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ABSTRACT
Rapid urbanization is changing the existing patterns of land use land cover (LULC)
globally, which is consequently increasing the land surface temperature (LST) in many
regions. The present study is focused on estimating current and simulating future LULC
and LST trends in the urban environment of ChaoyangDistrict, Beijing. Past patterns of
LULC and LST were identified through the maximum likelihood classification (MLC)
method and multispectral Landsat satellite images during the 1990–2018 data period.
The cellular automata (CA) and stochastic transition matrix of the Markov model were
applied to simulate future (2025) LULC and LST changes, respectively, using their
past patterns. The CA model was validated for the simulated and estimated LULC
for 1990–2018, with an overall Kappa (K) value of 0.83, using validation modules
in IDRISI software. Our results indicated that the cumulative changes in built-up to
vegetation area were 74.61 km2 (16.08%) and 113.13 km2 (24.38%) from 1990 to 2018.
The correlation coefficient of land use and land cover change (LULCC), including
vegetation, water bodies and built-up area, had values of r =−0.155 (p> 0.005),
−0.809 (p= 0.000), and 0.519 (p> 0.005), respectively. The results of future analysis
revealed that there will be an estimated 164.92 km2 (−12%) decrease in vegetation
area, while an expansion of approximately 283.04 km2 (6% change) will occur in
built-up areas from 1990 to 2025. This decrease in vegetation cover and expansion
of settlements would likely cause a rise of approximately ∼10.74 ◦C and ∼12.66 ◦C
in future temperature, which would cause a rise in temperature (2025). The analyses
could open an avenue regarding how to manage urban land cover patterns to enhance
the resilience of cities to climate warming. This study provides scientific insights for
environmental development and sustainability through efficient and effective urban
planning andmanagement in Beijing andwill also help strengthen other research related
to the UHI phenomenon in other parts of the world.
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INTRODUCTION
The relationship between land use and land cover change (LULCC) and land surface
temperature (LST) is considered a popular issue in the researcher community in relation
to environmental changes and sustainable development. Land use refers to anthropogenic
deforestation, while land cover refers to the biophysical attributes of Earth’s surface in
urban dynamics. As an essential part of worldwide sustainable development, urban cities
have dramatically expanded in China, which is a matter requiring great attention (Tali
et al., 2012; Zhang & Su, 2016). The association of urbanization and landscape patterns
will offer support for urban ecological management (Sexton et al., 2013; Wang et al.,
2019). Populations and socioeconomic activities developed in cities pose enormous
sustainability challenges related to housing, infrastructure, food security, and natural
resource management. Urbanization includes rapid increases in population, industrial
structure, and landscape varieties (Zhang & Su, 2016). Large-scale LULCC was introduced
in Beijing as a result of immediate urbanization from 1975 to 1997, which focused
on developmental expansion and the erosion of intrusive agricultural land due to
infrastructural changes in the concept of urbanization in the capital area (Zhang & Su,
2016; Zhang et al., 2018).

In recent years, scientists have recognized that LULCC evoked by human activities
has immense impacts on the regional climate. Numerous studies have shown that
urbanization will cause radical changes within the radioactive, thermodynamic, and
hydrological processes at the land surface and thus modify local climatic changes in
temperature, clouds, and precipitation (Carlson & Arthur, 2000; Huff & Changnon Jr,
1972). LST is an essential physical characteristic of the land surface that is directly
influenced by LULCC, with implications for the study of climate change and related
environmental impacts (Abreu-Harbich, Labaki & Matzarakis, 2014; Feng, Liu & Wu, 2014;
Sobrino, Jiménez-Muñoz & Paolini, 2004; Walawender et al., 2014). In this case, the cover
of vegetation and bare soil predisposed the partitioning of sensible, latent heat fluxes.
Despite that, being a perilous physical property of the Earth’s surface, LST is challenging to
measure over larger areas without the use of remote sensing. With the advent of thermal
images acquired from satellites, it is now conceivable to monitor changes in LST over time
and compare them with changes in LULCC (Amiri et al., 2009; Carlson & Arthur, 2000;
Connors, Galletti & Chow, 2013; Ding & Shi, 2013). This complex relationship between
land use cover types and environmental factors influences human livelihoods, LULCC
detection, and mapping. That is, the relationship is relevant to many disciplines, including
urban planning, climate change, and environmental monitoring (Carlson & Arthur, 2000;
Ogashawara & Bastos, 2012; Rogan & Chen, 2004; Sexton et al., 2013; Weng, Liu & Lu,
2007). LULCC from one type to another, especially from farmland to metropolitan
land/built-up areas, influences the process of energy exchange between the terrestrial
surface and the atmosphere (Chen et al., 2006; Tonkaz & Çetin, 2007; Zhang et al., 2018).
Characterizing the spatial heterogeneity of the urban heat island (UHI) as capable of
changing with LULCC in urbanization is very significant for understanding ecosystem
functions (Tali et al., 2012). Rapid urban growth has resulted in the final conversion
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of cultivated/agricultural land for construction uses, and this phenomenon is especially
significant in black soil in China (Linda & Oluwatola, 2015). Various studies have indicated
the same relationship between land use/cover change and civic thermal states.

