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Abstract

Trichosanthes kirilowii Maxim. (TK) is a dioecious plant in the Cucurbitaceae for which differ-

ent sexes have separate medicinal uses. In order to study the genes related to sex determi-

nation, transcriptome sequencing was performed on flower buds of male and female plants

using the high-throughput sequencing technology. A total of 145,975 unigenes and 7110

DEGs were obtained. There were 6776 DEGs annotated to 1234 GO terms and enriched to

18 functional groups, including five biological processes related to sugar metabolism.

KEGG pathway analysis indicated genes involved in hormone transduction, hormone syn-

thesis and carbohydrate metabolism. Many DEGs of TK are involved in reproductive organ

formation, hormone signal transduction and regulatory networks. Combining the results of

GO, KEGG and qRT-PCR, 11 sex determining candidate genes of TK were selected, includ-

ing MYB80, MYB108, CER1, CBL9, ABCB19, SERK1, HSP81-3, ACS9, SEP3, AUX1 and

YUC6. The results provide a foundation for the study of sex differentiation in TK.

Introduction

Trichosanthes kirilowiiMaxim. (namely TK) is a perennial climbing herb in the family Cucur-

bitaceae. Its fruit (fructus trichosanthis), seeds (semen trichosanthis), peel (trichosanthis peri-

carpium) and root (radix trichosanthis) are all commonly used as traditional Chinese

medicines. Due to the large demand for medicinal products in the marketplace, there are

many planting bases for TK in China. Among these, Changqing District of Jinan City, Shan-

dong Province and the surrounding areas of Feicheng City, Shandong Province have a long

history of producing excellent varieties and high-quality medicinal materials that are famous

as genuine herbal medicines.

Dioecious plants play an important role in elucidating the mechanism of plant sex determi-

nation and evolution, especially plants in the Cucurbitaceae. The studies of sex identification
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are of great significance in both theory and practice. TK is dioecious and cross pollinated, and

the tissues used for commercial medicinal usages were differ between two sexes. When har-

vesting seeds and fruits, a large number of female plants (with a small number of male plants)

are required, and when harvesting roots, male plants are required. At present, TK can be prop-

agated in two ways: vegetative propagation using rhizomes and sexual propagation using

seeds. Although the plant sex can be controlled by rhizome propagation, the propagation coef-

ficient is low, and large amounts of raw materials are consumed. Therefore, seed propagation

is an economical and practical method of improving the planting efficiency and realizing

large-scale cultivation. However, the problem with seed reproduction is that the proportions

of male and female plants cannot be controlled. In the natural state, the ratio of male to female

is about 7:3. Therefore, it is of great significance to identify the early sex of TK seedlings and to

reveal the molecular mechanism of sex determination.

At present, the methods for sex identification of TK include plant appearance, chemical

reagents, isoenzymes, protein electrophoresis and molecular markers. Plant sex difference

arises from differences in gene expression. Isozymes and proteins are the products of gene

expression, and specific gene expression produces specific isozymes or proteins. Therefore, Yu

et al. and Li used PAGE to identify the early sex of TK and found certain differences between

male and female strains in enzyme concentration and spectral bands [1, 2]. Karmakar et al.

used total proteins of TK roots to identify plant sex and found a slightly sex differential band

with a molecular weight of 19 KDa [3]. Qu et al.’s study of RAPD-SCAR had found that S 1200

primers can generate a 600-bp amplification band specifically in male TK [4]. Guo carried out

isozyme electrophoretic analysis of TK leaves and found that the isozyme bands and enzyme

contents from leaves of different sexes were different [5]. While it is generally assumed that sex

expression is dominated by the formation and accumulation of flowering substances, the

above studies have shown that sexual difference exist in TK at the seedling stage.

