attention given to the ECM
and products of its processing and degradation, ECM-associated extracellular vesicles
(EVs), biomechanical characteristics of ECM, and ECM-derived biomarkers predicting
response to the immunotherapy. We discuss the clinical utility of the TME-incorporating
three-dimensional in vitro and ex vivo cell culture models for personalized therapy. We
conclude that ECM is a critical driver of malignancies and ECM-derived biomarkers should
be included in diagnostics and prognostics panels of markers in the clinic.

Keywords: biomarkers, cancer, tumor microenvironment, extracellular matrix, extracellular vesicles, 3D cell
culture, personalized therapy
INTRODUCTION

Cancer remains one of the leading causes of deaths globally with a strong tendency to become the
“number one killer disease” in the 21st century (1). Despite the recent achievements in
understanding how malignant tumor arise and develop there are many unique aspects of
tumorigenesis which are not fully understood, one of them is how the tumor microenvironment
(TME) orchestrates a wide array of events in the tumor initiation and progression. The studies
focusing on the role of TME in cancer initiation and progression may identify novel therapeutic
targets and biomarkers derived from within the TME, with clinical translational potential.
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A biomarker is a biological characteristic that can be
identified and objectively evaluated as an indicator of a normal
or pathological biological process (2) and may serve for various
clinical purposes (3, 4). The prognostic biomarkers can predict
favorable or unfavorable outcome of disease irrespective of the
therapy, predictive biomarkers may foresee favorable or
unfavorable response to the therapy. It is apparent now that
only genomic biomarkers are not clinically informative enough,
and the set of available diagnostic tools should be expanded (5).
The growing number of studies demonstrates that biomarkers
identified not only in the tumor cell itself, but also within the TME
are valuable diagnostic tools (6–8) (SupplementaryTable 1). These
biomarkers include bio-mechanical characteristics of ECM,
structural components of ECM, products of ECM biosynthesis,
processing, degradation, proteinase inhibitors, as well as activators,
circulating EVs, cytokines, and others. There are a number of
techniques allowing detection of such biomarkers in a clinical
setting, such as ELISA (9), microscopy and imaging analysis (10),
mass-spectrometry (11) including MALDI imaging mass-
spectrometry applied to analysis of formalin-fixed paraffin-
embedded tissues (12), immunohistochemistry (13), Western
blotting (14), RT-qPCR (15), and others.

In the present review, we will provide a framework for
understanding the role of TME-associated biomarkers in cancer
pathogenesis and discuss their clinical utility in precision
oncology, with special emphasis on biomarkers predicting
response to immunotherapy. Particular focus is given to the
ECM-derived protein markers, EVs and their molecular cargo,
biomechanical characteristics of ECM, and ECM-incorporating
3D cell culture models for translational oncology.
ECM COMPONENTS AS CANCER
BIOMARKERS

ECM is an extracellular three-dimensional (3D) maze-like
structure formed by a variety of macromolecules such as
proteins, proteoglycans, glycoproteins, polysaccharides, and
others (16, 17). It also contains multitude of matrix-stored
regulatory and signaling biomolecules, such as growth factors
and cytokines, circular RNAs (circRNAs), and miRNAs within
the TME-associated exosomes, and others (18, 19). Structurally,
the ECM comprises the basal membrane and the interstitial
tissue. The components of ECM, also referred to as “matrisome”
(20), are produced by the cells of several types, predominantly
fibroblasts (21). Interactions of cell surface receptors with the
components of ECM enable cell-ECM adhesion, which is vital
for many types of anchorage-dependent cells (22). ECM has a
plethora of functions—it creates a niche for stem cells and
regulates intercellular chemical and mechanical signaling
networks, angiogenesis, innate and adaptive immune response,
and migration and invasion of the cells (23–25). All this makes
the ECM one of the key regulators of cancer progression and
response to the therapy, capable of modulating fundamental
hallmarks of cancer (26).
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The molecular composition, mechanical properties of ECM,
its infiltration by immune cells and stromal cells is heterogeneous
and immensely diverse in different types of tumor tissues. To
accommodate the specific needs of the tumor, both cancer cells
and tumor-associated stromal cells modify ECM by producing
and secreting ECM-modifying enzymes. For example, fibroblasts
associated with tumor tissue (cancer-associated fibroblasts,
CAFs) and tumor-associated macrophages (TAMs) modify
ECM to create a metastasis-permissive environment (27, 28).
Many components of ECM are deregulated in cancer, and some
oncogenic macromolecules within the tumor ECM are
upregulated whereas tumor-suppressors are downregulated
(29) (Supplementary Table 1). The analysis of expression of
820 matrisome genes across a panel of 32 malignant tumors has
identified universal pan-cancer gene signatures which
supposedly might be used for diagnostics (30). Recent study of
the changes in the matrisome during the cancer progression
identified expression patterns of the 22 genes associated with
shorter overall survival of patients with ovarian and several other
solid tumors (31). Several independent attempts have also been
made to characterize the profile of ECM-derived biomarkers for
a particular type of cancer and identify cancer-specific markers
for clinical application (Supplementary Table 1).