The development of LULCC has become a dominant factor for environmental changes
and managing resources. The over-expansion of anthropogenic activities leads to the
symmetrical rise in planetary pollution. Several studies (Buyadi, Mohd & Misni, 2013;
Chen et al., 2006; Tonkaz & Çetin, 2007) have considered the relative effects of LULCC
on LST and have found congruous and convincing results. LULCC has become one
of the substantial elements causing environmental vulnerability among anthropological
environmental systems (Verburg et al., 2004). LULCC modifies the spatial configuration of
various land use varieties. It becomes necessary that we precisely identify LULCC
at adequate scales with a significant time series. Thus, the higher perception of its
impact on urban climate change improves the understanding of alternative environmental
implications (Almazroui, Islam & Jones, 2013; Li et al., 2013). High rates of recent LULCC
have been observed during urbanization in developing countries. It is especially relevant in
China, where urbanization has become one of the most significant results of economic and
social development (Chen et al., 2006; Ding & Shi, 2013; Oluseyi, Fanan & Magaji, 2009;
Zhang & Su, 2016).

Since the adoption of economic reform policies and the accelerated economic
development in China, land use/cover has undergone tremendous changes. Expeditious
urban growth has exerted enormous pressure on China’s environment (Pan & Zhao,
2005). China is the leading developing country in acreage and has been demonstrated the
fastest urbanization in recent decades (Liu et al., 2014). Recent studies have shown
the efficacy of large-scale urbanization on regional temperature variation in China
(Weng, Liu & Lu, 2007; Weng, Lu & Schubring, 2004; Zhang & Su, 2016). There is proof
that increasing global warming could be a result of anthropogenic activity during the past
fifty years. The intensity of the UHI directly reflects the speed of urbanization, land use
patterns, and building density (Fig. 1), illustrating the conceptual framework of how the
UHI is structured and functions. The gradual increase in the surface structural changes of
the city is divided into three layers depending on the climate and land use, as shown in
Fig. 1. of the arriving monsoon winds entering from the eastern side of the city and are
partially intercepted by the dense vegetative cover (green belt). This vegetation acts as a
sieve to purify the air from heating and dust particles and enhances evapotranspiration,
ultimately accelerating precipitation. After passing through the green belt, the air reaches
the second layer where it is intercepted by built-up areas of the city, experiencing solar
radiation interception and absorption phenomena, greenhouse gas emissions at the cost
of anthropogenic disturbances, as well as building materials and engineering structures,
making this microclimate warmer than the surroundings, termed an ‘‘urban heat island’’.
A part of the air crosses and moves towards the western side, which has a greater vegetative
cover, more water bodies and less built-up area with a moderate microclimate.

This study aimed to quantify the effect of the urban land use patterns/transition of
land use changes and land use changes on the surface temperature during 1990–2018 in
the Chaoyang District of Beijing, China. We evaluated the relationship between LULCC
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Figure 1 Conceptual framework for explaining the UHI phenomenon in city canyons.
Full-size DOI: 10.7717/peerj.9115/fig-1

and LST with changing climate. In this study, we hypothesized that climatic change might
cancel out the effects and quantify the individual contributions of LULCC on LST in
hotspot areas and its particular measures to mitigate their effects. The outcomes of this
study provide scientific insight into urban heat island (UHI) issues and elucidate their
causes and contributions to LULCC. This study also predicts and demonstrates future land
use changes and LST scenarios in 2025 using the CA-Markov method.

STUDY AREA, DATASETS AND METHODOLOGY
Study area
Chaoyang District is located in the middle of metropolitan Beijing (39◦55′ N −116◦26′E,
∼2 to∼116 m) (Fig. 2). This district has an area of 478 km2 and a population of 3.5 million
people between the 2nd and 5th ring roads. This district is the largest and most densely
populated urban area of Beijing, with a density of 7,530 people/km2. The mean annual
precipitation is approximately 644mm, and themean annual temperature is approximately
13.5 ◦C. Spring and autumn are short, and the average summer and winter period last
approximately 3 and 5 months, respectively. The municipality, as well as the Chinese
National Government, spends almost 0.5 million USD per day on the development of this
district. The district has jurisdiction over 22 sub-district offices and 20 area offices.