Extended to the Cucurbitaceae family, although many plants in the family are dioecious,

only Concinia indica was demonstrated having sex chromosomes with an XX/XY sex determi-

nation system [6]. The sex of other Cucurbitaceae plants is controlled by few genes with no sex

chromosome evolved. For example, sex differentiation of cucurbit was controlled by three

genes, ACS11, ACS7 and WIP1 [7]. Studies of cucumber (Cucumis sativus Linn.) demon-

strated that external hormones and environment affected the process of sex determination,

and genes related to, ethylene synthesis and induction such as genes CsACS1G, CsACS11,

CsACS2, CsACO2 and CsWIP1, were verified involved in sex regulation [8, 9]. Although

more and more metabolic pathways and genes have been found involved in gender regulation,

the regulatory mechanism is not clear [9]. As a Chinese traditional medicinal plant, TK was

less known by scientists in other countries besides China, with no information of genome ref-

erence and transcriptome data and few EST sequences. Although Chinese researchers have

done extensive exploratory work in this field and have obtained some basic results, however, it

is difficult to identified sex determining genes via the existing sex linkage markers and to

explore the molecular mechanism of sex determination. Therefore, the lack of genomic

sequences has become a bottleneck in the study of sex differentiation of TK.

The sexual difference of TKmainly observed in the flower organs. In this study, we per-

formed RNAseq of the flower buds from female and male plants of TK to analyzed the tran-

scriptomic profiles in different sexes. The goals were to search for differential expression genes

(DEGs), and to screen for the key genes related to sex differentiation in order to lay a founda-

tion for revealing the sex differentiation mechanism of TK at the molecular level.
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Methods and materials

Sample collection

TK is planted in the Hebao field planting base of Pinyin, Shandong province (116.45 E, 36.28

N). Samples were collected in July 2016, including flower buds of female and male plants

(around 2 mm) [10]. Set up 3 biological replicates for a total of 6 samples(samples of female

and male flower buds are named F1, F2, F3, M1, M2 and M3). After sampling, plant buds were

wrapped with tin foil and placed into liquid nitrogen, then stored in -80˚C refrigerator.

RNA isolation and quality assessment

Total RNA of each sample was extracted by Tripure, and the concentration (optical density

260 nm/280 nm ratio) and quality (optical density 260 nm/230 nm ratio) were measured using

an Aglient 2100 Bioanalyzer, with which RNA integrity (RIN) above 7.5 were used for library

construction.

cDNA library construction, quality control and Illumina sequencing

Approximately 10 μg total RNA of each sample was used to constructed RNA libraries by

NEBNext1Ultra™ RNA Library Prep Kit from Illumina1 following the recommended proto-

col. The constructed libraries were sequenced by Beijing Institute of Genomics (BIG) under

Illumina HiSeq 2500 sequencing platform with 150 bp pair-ends. The raw sequencing data

reported in this paper have been deposited in the Genome Sequence Archive in BIG Data Cen-

ter (Nucleic Acids Res 2019), Chinese Academy of Sciences, under accession numbers

CRA002313 (https://bigd.big.ac.cn/gsa).

Raw sequencing processing and de novo assembly

FastQc was used to detect the raw RNA reads and remove the joint sequences. The clean reads

were obtained after removing connectors and low-quality reads (Q-value<10 or reads contain-

ing more than 5% ambiguous ‘N’ bases by trimmomatic (-l 5 -q 0.5 -n 0.1)). The clean reads

were used to assembly using the Trinity (v.2.0.6), with a minimum contig length cutoff of 150

and a minimum k-mer size of 3 [11].

Over loop was used to splice the contig and unigene fragments of clean reads to obtain the

unigenes. Finally, a BUSCO (Benchmarking Universal Single-Copy Orthologs) analysis was

performed using BUSCO v.2.0 with default parameters to evaluate the completeness of total

gene annotated in this study [12].