Some ECM-derived peptides, termed “matrikines” or
“matricryptines”, have cytokine-like activity (32). The
matricryptines are generated by the structural or enzymatic
modification of ECM resulting in exposure of the biologically
active and previously hidden (“cryptic”) sites. It has been
suggested recently that cryptic collagen elements serve as
signaling hubs regulating tumor metastasis and growth (33).
ECM may also evolve releasing biologically active substances,
including matrikines, which may be used as “protein fingerprint”
of cancer. One of them is Tumstatin derived from collagen type
IVa3 and described as a biomarker for non-small-cell lung cancer
(NSCLC) (34).

Importantly for transnational oncology, ECM-derived
biomarkers may reflect response to therapy, including
immunotherapy. Whereas the role of stromal cells within TME
in immune response is comprehensively studied and reviewed
elsewhere (35), the role of ECM and products of its modification as
biomarkers of tumor response to immunotherapy is not well
known. Recent study demonstrated that tumor matrisome
gene signatures are predictive biomarkers of resistance to
ICT immunotherapy (36). Versican-derived matrikine versikine
is a biomarker of tumor response to immunotherapy (37)
and regulator of tumor infiltration by T-cells (38, 39)
[notably, versican itself is upregulated in cervical cancer and
leiomyosarcoma (40, 41)]. In patients with stage IV melanoma,
collagen-derived biomolecules RO-C3, C1M, C3M, and C4M are
biomarkers of poor response to the therapy with immune
checkpoint inhibitor (ICI) ipilimumab (42). In patients with
metastatic melanoma, blood-based biomarkers of type III
collagen turnover are associated with worse overall survival and
progress-free survival following PD-1 inhibition immunotherapy
(43). In a clinical scenario, the ECM-turnover associated with the
response of melanoma to immuno-therapy might be assessed in a
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“liquid biopsy” (44), and allows to stratify patients with metastatic
melanoma according to their response to ICI therapy (45). Finally,
many protein biomarkers of tumor invasiveness localized in ECM
have been identified (comprehensively reviewed in (46).

Aforementioned, many soluble ECM-derived molecules
arising from within a solid tumor can be found in a peripheral
blood, are detectable using routine laboratory methods such as
immunoassays (42, 43), and may therefore be used as a non-
invasive “liquid biopsy” biomarkers. This makes them very
attractive for use in clinics (47), the only limitation of their use
being sensitivity and specificity of the immunoassay.
MECHANICAL AND PHYSICAL
PROPERTIES OF ECM AS CANCER
BIOMARKERS

Mechanotransduction, also known as mechanosignaling, is a
process through which cells initiate a biochemical process in
response to mechanical signals. The stiffness, topology, and other
mechanistic characteristics of the ECM are critical drivers and
regulators of the tumor progression, affecting cancer cell biology
via the mechanotransduction [comprehensively reviewed in (48–
50)] and therefore can be used as biomarkers of malignancy (51,
52). The phenomenon of durotaxis (directed migration of the
cells in response to the gradient of stiffness of the substrate) also
plays an important role in tumorigenesis (53, 54).