Materials and Methods
Spatial images of LTM (Landsat 4–5) and OLI (Landsat 8) with a 30 m resolution from
1990 to 2018 were obtained from the USGSGlobal Visualization Viewer (GloVis) and Earth
Explorer. Each scene of the Landsat images was enhanced using the histogram equalization
approach to attain a higher contrast of the images (Wu et al., 2004). According to the
designed methodology (Fig. 3), these information sets were processed in ESRI ArcGIS
version 10.5 to make a false colour composite (FCC). The study area was extracted from
all spatial images by masking the georeferenced outline boundary map of Chaoyang. We
calculated the normalized difference vegetation index (NDVI), land surface temperature
(LST) and supervised classification method to ameliorate the classification results from
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Figure 2 Map representing the geostrategic importance of the study area: (A) People’s Republic of
China, (B) Beijing County, (C) Digital elevationmodel (DEM) of Chaoyang District showing elevation.

Full-size DOI: 10.7717/peerj.9115/fig-2

Landsat images; additionally, we applied the Markov chain transition matrix to predict the
future trends of the impact of LULCC on LST.

Data collection
The spatial images of LTM (Landsat 4–5) and OLI (Landsat 8) with a 30 m resolution from
1990 to 2018 were obtained from the USGS Earth Explorer for evaluating changes in LULC
and LST. The entire Landsat scene cloud cover for the years 1990, 1997, 2004, 2011 and
2017 was approximately 3%–20%, but it was less than 1% in the study area (Table 1).

Computation of land use and land cover change (LULCC)
Supervised classification is a method that is a ‘‘probability algorithmic program’’ applied
within the ESRI ArcGIS 10.5 for land use/cover classification. Maximum likelihood
classification (MLC) is a primer supervised classification scheme used in remote sensing
tactics for data-image information. It has minimal computational time among alternative
supervised tactics, in which the pixels that should not be unclassified become classified.
Ground verification was performed in uncertain areas through supported bottom clothing
wheremisclassified areas were corrected by imposition and rearranging the samples in ESRI
ArcGIS version 10.5. The point of reference was meant to assess the mapping accuracy.
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Figure 3 Methodology flow chart of the study.
Full-size DOI: 10.7717/peerj.9115/fig-3

Table 1 Details of the Landsat data used in this study.

Acquired date Spacecraft ID Sensor ID Cloud cover

16 July 1990 Landsat-5 TM ∼16
21 July 1997 Landsat-5 TM ∼5
06 July 2004 Landsat-5 TM ∼6
26 July 2011 Landsat-5 TM ∼3
29 July 2018 Landsat-8 OLI_TIRS ∼19.13

The three basic land use/cover types identified within the study area were (1) vegetation,
(2) developed/built-up area, and (3) waterbodies (Fig. 4).

Retrieval of land surface temperature (LST)
Radiometrically corrected Landsat images with the thermal infrared band (Band-6) were
used to derive the land surface temperature (LST). The procedure, which involves the
conversion of a digital number (DN) to an at-satellite brightness temperature, pursues
correction for atmospheric absorption, re-emission and surface emissivity that has equally
been utilized (Amanollahi et al., 2016; Li et al., 2016; Snyder et al., 1998; Sobrino & Jiménez-
Muñoz, 2014; Sobrino, Jiménez-Muñoz & Paolini, 2004) to convert the spectral radiance to
the top of atmosphere (TOA) brightness temperature beneath the hypothesis of uniform
emissivity by these equations.

Tk =
K2

ln
(
K1
Lλ
+1
) (1)
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Figure 4 Land use and land cover change (LULCC) maps for (A) 1990, (B) 1997, (C) 2004, (D) 2011 and
(E) 2018 in Chaoyang, Beijing.

Full-size DOI: 10.7717/peerj.9115/fig-4

where Tk is the at-satellite brightness temperature in Kelvin (K), Lλ is the spectral radiance
(W/m2*sr*µm), K2 is the calibration constant (K), and K1 is the calibration constant
(W/m2*sr*µm).

We can calculate Lsat by using the following equation:

Lsat =
(Lmax−Lmin)

QCALmax−QCALmin
×(DN −QCALmin)+Lmin (2)

where DN is the digital pixel number such as Band 6, QCALmax = 255 is the maximum
quantized calibrated pixel value corresponding to Lmax , QCALmin = 0 is the minimum
quantized calibrated pixel value corresponding to Lmin, Lmax = 17.04 (mW/ cm2sr· µm) is
the spectral at-sensor radiance that is scaled to QCALmax , and Lmin = 0 (mW/ cm2sr· µm)
is the spectral at-sensor radiance that is scaled to QCALmin.