Screening of differentially expressed genes

Cuffdiff of Cufflinks software (http://cole-trapnell-lab.github.io/cufflinks/) [13] was used to

analyze the differences in gene expression levels in each group to identify the DEGs (differen-

tially expressed genes). Cuffdiff uses non-parametric statistical methods to estimate the mean

and variance of FPKM (expected number of fragments per kilobase of transcript sequence per

millions of base pairs sequenced) values in different samples based on annotation files and

identifies selected transcripts with significant differences in expression between samples

through t tests.

Verification of DEGs

6 differentially expressed genes were randomly selected and verified by quantitative real time

PCR (qRT-PCR), to verify the consistency of expression patterns with RNA sequsing. For each
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sample, the PrimeScript First Strand cDNA Synthesis Kit with 1μg total mRNA (Takara,

Dalian, China) was used to reverse-transcribe the mRNA into the first strand of cDNA, and

the quality was measured by 1.5% agarose gel electrophoresis. We designed qPCR primers for

specific genes using the Primer 5 software (https://primer-premier-5.software.informer.com/).

The total volume of the quantitative PCR reaction system is 20 μL, including 10 μL of

2 × SYBR1 Green I Master Mix (Takara, Dalian, China), each with 0.4 μmol/L of forward and

reverse primers, 1 μL of cDNA template diluted ten-fold, and the final supplement ddH2O to

20 μL. The amplification was carried out with the following cycling programme: 30 s at 94˚C,

40 cycles of denaturation at 95˚C for 5 s, annealing at 55˚C for 15 s, and extension at 72˚C for

15 s on a ABI 7500 fast Real-Time PCR machine. A melting curve analysis was completed

immediately after the qPCR. 18S rRNA was selected as the reference gene [14]. The relative

expression level was calculated with the 2−ΔΔCt method [15]. Three biological replicates and

three technical replicates were performed for each of the analyzed genes.

Functional annotation and classification

Through BLAST [16] comparison software (https://blast.ncbi.nlm.nih.gov/Blast.cgi), the uni-

genes sequences were compared with the protein databases NR (NCBI non-redundant protein

sequences, http://www.ncbi.nlm.nih.gov/) [17] and KEGG (Kyoto Encyclopedia of Genes and

Genomes, http://www.genome.ad.jp/kegg/kegg2.html) [18]. Classification information and

gene function annotation were carried out by BLASTx (E-value�1.0E-05). In order to reflect

the expression of sex difference genes more accurately, the GO (Gene Ontology, http://www.

geneontology.org/) [19] function and KEGG pathway significance enrichment analyses were

carried out to determine the main biological functions and the main metabolic pathways that

the genes were involved in. GO enrichment analysis was performed on DEGs using the SEA

tool of agriGo [20] software (http://bioinfo.cau.edu.cn/agriGO/), and the P values were statisti-

cally analyzed and corrected (FDR� 0.05) using Fisher’s exact test and the Bonferroni correc-

tion method. The KEGG pathway enrichment analysis uses KOBAS (E-value�1.0E-05)

(KEGG Orthology-based Annotation System, http://kobas.cbi.pku.edu.cn/home.do) [21],

where the calculation principle is the same as in the GO function enrichment analysis. To con-

trol the false positive rate, BH (Benjamini and Hochberg’s test) [22] was used for multiple tests

with P = 0.05. A KEGG pathway meeting the above conditions was defined as a significantly

enriched pathway.

Results and analysis

Transcriptome sequencing and de novo assembly

We obtained 17,619,567 and 16,699,544 high-quality reads from the female and male libraries

respectively. The effective detection rate of each library was above 90%. For species without

reference genomes, de novo assembly is the most commonly used technique, and thus Trinity

software (https://trinitysys.fm.alibaba.com/) was used to assemble the sequencing data. In all,

145,975 unigene fragments were obtained after redundancy removed. The assembly results are

shown in Table 1. Among the resulting fragments, 0–400 nt had 71010 fragments; 400−800 nt

had 44107 fragments; 800−2000 nt had 23331 fragments; 2000–4000 nt had 6648 fragments

and there were 879 fragments� 4000 nt. The completeness assessment result showed that

48.6% of BUSCO genes were “a single-copy”, 47.0% were “complete and duplicated” and 2.8%

were “fragmented”, while the remaining 1.6% were “missing”, suggesting a good transcriptome

assembly (Table 2).
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Identification and analysis of DEGs

We divide the genes into three categories according to the expression of FPKM value.