The biomechanical properties of the ECM dynamically
change over the course of the disease and differ between tumor
and matched normal tissue. In many types of solid tumors, ECM
within the tumor tissue is more rigid than ECM of matched non-
tumorous tissue (55) mostly because of the elevated deposition
and cross-linking of collagen type I, which can be detected by the
imaging or manual examination. Such stiffness of the ECM
induces epithelial-to-mesenchymal transition (EMT) of the
cancer cells, thus resulting in a metastatic phenotype, for
example, in pancreatic ductal adenocarcinoma (56) and in
hepatocellular carcinoma (57). On the other hand, ovarian
cancer cells undergo EMT on softer substrates (58), and soft
matrices enhance cancer stem cell phenotype in hepatocellular
carcinoma (59). This should be considered then developing
therapeutic approaches aimed to modify softness/rigidity of the
ECM and targeting its mechanical features (60, 61).

The overall role of the biomechanical properties of ECM in
several types of cancer, for example, esophageal cancer (62),
ovarian cancer (63), and colorectal cancer (64), has been
comprehensively reviewed recently (Supplementary Table 1).
The stiffness of the ECM can also be a biomarker predicting
response to the chemotherapy; for example, it has been shown
that in case of pancreatic ductal adenocarcinoma it induces
chemoresistance to paclitaxel, but not to gemcitabine (56).
Furthermore, the mechanical characteristics of ECM play a
role in immune oncology and therefore might be a biomarker
of response to immunotherapy. For example, stiffness of ECM
modulates PD-L1 expression in lung cancer (65) and breast
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cancer cells (66) and regulates activity of T-cells within the tumor
tissue (67).

There are several powerful tools and approaches available to
assess mechanical and physical properties of TME, for example,
high resolution Atomic Force Microscopy (AFM), Scanning
Electron Microscopy (SEM), Spatial Light Interference
Microscopy (SLIM), and others (64, 68–70). The Multiphoton
Microscopy and Second Harmonic Generation (SHG) imaging
can be applied to analyze “evolution” of collagen within the ECM
during tumor progression (71). That said, non-invasive imaging
techniques, such as Ultrasound Elastography, Magnetic
resonance elastography, Magnetic Resonance Imaging (MRI),
and others might still be a good option for assessing
biomechanical characteristics of the tumor tissue in clinic
(72–74).
EXTRACELLULAR VESICLES AS
CANCER BIOMARKERS AND
REGULATORS OF TME

Within the TME, cells communicate via different mechanisms
including extracellular vesicles (EVs). EVs are carriers of a
biologically active molecular cargo (lipids, nucleic acids,
proteins, mRNA, miRNA, circRNA, lncRNA, and others). As
some of the contents of EVs may modulate ECM [for example,
matrix-remodeling enzymes (75)] or participate in a cross-talk of
the cancer cell with stromal cells, thus contributing to
chemotherapy resistance or metastasis, there is a possibility to
use EVs within a TME as a therapeutic targets and therapeutic
biomarkers. Moreover, the possibility to detect tumor-derived
EVs in a bloodstream makes them attractive for use in a clinical
setting (76).

In the context of ECM, there is a subset of matrix-bound
nanovesicles (MBVs) (77, 78) present within the ECM rather
than in biological fluids. They are embedded into the ECM,
express surface antigens that are commonly found on exosomes,
and can be isolated from the matrix only by methods of
enzymatic digestion of ECM scaffolds (77). Their molecular
cargo comprises miRNAs and is capable of changing the
phenotype of the cells exposed to the contents of MBVs, for
example, affecting the phenotype of macrophages (78). MBVs are
integral and distinct components of ECM, and their content is
unique to cellular origin (78). Recently, it has been demonstrated
that MBVs can suppress pro-inflammatory signaling in
microglia and astrocytes (79). So far, the literature exists only
on MBVs found in non-timorous ECM, but we propose that
tumor-specific MBVs may also be found. If molecular cargo of
MBVs is cell type-dependent and unique to cellular origin, as
demonstrated by Hussey et al., the MBVs derived from tumor
ECM most likely will also have unique and tumor-specific
characteristics. Further studies on this subject should be
carried out on various types of malignancies to assess
feasibility of using MBVs as potential biomarkers.