From the calculation in Eq. (2), the radiance (Tk)) is converted to surface temperature
in Kelvin (K), which is then converted to Celsius (oC) by using the following equation:

TC =Tk−273.15 (3)

where TC is the temperature in Celsius (◦C), and Tk is the temperature in Kelvin (K).
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Figure 5 Land surface temperature (LST) maps for (A) 1990, (B) 1997, (C) 2004, (D) 2011 and (E) 2018
of Chaoyang, Beijing.

Full-size DOI: 10.7717/peerj.9115/fig-5

The land surface temperature (LST) was computed (Fig. 5) by using the following
equation (Li et al., 2016; Sobrino, Jiménez-Muñoz & Paolini, 2004):

LST =
TB

1+
(
λ·TB
ρ

)
· ln(ε)

(4)

Markov chain model
This model is based on the creation of Markov stochastic process systems for the prediction
of a status being changed to another (Muller & Middleton, 1994). The Markov chain model
is usually used to simulate the changes, dimensions, and trends of land use cover changes.
Additionally, the produced probability transition matrixes were used to forecast and
determine the possible situations of future land-use change and urban growth patterns and
to study the simulation trends of land surface temperature (LST) (Al-sharif & Pradhan,
2014). The prediction of future LULCCwas performed by using a land-use changemodeller
(LCM) in Terrset (Clark Labs TerrSet 18.31), and land-use changes were analysed and the
situation was projected to 2025 by CA-Markov. The LST can be calculated based on the
conditional probability formula by using the following equations:
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Table 2 Distribution of the area (km2) according to land use cover classes during 1990–2018.

Year Vegetation area (Km2) Water area (Km2) Built-up area (Km2)

1990 90.6462 10.233 363.5667
1997 104.8983 17.1747 342.3726
2004 118.449 24.1056 321.8913
2011 138.8997 21.5433 304.0029
2018 187.2189 10.7073 266.5197

Notes.
Km2, Square Kilometer.

S(t+1)= Pij×S(t ) (5)

Pij =

P11
P21
Pn1

P12
P22
Pn2

P1n
P2n
Pn3

 (6)

Moreover,0≤ Pij < 1and
N∑
j=1

Pij = 1,
(
i,j = 1,2,.......n

) (7)

where S(t) is the state of the system at time t; S(t+1) is the state of the system at time
(t+1); Pij is the matrix of transition probability in a state.

RESULTS
Land Use and Land Cover Changes (LULCC)
Land use cover changes (LULCCs) were computed for 1990, 1997, 2004, 2011 and 2018,
focusing on vegetation, water bodies and the built-up area in the study area. The cumulative
change calculated in vegetation was approximately 97.04 km2 (1990-2018), which was 90.18
km2 (1990) and 187.22 km2 (2018). An increase of 0.47 km2 was observed in water from
1990 to 2018. The built-up area was calculated to be 363.75 km2 in 1990 and 266.57 km2
in 2018, with an inverse accumulative change of 16% between 1990 and 2018 (Table 2).

The chordwheel illustrates our results of the various land use categories for different years
in proportion to others (Fig. 6). The vegetation area was calculated to be approximately
90.65 km2 in 1990, 104.89 km2 (1997), 118.45 km2 (2004), 138.89 km2 (2011) and 187.21
km2 (2018), with periodic increments of 16% from 1990-1997, 13% from 1997-2004, 17%
from 2004-2011 and 35% from 2011-2018. A significant portion of the urban landscape
was designated as grassland, shrubs, and ornamental plants.

The built-up area increased from 363.56 km2 in 1990, which was 78% of the area to
342.37 km2 (a 6% decrease) in 1997, and there were certain areas under construction that
were calculated to be 18% (99.09 km2) and 29% (258.90 km2) of the built-up area in 1990
and 1997, respectively. From 2004-2018, a cumulative decrease of 12% was observed in
the built-up area, as it was calculated to be 321.90 km2 in (2004), 304.01 km2 in 2011 and
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Figure 6 The chord diagram explicates the portion of land use land cover changes (LULCC) concern-
ing the time series 1990–2018.

Full-size DOI: 10.7717/peerj.9115/fig-6

266.52 km2 in 2018, with a 12% cumulative decrease. A cumulative decrease of 4% was
observed in water bodies from 1990 to 2018. The water body areas calculated for 1990,
1997, 2004, 2011 and 2018 were 10.233 km2, 17.17 km2, 24.105 km2, 21.514 km2 and 10.70
km2, respectively.