FPKM� 10 was set as a highly expressed gene, 2� FPKM < 10 as a medium expression gene,

and FPKM < 2 as a low expression gene. According to the FPKM standard, we calculated the

gene expression of flower bud samples as follows: the number of low, medium and high

expression genes in female flower buds were 2491, 1924; and 1165 respectively; whilst the

number of low, medium and high expression genes in male flower buds were 1588, 2463, and

1530. There were fewer low expression genes in male flower buds than in female flower buds,

but more genes were expressed in male flower buds than in female plants. There were few dif-

ferences in the medium expression genes of male and female flower buds, but there was a large

difference in the number of high expression genes. Then, we used Cuffdiff to calculate the sig-

nificance of differential gene expression, and set fold change> 2 or< 0.5, P< 0.01 as the crite-

ria for identifying DEGs. We compared the gene expression in female relative to male samples,

and defined the up-regulated genes in female flower buds as up-regulated genes. The number

of DEGs in flower buds was 5580; the number of up-regulated genes was 3104, and the number

of down-regulated genes was 2476.

qRT-PCR validation of DEGs

In order to confirm the results of Illumina sequencing, we randomly select 6 candidate genes and

verified the expression of differentially expressed genes in male and female by using real-time

PCR. The 6 candidate genes include 3 genes with high expression in the female libraries and 3

genes with high expression in the male libraries. The primer sequences of references genes and 6

selected genes are listed in Table 3. The expression trends of 6 genes in all samples are basically

consistent with the expression trends obtained by transcriptome sequencing (Fig 1).

Functional annotation and classification of DEGs

All the differentially expressed sequences were submitted to NCBI for BLASTn comparison. A

total of 5303 unigenes were annotated with the NR databases. Of those unigenes, 74% (3924)

obtained homologous genes or obtained gene notes, and 26% (1379) had no homologous

Table 1. Length distribution of assembled unigenes from TK.

Length (bp) Unigenes Proportion (%)

0–400 71010 48.6

400–800 44107 30.2

800–2000 23331 16

2000–4000 6648 4.6

>4000 879 0.6

https://doi.org/10.1371/journal.pone.0239230.t001

Table 2. BUSCO assembly evaluation results.

Sample Complete and Single-copy Complete and duplicated Fragmented Missing

F1 150 141 7 5

M2 154 135 8 6

F3 138 148 12 5

M1 136 154 9 4

F2 153 140 6 4

M3 153 137 8 5

https://doi.org/10.1371/journal.pone.0239230.t002
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sequences or were position genes without functional annotation, as shown in Fig 2. Among the

species that unigenes matched in the NR database, cucumber accounted for the highest propor-

tion (15184, 44.95%), followed by Cucumis sativus (12117, 35.87%), Vitis vinifera (779, 2.31%),

Arabidopsis (455, 1.35%), Citrus sinensis (387, 1.15%), Cucumis melo subsp. Melo (384, 1.14%),

and other species (15.52%); 82% of the genes were annotated to Cucurbitaceae (Fig 3).