Finally, the promising avenue in translational oncology is a
possibility to study EVs in vitro using cell culture models to
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identify and characterize novel cancer biomarkers. It has been
demonstrated recently that there are cell culture-dependent
differences in the content and production of EVs (80). The
essential molecular cargo components of EVs secreted by
cancer cells cultured in vitro in two-dimensional (2D) or 3D
format are different, and EVs from 3D culture have much higher
similarity to the EVs secreted in vivo by tumor tissue (81), and
the spectrum of small RNAs in EVs derived from cells in 3D
culture has approximately 96% similarity to EVs from cancer
patient’s plasma (81). This provides a rationale for developing
3D cell culture-based in vitro model systems for cancer
biomarkers identification.
3D CELL CULTURE MODELS
INCORPORATING TME AS A TESTING
SYSTEM IN TRANSLATIONAL ONCOLOGY
AND PERSONALIZED THERAPY

Over the past decades, significant progress has been made in
developing ex vivo models that recapitulate in vivo tumor
characteristics including response to the therapy. It is apparent
now that in vitro 2D culture of cells on glass or plastic is not an
accurate model of in vivo “biological reality”. Moreover, mono-
culture of cancer cells is a less accurate model compared to the
co-culture of cancer cells and stromal cells. Adding to this
complexity, compared to the 2D culture, the in vitro 3D cell
culture models, especially the models including ECM, more
closely resemble in vivo TME, better reproduce a variety of
conditions such as inter-tumor heterogeneity of hypoxia in vivo,
and more closely resemble a patient’s response to the therapy
compared to a 2D mono-culture, as have been demonstrated in
many studies.

Currently, 3D systems with tunable ECM stiffness, bio-
printed 3D cell culture systems incorporating TME, systems
Frontiers in Oncology | www.frontiersin.org 4
based on 3D culture of patient’s tumor tissue, and systems
utilizing decellularized ECM from the patient’s tumor have
been established (82–85). Such systems have a clear potential
for use in translational oncology. For example, a 3D in vitro
model of pancreatic ductal adenocarcinoma (PDAC) mimicking
mechanical properties of the TME potentially allows more
accurately distinguish between pancreatic cancer and pancreatitis
(86). A host of technologies and tools have been developed to
study the impact of ECM biomechanics on a cell behavior in a
variety of 3D cell culture models [comprehensively reviewed
in (87)].

Three-dimensional cell culture systems also have proven to be
a “biomarkers goldmine”—a valuable tool for biomarker
identification (88). For example, using 3D culture model with
decellularized ECM scaffolds (dECM) allowed to identify full-
length Collagen VI as a driver of breast cancer cell invasion in
obesity and metastasis (89). In colorectal cancer, the patterns of
expression of miRNA dependent on 3D microenvironment have
been characterized, and one of them (miR-142-5p) was identified
as a theranostic biomarker (90). As applied to clinical scenarios,
the 3D cell culture models incorporating TME are referred to as a
“patient’s avatar” (91) and “patient-on-a-chip” (92) models, and
can allow to identify biomarkers of individual response to the
therapy. For example, patient-derived 3D organoid culture of
breast tumor was utilized to choose personalized chemotherapy
(93). The feasibility of the automated real-time pharmacokinetic
profiling in 3D tumor models has been demonstrated (94), and
3D micro-tumor platform comprising ECM-derived hydrogel
and patient-derived colorectal tumor tissue has been created for
high-throughput screening of the chemotherapies in a patient-
specific format (95). Further development of ECM‐mimicking
scaffolds and 3D bio-printing (comprehensively reviewed in
(96)) can potentially assist in personalized therapy, although it
has been suggested that some 3D cell culture models are rather
too complex for routine implementation in clinics at this stage
(97), and clinical use of such models would require a high level of
FIGURE 1 | Schematic depiction of the TME and its multiple roles in the tumor initiation and progression.
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methodological (as well as clinical) validation (98). In the next
few years, we expect to see a growing number of publications in
this emerging field of research.