From 1990-2018, an area of 113.14 km2 experienced a 24% change in vegetation, and
0.35 km2 (∼0%) of water area was converted to built-up area. For the same period, a
total of 74.61 km2 (16%) of built-up area and 0.22 km2 (∼0%) of water bodies changed
to vegetation. Water bodies changed by approximately 3.14 km2 from built-up land and
1.92 km2 from vegetation, which was approximately 1% and ∼0% during this period,
respectively (Fig. 7).

We observed a 17% loss, which was calculated to be approximately 77 km2,
approximately 24% of the study area, 113.48 km2, had an increase, and 164.964 km2

(36%) remained the same during 1990-2018. However, for vegetation, 115.0632 km2

(25%) area had losses, 90.923 km2 (20%) was persistent and 74.830 km2 (16%) increased.
Similarly, water bodies increased by 5.067 km2, an area of approximately 0.563 km2

decreased, and an area of 0.672km2 remained the same (Table 3).
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Figure 7 Proportional changes in LULCC in the study area between 1990 and 2018. Green bars repre-
sent the increment, and blue bars show the decrease in area (km2).

Full-size DOI: 10.7717/peerj.9115/fig-7

Table 3 Statistics of the gain, loss and persistent area of the classes (1990–2018).

Built-up Area Vegetation Area Water Area

Area %age Area %age Area %age

Losses 77.7537 17% 115.0632 25% 0.5634 0%
Persistence 164.9646 36% 94.9293 20% 0.6723 0%
Gains 113.4828 24% 74.8305 16% 5.067 1%

Table 4 Accuracy computation of land use and land cover change (LULCC) maps between 1990 and
2018.

Year User
accuracy (%)

Producer
accuracy (%)

Overall
accuracy (%)

Kappa
coefficient (%)

1990 96.37 86.48 94.26 0.91
1997 96.31 91.24 92.96 0.86
2004 93.54 93.65 91.86 0.87
2011 91.85 89.81 89.56 0.92
2018 94.78 92.74 91.89 0.89

Accuracy assessment of LULCC
Theuser’s accuracy of the supervised classification (LULCCmaps) and theKappa coefficient
were determined by using terrset IDRISI. The overall classification accuracy was 94.26%,
92.96%, 91.86%, 89.56% and 91.89% for the years 1990, 1997, 2004, 2011 and 2018,
respectively (Table 4). Although the overall Kappa coefficient was above 0.8399, it showed
strong agreement (Cleve et al., 2008; Xiao et al., 2007).

Estimation of Land Surface Temperature (LST)
The land surface temperature (LST) of Chaoyang District was calculated with minimum
and maximum values of 26.45–50.9 ◦C in 1990, 26.45–53.49 ◦C (1997), 14.71–40.69 ◦C
(2004), 19.28–39.54 ◦C (2011), and 13.22–44.32 ◦C (2018), respectively. The mean surface
temperatures of the study area were 37 ◦C, 37.75 ◦C, 29.5 ◦C, and 31.50 ◦C in 1990, 1997,
2004, 2011 and 2018, respectively (Table 5).
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Table 5 Computation of temperature (◦C) for each time interval between 1990 and 2018.

Year Min Max Range Mean STD

1990 26.45 50.99 24.54 36.47 3.01
1997 26.45 53.49 27.03 37.22 3.64
2004 14.71 40.69 25.97 28.67 2.51
2011 19.28 39.54 20.26 28.47 2.22
2018 13.22 44.32 31.10 35.08 2.71

Figure 8 Land surface temperature (LST) during 1990–2018 in Chaoyang.
Full-size DOI: 10.7717/peerj.9115/fig-8

The results revealed that the ambivalence increased by approximately 10.35% in the
LST. The following plot defines the minimum, maximum, mean and range values of land
surface temperature in the study area during the respective period of 1990-2018 (Fig. 8).

From this study, the resulting mean surface temperatures in 1990, 1997, 2011, and 2018
were 37◦C, 37.75◦C, 29.5◦C, and 31.50◦C, respectively. The land cover types had various
effects on land surface temperatures in between 1990-2018. It is apparent from this heatmap
that vegetation cover types had a considerable effect on land surface temperature during
the study period, which indicates that this might be the result of transpiration, evaporation
and absorption of other waste heat emissions (Tonkaz & Çetin, 2007; Wang, Zhan & Guo,
2016; Weng, Liu & Lu, 2007). Thus, the change in vegetation cover to different land cover
types had given rise to an average increase of 5.5◦C in radiant surface temperature during
this period.