Analysis and functional classification of DEGs

In order to further clarify the function of differentially expressed genes, the selected DEGs

were analyzed with Blast2GO. The software comprehensively considers the similarity of target

sequences and alignment sequences, GO item source reliability, and the structure of a GO

directed acyclic graph, and extracts the qualified GO functional items in the mapping process

(GO terms) annotated to the target protein (DEG protein). In this study, 6776 DEGs annotated

1234 GO items, including cell components (133), molecular functions (353) and biological

processes (748). All the matched gene sequences were further enriched into 46 functional cate-

gories, among which the functional groups of membrane part, membrane, binding, catalytic

activity, cellular process and metallic process contained more unigenes, while biological adhe-

sions, location, protein binding, growth, extractor region part, rural reservoir activity and

immune system contained fewer unigenes (Fig 4). Then according to the GO annotation infor-

mation of significantly differentially expressed genes, we further analyzed the significance of

Table 3. Details of oligonucleotide primers used for qRT-PCR.

Gene Name Annotation Forward primers Reverse primers

(5’-3’) (5’-3’)

NSP1 structural constituent of nuclear pore CAACACAAAAAAAAGTAAA TCAAAATGGGGTATGGAAA

DAD1 hydrolase activity CAGTAGTGGCATTTAGAGG ACAGTGACAAAGAGGGTGG

PAT hydrolase activity, acting on ester bonds ATCCAGAACAAAGGAAACC CTACAATCCACTGAGCCAA

HB40 homeobox-leucine zipper protein CAACACCAACTCCCCTCAA CGTCGGCTTATTTCCCTCC

CRC multicellular organism development CAGAAACCGACCCACCAGC TTTTTGAGCACAAGACCCC

KING1 5’-AMP-activated protein kinase, regulatory gamma subunit GGCAACGACAGAGGAGAGT AGGAAAAGCAGAAACAGGG

https://doi.org/10.1371/journal.pone.0239230.t003

Fig 1. qRT-PCR validation of DEGS.

https://doi.org/10.1371/journal.pone.0239230.g001
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enrichment and calculated P values by Fisher’s exact test (FET). If FDR� 0.05 and FDR�

0.01, we assumed that there was significant enrichment or extremely significant enrichment of

this GO function. The differentially expressed genes were enriched in 18 functional groups.

These genes included the cell wall polysaccharide metabolic process (GO:0010383), hemicellu-

lose metabolic process (GO:0010410), xyloglucan metabolic process (GO:0010411), hydrolase

activity, acting on glycosyl bonds (GO:0016798), and xyloglucan: xyloglucosyl transferase

activity (GO:0016762). The complete results are listed in Table 4.

In order to further elaborate the biochemical pathways expressed by differential expression

genes, KOBAS was used to compare the differential expression genes to the plant KEGG data-

base, and an E value< 10−5 was set to identify the possible biological pathways. A total of 2286

different genes were located in 131 pathways, as shown in Fig 5. The pathways with more

Fig 2. Functional annotation of the differential expression unigenes of TK in the nonredundant databases.

https://doi.org/10.1371/journal.pone.0239230.g002

Fig 3. The species distribution of BLAST hits for each unigene in the Nr database.

https://doi.org/10.1371/journal.pone.0239230.g003
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genes included global and overview maps, translation, carbohydrate metadata, environmental

adaptation, folding, sorting and graduation, while endocrine and metallic diseases only had

one gene. Twenty pathways were significant (P< 0.05; Table 5).

Referring to the mechanism of sex differentiation in other Cucurbitaceae plants, hormone

genes or genes induced by hormones are the main factors determining sex differentiation of

TK. To date, except forWIP1 orthologous genes, other sex-controlling genes, including

Fig 4. Gene ontology categories of the assembled unigenes from the TK unigenes were assigned to three

categories: Cellular components, molecular functions and biological processes.

https://doi.org/10.1371/journal.pone.0239230.g004

Table 4. Significant enrichment of differentially expressed genes by GO.