Overall, the recognition that TME is one of the drivers of
malignancy (Figure 1) changes the current approach to how
malignant tumors will be diagnosed and treated. Here, we
emphasize that all types of the TME components depicted in
Figure 1 (such as ECM and its mechanical or biological
characteristics, EVs, phenotype of stromal cells, and others)
have a potential to serve as biomarkers.
CONCLUSION

ECM-derived biomarkers have a great potential in translational
oncology and in clinical use. Hitherto, many novel biomarkers
arising from within the ECM have been identified, although the
clinical utility of many of them remains to be assessed. Based on
a multitude of recent studies, we conclude that TME should be
included into the in vitro and ex vivo models for cancer drug
development and personalized therapy. In particular, 3D cell
culture models incorporating TME and tumor-specific
mechanistic characteristics of ECM, such as stiffness and
topology, are more accurate and physiologically relevant
models of the tumor compared to the traditional cell culture or
animal xenograft models.
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94. Joseph JF, Gronbach L, Garcıá-Miller J, Cruz LM, Wuest B, Keilholz U, et al.
Automated Real-Time Tumour Pharmacokinetic Profiling in 3D Models: A
Novel Approach for Personalized Medicine. Pharmaceutics (2020) 12
(5):413. doi: 10.3390/pharmaceutics12050413

95. Forsythe S, Mehta N, Devarasetty M, Sivakumar H, Gmeiner W, Soker S,
et al. Development of a Colorectal Cancer 3D Micro-tumour Construct
Platform From Cell Lines and Patient Tumour Biospecimens for Standard-
of-Care and Experimental Drug Screening. Ann Biomed Eng (2020) 48:940–
52. doi: 10.1007/s10439-019-02269-2

96. Da Silva K, Kumar P, Choonara YE, du Toit LC, Pillay V. Three-dimensional
printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review
of the current ECM materials. J BioMed Mater Res A (2020) 108(12):2324–
50. doi: 10.1002/jbm.a.36981

97. Popova AA, Levkin PA. Precision Medicine in Oncology: In Vitro Drug
Sensitivity and Resistance Test (DSRT) for Selection of Personalized
Anticancer Therapy. Adv Ther (2020) 3(2):1900100. doi: 10.1002/
adtp.201900100

98. Halfter K, Mayer B. Bringing 3D tumor models to the clinic - predictive
value for personalized medicine. Biotechnol J (2017) 12(2). doi: 10.1002/
biot.201600295

99. Wang X, Wang Q. Alpha-Fetoprotein and Hepatocellular Carcinoma
Immunity(2018). Can J Gastroenterol Hepatol Article ID 9049252.
doi: 10.1155/2018/9049252

100. Wang T-H, Hsia S-M, Shieh T-M. Lysyl Oxidase and the Tumour
Microenvironment. Int J Mol Sci (2016) 18:62. doi: 10.3390/ijms18010062
December 2020 | Volume 10 | Article 575569