Relation of land use and land cover change on LST
A negative linear relationship between the vegetation and land surface temperature
(LST) resulted in the value of R=−0.155, showing a non-significant relationship with
p= 0.419. This corrplot highlights that vegetation index abates the LST in a particular
area and time, and vice versa (Fig. 9). Many studies have supported this phenomenon:
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Figure 9 Corr-plot representing the linear correlation between the LULCC andmean LST for the pe-
riod 1990–2018. The color bar represents the value of R.

Full-size DOI: 10.7717/peerj.9115/fig-9

grasslands and ornamental plants have less impact on the reduction of LST than do forests
and gardens (Chen et al., 2014; Fan et al., 2010; Wang, Zhan & Guo, 2016; Weng & Lo,
2001). Simultaneously, the water bodies strongly correlate negatively with land surface
temperature by showing the resulting trend in the scatterplot very clearly. The R-value is
−0.809, which shows its healthy significance level (p= 0.000), noting the impact of water
bodies in the suburban area apart from a significant role in controlling the LST (Chen
& Zhang, 2017; Duquène et al., 2009; Luo & Li, 2014). Urban water bodies shift the water
content tomoisten themesosphere by evaporation. In contrast, built-up/developed areas or
impervious surfaces and other dominant land cover types significantly contributed a large
amount of heat flux to the overall phenomenon of urban heat islands (UHIs). A positive
linear relationship exists between the land surface temperature (LST) and the built-up area
(Fig. 9) (Chen & Zhang, 2017; Duquène et al., 2009;Wang, Zhan & Guo, 2016; Zhang & Su,
2016). These empirical estimates indicate a clear sense of the increment in LSTwhen the plot
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Figure 10 Markov chain’s Stochastic TransitionMatrix structure of predictive analysis for LST-2025.
Full-size DOI: 10.7717/peerj.9115/fig-10

shows an apparent positive correlation between the developed area and the LST, proving
this relationship with an R-value of 0.526. The p-value authenticates the significance of this
relation by showing the value of 0.003. These results established the phenomena that urban
sprawl is the primary factor affecting the LST, which produces an abnormal heat flux in
urban dynamics. This exchange of radiation/heat is considered a significant factor for the
resulting UHI that contributes significantly to climate change in city canyons, as shown in
Fig. 1. Therefore, LULCC does have an intense effect on the surface radiant temperature of
a location, and it supports the phenomenon that anthropogenic LULCC is a main reason
leading to an increase in LST in the urban micro-atmosphere (Jiang & Tian, 2010).

Markov chain model analysis
The Markov chain model was used to calculate the transition probability matrixes and the
future potential percentages of land use and land cover change (LULCC) from projecting
through data for the period of 1990–2018. The transition probabilities matrix of LULCC
and LST in the period of 1990–2018 were plotted by generating the code script in the
programming software RStudio (Fig. 10).

From the predictive model’s results, the LULCC in the study area will increase in the
future; in this sense, the urban areas will increase to 178.83 km2; water bodies increase
to 6.82 km2, and the increment in vegetation area is expected to be approximately 54.67
km2 in 2025 along with temperature increases of 10.74 ◦C, 10.70 ◦C and 12.66 ◦C in the
vegetation, water and built-up areas, respectively (Table 6).

Simulation in LULCC and LST
The cellular automata (CA) and stochastic transition matrix of Markov chain models
produced the LULCC and LST for the projected period of 2025. Approximately 12% of
the negative change in green cover was estimated, which was approximately 164.92 km2,
and the estimated temperature fluctuation will be 32%, with an approximately 10.74 ◦C
rise in the vegetation area. The built-up area will expand by ∼6% (283.04 km2), adding
an ∼35% (12.66 ◦C) rise in temperature for the projected period of 2025 (Fig. 11). Water
bodies will decrease to 5.98 km2, which is approximately −79%. The accuracy of the maps
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Table 6 Projected LULCC acreage (Km2) and its relative temperature (◦C) during the period 1990–
2025.

Year Vegetation Water Bodies Built-up

Area (Km2) Temp.(◦C) Area (Km2) Temp.(◦C) Area (Km2) Temp.(◦C)

1990 90.18 32.66 10.23 28.27 363.57 37.50
1997 104.35 33.20 17.17 31.63 342.37 38.69
2004 118.45 27.04 24.11 25.85 321.89 29.36
2011 138.90 27.08 21.54 27.46 304.00 29.22
2018 187.22 33.87 10.71 32.26 266.52 36.07
2025** 164.92 44.61 5.98 42.98 283.04 48.73

Notes.
**Projected year

of projected land use cover change in 2025 was classified by the Kappa coefficient value,
which was above 0.97.