GO term description P-value Number in input/Ref

GO:0006928 movement of cell or subcellular component 0.00186 20 / 62

GO:0007017 microtubule−based process 0.01902 29 / 125

GO:0007018 microtubule-based movement. 0.00186 19 / 61

GO:0010383 cell wall polysaccharide metabolic process 0.00318 15 / 42

GO:0010410 hemicellulose metabolic process 0.00107 15 / 39

GO:0010411 xyloglucan metabolic process 2.5e−05 14 / 27

GO:0031224 intrinsic component of membrane 0.02239 448 / 4051

GO:0030312 external encapsulating structure 0.00113 40 / 195

GO:0016021 integral component of membrane 0.03884 444 / 4031

GO:0005618 cell wall 0.00113 39 / 193

GO:0044877 macromolecular complex binding 0.02069 32 / 158

GO:0016798 hydrolase activity, acting on glycosyl bonds 0.00025 61 / 328

GO:0032403 protein complex binding 0.00053 28 / 109

GO:0015631 tubulin binding 0.00498 23 / 90

GO:0016762 xyloglucan:xyloglucosyl transferase activity 2.04e−06 14 / 24

GO:0008017 microtubule binding 0.00114 23 / 83

GO:0003774 motor activity 0.00593 20 / 73

GO:0003777 microtubule motor activity 0.00122 19 / 61

https://doi.org/10.1371/journal.pone.0239230.t004
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CsACS1G, CsACS2, CsACS11, and CsACO2 in cucumber, CmACS7 and CmACS11 in melon,

CitACS4/ClACS7 in watermelon, and CpACS27A in zucchini, have important roles in ethylene

biosynthesis [9, 23]. Genes related to ethylene synthesis and genes induced by ethylene are par-

ticularly important [24–29]. We analyzed the DEGs related to hormones in TK by using blast

P. A total of 7110 differential genes were compared with the Arabidopsis hormone database,

and when the E value < 10−6 or the similarity� 60%, we considered the two proteins to be

homologous. According to this standard, we found 151 genes related to hormones from the

DEGs, including 19 genes related to hormone synthesis, three genes related to hormone

metabolism, six genes related to hormone receptors, 14 genes related to hormone response, 91

genes related to hormone signal transportation, and 18 genes related to hormone transporta-

tion (Fig 6). Combining literature studies on sex differentiation of Cucurbitaceae plants, GO,

KEGG results and gene expression patterns of male and female plants, a total of 11 sex differ-

entiation candidate genes were screened and compared with those in Arabidopsis (Table 6).

Conclusion

Plant sex determination and differentiation have become a major focus of developmental

genetic research in recent years. Compared with animals, plants have more variable sex deter-

mination patterns. Stamens and carpels require a large number of specific genes to participate

in each development stage. Cucurbitaceae species are numerous, and their sexual systems are

also variable. For example, the flower primordium of cucumbers is bisexual at first, and then

the stamen or carpel stops development selectively, forming a unisexual flower [30]. However,

the female flowers of TK are bisexual initially and the stamen development then stops, but the

Fig 5. Distribution of Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways in TK.

https://doi.org/10.1371/journal.pone.0239230.g005
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male flowers of TK are completely unisexual [10]. In addition, hormones and environmental

factors can affect sexual development in the Cucurbitaceae, and ETH plays a major role [21].

For example, using ETH on monoecious watermelon plants will change all flowers into female

flowers. In contrast, treatment of watermelon female plants with ETH inhibitors will lead to

the occurrence of bisexual flowers. Consistent with the fact that ETH is a female hormone,

Table 5. Significant difference enrichment pathway by KEGGscreening of genes related to sex differentiation.