https://doi.org/10.1063/1.5024386
https://doi.org/10.2147/OTT.S231010
https://doi.org/10.1016/j.bbrc.2017.12.115
https://doi.org/10.1016/j.bbamcr.2019.118526
https://doi.org/10.1186/s40425-019-0556-6
https://doi.org/10.1038/s41401-020-0494-3
https://doi.org/10.1038/s41401-020-0494-3
https://doi.org/10.1038/s41598-018-36551-5
https://doi.org/10.1146/annurev-bioeng-071114-040545
https://doi.org/10.4161/21659087.2014.984509
https://doi.org/10.1158/1078-0432.CCR-17-3262
https://doi.org/10.1158/1078-0432.CCR-17-3262
https://doi.org/10.1016/s1361-8415(00)00039-6
https://doi.org/10.1016/s1361-8415(00)00039-6
https://doi.org/10.1016/j.pharmthera.2013.10.003
https://doi.org/10.1016/j.bbamcr.2017.05.027
https://doi.org/10.1016/j.bbamcr.2017.05.027
https://doi.org/10.1515/cclm-2018-1048
https://doi.org/10.1089/ten.tea.2017.0102
https://doi.org/10.1126/sciadv.1600502
https://doi.org/10.1038/s41598-019-39861-4
https://doi.org/10.1080/20013078.2019.1596669
https://doi.org/10.1080/20013078.2019.1596669
https://doi.org/10.1038/s41598-019-49671-3
https://doi.org/10.1038/s41598-019-49671-3
https://doi.org/10.1002/jbm.a.36899
https://doi.org/10.1089/ten.TEA.2020.0110
https://doi.org/10.1038/s41598-020-62986-w
https://doi.org/10.1126/sciadv.abc3175
https://doi.org/10.1016/j.actbio.2017.11.037
https://doi.org/10.1016/j.matbio.2019.11.005
https://doi.org/10.3390/cancers11020130
https://doi.org/10.1126/sciadv.abc3175
https://doi.org/10.3390/biom10040613
https://doi.org/10.1177/2472630317697251
https://doi.org/10.1007/978-3-030-36588-2_4
https://doi.org/10.1007/978-3-030-36588-2_4
https://doi.org/10.1016/j.colsurfb.2019.04.056
https://doi.org/10.3390/pharmaceutics12050413
https://doi.org/10.1007/s10439-019-02269-2
https://doi.org/10.1002/jbm.a.36981
https://doi.org/10.1002/adtp.201900100
https://doi.org/10.1002/adtp.201900100
https://doi.org/10.1002/biot.201600295
https://doi.org/10.1002/biot.201600295
https://doi.org/10.1155/2018/9049252
https://doi.org/10.3390/ijms18010062
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Petersen et al. The TME Biomarkers for Diagnostics and Personalized Therapy
101. Arcolia V, Journe F, Wattier A, Leteurtre E, Renaud F, Gabius HJ, et al.
Galectin-1 is a diagnostic marker involved in thyroid cancer progression. Int
J Oncol (2017) 51:760–70. doi: 10.3892/ijo.2017.4065

102. Dong R, Zhang M, Hu Q, Zheng S, Soh A, Zheng Y, et al. Galectin-3 as a
novel biomarker for disease diagnosis and a target for therapy (Review). Int J
Mol Med (2018) 41:599–614. doi: 10.3892/ijmm.2017.3311

103. Romagnoli M,Mineva ND, PolmearM, Conrad C, Srinivasan S, LoussouarnD,
et al. ADAM 8 expression in invasive breast cancer promotes tumour
dissemination and metastasis. EMBO Mol Med (2014) 6:278–94.
doi: 10.1002/emmm.201303373

104. Conrad C, Benzel J, Dorzweiler K, Cook L, Schlomann U, Zarbock A, et al.
ADAM8 in invasive cancers: Links to tumour progression, metastasis, and
chemoresistance. Clin Sci (2019) 133:83–99. doi: 10.1042/CS20180906

105. Conrad C, Götte M, Schlomann U, Roessler M, Pagenstecher A, Anderson P,
et al. ADAM8 expression in breast cancer derived brain metastases:
Functional implications on MMP-9 expression and transendothelial
migration in breast cancer cells. Int J Cancer (2018) 142:779–91.
doi: 10.1002/ijc.31090

106. Xiao W, Wang X, Wang T, Xing J. Overexpression of BMP1 reflects poor
prognosis in clear cell renal cell carcinoma. Cancer Gene Ther (2019) 27:330–
40. doi: 10.1038/s41417-019-0107-9
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