DISCUSSION
Quantitative relationship between LULCC and LST
Although the relationships between land surface temperature (LST) and land use and land
cover change (LULCC) have been studied previously (Civco, 1993; Li et al., 2016; Ullah et
al., 2019). In this study, remote sensing application was used to estimate temperature and
land cover change, and study their relationship effects between 1990 and 2018. Moreover,
we simulated these parameters for 2025 (Sejati, Buchori & Rudiarto, 2019; Ullah et al.,
2019; Zhang & Su, 2016). Our results provide insights into testable hypotheses; urban
climatic change quantifies the individual contributions of LULCC to LST in hotspot areas
and its particular measures to mitigate consequential effects. Our findings showed that
urban sprawl is the primary factor affecting land surface temperature (LST), which in turn
produces an abnormal heat flux. This exchange of radiation/heat is considered a significant
factor for the rise in the urban heat island (UHI), which contributes significantly to climate
change (Pal & Ziaul, 2017; Zhang & Su, 2016; Zhang et al., 2009). LULCC has a relative
impact on LST (Fig. 12), especially in urban areas (Tali et al., 2012; Wang, Zhan & Guo,
2016;Weng, Liu & Lu, 2007). Active management and understanding of LULCC is essential
in the context of anthropogenic climate change and global warming (Morabito et al., 2016;
Turner, Lambin & Reenberg, 2007; Ullah et al., 2019).

Land use and land cover change (LULCC) has a relative impact on land surface
temperature (LST), especially in urban areas. Active management of LULCC and its
understanding are essential in the context of anthropogenic climate change and global
warming (Turner, Lambin & Reenberg, 2007; Wang, Zhan & Guo, 2016). The UHI effect is
a result of various obvious reasons, such as macro/mesoscale climate, urban morphology,
population density, geographic location, anthropogenic changes in biophysical features of
the surface area/land use, wind corridor, population pressures and human lifestyle, and
energy cycle. The observed trend in land use change reveals that the rate of land-use changes
during the period from 1990 to 2004 was enormous and indicative of the need for rapid
development of AOI at the time. This period was characterized by intense deforestation
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Figure 11 Projected map of land use land cover change (LULCC) for 2025 by CA-Markove.
Full-size DOI: 10.7717/peerj.9115/fig-11

and demolishing of cropland for various developmental projects and shifted the cultivated
land/agricultural land into the evident level of increase in barren land and built-up areas
for housing and industry, characterized by a concomitant decline in total vegetation cover
(VC) (Cai, Du & Xue, 2011; Chen et al., 2017). This rapid depletion of VC (high and low
vegetation) had a wide range of impacts on the reduction of natural cooling effects because
of the shading and evapotranspiration of plants and shrubs (Macarof & Statescu, 2017;
Oluseyi, Fanan & Magaji, 2009). To buttress this fact, (Wang, Zhan & Guo, 2016;Weng, Lu
& Schubring, 2004; Zhang et al., 2017) when we correlated the NDVI and LST, it showed
the negative bonding between them. This result shows that green areas/VC act as a sink
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Figure 12 Relative temperature of various land use and landcover change (LULCC), during the study
period 1990-2018 mentioned on axis. The color bar represents the mean temperature value of each seg-
ment.

Full-size DOI: 10.7717/peerj.9115/fig-12

within an urban heat island (UHI) because of their cooling effects in an urban area. Our
results in Fig. 11 clearly show that land cover has a very dominant impact on LST in the
urban environment. This heat map explains the impact values of green space, blue space
and water bodies on their LSTs according to their proportional area. Second, vegetation
plays an important role in mitigating or controlling the temperature in urban areas (Weng,
Lu & Schubring, 2004; Zhang et al., 2017). Built-up areas, on the other hand, have a major
role in generating heat fluxes in urban dynamics. Water bodies naturally have a surface
evaporation process as a result of solar radiation, which is why air moisture can control
or decrease the air temperature of that particular area. Therefore, it could indicate that
the land use/cover changes (LULCC) do have an intense effect on the surface radiant
temperature of a location and it supports the phenomenon that anthropogenic land-use
change is the vital reason leading to increases in LST in the urban micro-atmosphere (Jiang
& Tian, 2010;Morabito et al., 2016).