No. Pathway KO ID P-Value

1 Linoleic acid metabolism Ko 00591 0.00000

2 Phenylpropanoid biosynthesis Ko 00940 0.00000

3 Stilbenoid, diarylheptanoid and gingerol biosynthesis Ko 00945 0.00000

4 Flavonoid biosynthesis Ko 00941 0.00000

5 Biosynthesis of secondary metabolites Ko 01110 0.00003

6 Isoflavonoid biosynthesis Ko 00943 0.00010

7 Plant hormone signal transduction Ko 04075 0.00013

8 Limonene and pinene degradation Ko 00903 0.00047

9 Cyanoamino acid metabolism Ko 00460 0.00132

10 Plant-pathogen interaction Ko 04626 0.00245

11 Pyruvate metabolism Ko 00620 0.00460

12 Ribosome Ko 03010 0.00485

13 Ascorbate and aldarate metabolism Ko 00053 0.00788

14 Steroid biosynthesis Ko 00100 0.01007

15 mRNA surveillance pathway Ko 03015 0.01347

16 Circadian rhythm—plant Ko 04712 0.01441

17 RNA polymerase Ko 03020 0.02521

18 Glycolysis / Gluconeogenesis Ko 00010 0.02724

19 Caffeine metabolism Ko 00232 0.04228

20 Pentose and glucuronate interconversions Ko 00040 0.04994

https://doi.org/10.1371/journal.pone.0239230.t005

Fig 6. Hormone-related genes in TK.

https://doi.org/10.1371/journal.pone.0239230.g006
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watermelon gene A and cucumber gene M, as homologous genes, both encode the rate-limit-

ing enzyme ACS during the ETH synthesis.

Our aim was to discover the sex determining genes in TK. The male and female flower buds

of TK were selected as research materials according to the previous study [31]. After screening,

7110 differentially expressed genes were obtained, including 3694 up-regulated genes and

2942 down-regulated genes. Many genes involved in the formation of reproductive organs,

hormone signal transduction and regulatory networks were indicated. In all, 6776 DEGs were

annotated to 1234 GO items, and GO was enriched in 18 functional groups, including five bio-

logical processes related to carbohydrate metabolism This indicates that carbohydrate metabo-

lism plays an important role in the sex differentiation of flower buds. Based on the KEGG

pathway analysis, different genes of male and female plants were significantly enriched in ste-

roid biosynthesis, RNA polymerase, glycolysis / glycogenesis, pentose and glycornate conver-

sions; this suggest that hormones and sugars may be involved in the sex differentiation of TK.

In view of the effect of hormones on the sex of Cucurbitaceae plants, we carefully analyzed the

gene expression of hormone related genes? (HRGs). In total, 11 candidate genes for sex deter-

mination were selected from 151 hormone-related differential genes, includingMYB80,

MYB108, CER1, CBL9, ABCB19, SERK1,HSP81-3, ACS9, SEP3, AUX1 and YUC6.

Among them, MYB transcription factor plays a very important role in higher plant anther

development and pollen formation.MYB80 encodes a MYB transcription factor that is essen-

tial for tapetal and pollen development [32–34]. MYB108 regulates late stages of stamen devel-

opment and male fertility, andMYB108mutants exhibited reduced male fertility [35]. CER1
gene involved in pollen fertility and it is responsible for pollen-pistil interaction in the self-

compatible species Arabidopsis [36]. Ca2+ has been established as an important second mes-

senger regulating pollen germination and tube growth. Related report has investigated the

function of calcineurin B-like (CBL) Ca2+ sensor protein CBL9 in pollen germination and tube

growth of Arabidopsis thaliana. And stable overexpression of CBL9 strongly reduces pollen

germination rates and alters pollen tube morphology [37]. There is evidence that the auxin

transporter genes ABCB19 are actively transcribed in both the early and late stages of stamen

Table 6. Candidate genes related to sex differentiation of TK.

Gene_ID Arabidopsis Annotation Gene

symbol

Hormone Function category Identity

DN25049_c0_g1_i3 AT5G56110.1 myb domain protein 103 MYB80 Brassinosteroid Hormone signal

transduction

34.07%

DN29675_c0_g1_i1 AT3G06490.1 myb domain protein 108 MYB108 Jasmonic acid Hormone signal

transduction

15.74%

DN22459_c0_g1_i1 AT1G02205.1 Fatty acid hydroxylase superfamily CER1 abscisic acid Hormone signal

transduction

22.46%

DN32496_c1_g2_i2 AT5G47100.1 calcineurin B-like protein 9ACS9 CBL9 abscisic acid Hormone signal

transduction

5.4%

DN36241_c0_g1_i2 AT3G28860.1 ATP binding cassette subfamily B19 ABCB19 auxin Hormone transportion 28.53%

DN19445_c0_g1_i1 AT1G71830.1 somatic embryogenesis receptor-like kinase 1 SERK1 brassinosteroid Hormone signal

transduction

27.66%

DN34169_c1_g6_i5 AT5G56010.1 heat shock protein 81–3 HSP81-3 ethylene Hormone response 3.75%

DN63827_c0_g1_i1 AT3G49700.1 1-aminocyclopropane-1-carboxylate synthase 9 ACS9 ethylene Hormone biosynthesis 38.56%

DN13445_c0_g1_i1 AT1G24260.1 K-box region and MADS-box transcription factor family

protein

SEP3 auxin Hormone signal

transduction

10.19%

DN1132_c0_g1_i1 AT2G38120.1 Transmembrane amino acid transporter family protein AUX1 auxin Hormone transportion 18.99%

DN72506_c0_g1_i1 AT5G25620.1 Flavin-binding monooxygenase family protein YUC6 Cytokinin Hormone signal

transduction

18.05%

https://doi.org/10.1371/journal.pone.0239230.t006
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development. ABCB19mutant flowers have reduced stamen length as well as precocious pollen

maturation and anther dehiscence [38]. The EMS1 (Excess Microsporocytes1) leucine-rich

repeat receptor-like kinase plays a fundamental role in somatic and reproductive cell differen-

tiation during early anther development in Arabidopsis. SERK1 and SERK2 may act as a co-

receptor redundancy for EMS1, because the SERK1 SERK2 double mutant phenocopies EMS1,

although neither the SERK1 nor SERK2 single mutant shows detectable anther defects [39].

HSP81-3 is a member of the heat shock protein 90 (HSP 90) gene family. It is expressed in all

tissues, and is abundantly expressed in apical meristem, pollen and tapetum [40]. ACS9 has

been confirmed to be expressed in stigma [41]. In higher plants, the MADS-box genes encode

a large family of transcription factors (TFs) involved in key developmental processes, most

notably plant reproduction, flowering and floral organ development. SEP3 is a member of the

MADS TF family and it is important in determining flowering time as well as floral organ

identity through the formation of multiprotein complexes with other MADS-family TFs [42].

In Arabidopsis, targeted auxin distribution is necessary for the morphogenesis and adaptive

response of its organs, which involves the prototypical auxin influx facilitator AUX1 and its

LIKE-AUX1 (LAX) homologs. Report has analyzed and studied the AUX1 homolog BdAUX1
of Brachypodium distachyon (Brachypodium), which proves that BdAUX1 is essential for the

development of Brachypodium. BdAUX1 loss-of-function mutants are dwarfs with aberrant

flower development, and consequently infertile [43]. YUC6 gene is involved in auxin synthesis

during stamen development, and auxin can ensure correct and coordinated pollen maturation,

anther dehiscence and filament elongation. The expression of these candidate genes was quan-

tified by using male and female flower buds of different development lengths.The results

showed that the expression of each candidate gene was significantly different between male

and female plants, which was basically consistent with previous literature reports; however, the

expression of myb80 in the female flower buds of TK showed an obvious trend of increasing at

first and then decreasing. According to the results of paraffin section and expression trend of

flower buds, we speculated that myb80 might be related to stamen abortion in female flower

buds.Of course, these genes have only been confirmed to be related to sex differentiation in

Arabidopsis or other plants, and whether they have the same role in TK needs further verifica-

tion. The research results will be the basis for the research on the gender differentiation mecha-

nism of TK.
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