Our study showed that expansion in developed areas had a significant effect on the LST
but a nonsignificant effect on the green space, which is expected to be due to the upward
expansion of buildings along with green areas, thus mitigating the effects of vegetation on
LST. The temperature values found in densely vegetated/forest areas were low, while the
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highest values of LST were observed in an urban or built-up area of impervious surface
compared with these two land covers of Chaoyang District, Beijing (Cai, Du & Xue, 2011;
He et al., 2010; Yang, Ren & Liu, 2013) The plausible reasoning behind this fact is that
increase in impermeable, hard and dark surfaces such as stone, metal, asphalt, and concrete
building materials, increase land surface temperature by low reflection and high absorption
of solar radiation, and emits heat not only during daytime but also at night time (Buyadi,
Mohd & Misni, 2013; Oluseyi, Fanan & Magaji, 2009).

The available literature has shown that land cover classification could help in estimating
the relationship between LST and various land-use types (Connors, Galletti & Chow,
2013; Walawender et al., 2014). UHI could be the result of obvious reasons, such as
macro/mesoscale climate, urban morphology, population density, geographic location,
anthropogenic changes in biophysical features of the surface area/land use, wind corridor,
population pressures and human lifestyle, as well as the energy cycle. We observed that
the trend in LULCC during the period 1990 to 2004 was quite large. That massive change
in LULCC could be attributed to the rapid development of that area during that period.
This period is considered to be one of intense deforestation and demolition of cropland
for various developmental projects and shifted agricultural land to the evident level of
barren land and built-up areas for housing and industry, characterized by a concomitant
decline in total vegetation cover (VC) (Cai, Du & Xue, 2011; Chen et al., 2017). This rapid
depletion of VC has a wide range of impacts on the reduction of natural cooling effects
because of the shading and evapotranspiration of plants and shrubs (Macarof & Statescu,
2017; Oluseyi, Fanan & Magaji, 2009). To buttress this fact, (Weng, Lu & Schubring, 2004)
the negative linear relationship between NDVI and LST demonstrated that VC acts as
a sink within an UHI because of its cooling effects in an urban area. This change could
eventually obliterate the surface evaporation and transpiration processes that mainly occur
in plants (Faqe Ibrahim, 2017). Previous studies endorse this phenomenon that grasslands
and ornamental plants have less impact on the reduction of LST than vegetation cover,
such as forest/urban treebanks and gardens. (Chen et al., 2014; Fan et al., 2010;Weng & Lo,
2001).

Our results elucidate that land cover has a very dominant impact on LST in the urban
environment. The impact values of green space, developed area and water bodies on their
LST is according to their proportional area (Verburg et al., 2004; Xiong et al., 2012). This
shows that vegetation plays an important role in mitigating or controlling the temperature
in urban areas (Weng, Lu & Schubring, 2004). Through evaporation from the surface of
the water bodies, moisture is added into the surrounding air. Build-up areas have a major
role in generating heat fluxes in urban dynamics. Our results established a positive linear
relationship between the LST and the built-up area (Chen & Zhang, 2017; Zhang & Su,
2016). The natural evaporation from the water body surfaces helps to cool down the
surrounding air, thus decreasing the temperature of that area. Previous research also
reported the impact of water bodies in the suburban areas apart from a significant role in
controlling the LST (Chen & Zhang, 2017; Luo & Li, 2014)

These results established the phenomenon that urban sprawl is the primary factor in
land surface temperature, which produces an abnormal heat flux in urban dynamics. This
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exchange of radiation/heat is considered a significant factor for the resulting UHI that
contributes significantly to climate change in city canyons (Fig. 12). Therefore, LULCC
does have an intense effect on the surface radiant temperature of a location, and it also
seconds the phenomenon that anthropogenic LULCC is a main reason leading to an
increase in LST in the urban micro-atmosphere. (Jiang & Tian, 2010)

Impact and mitigation strategies of UHIs in urban dynamics
An urban heat island (UHI) diurnally varies with time of day, typically beingmost extensive
in themorning. It also varies across different seasons. It depends on the synoptic conditions.
The influential factors on the UHI are albedo, e.g., the shortwave solar radiation falls on
the darker surfaces, deeper canyons and reflects back or is absorbed in a specific amount
into various materials/surfaces (Grover & Singh, 2015; Saputra & Lee, 2019). Another
contributor to UHIs is latent heat; cities loaded with large amounts of impervious surfaces,
concrete, asphalt, steel and other hard-dark construction materials that do not allow
moisture seepage into the soil for later evaporation which tend to cool the surface rather
than storm sources (Deng et al., 2018).

Urban geometry plays an important role in trapping radiation, and the height and width
of the urban canyon decide how much radiation can ultimately be trapped (Taha, Sailor
& Akbari, 1992; Yue et al., 2019). Therefore, the impacts of thermal mass and radiation
trapping on UHIs can be better catered by an effective ‘‘albedo modification strategy’’,
such as replacing low albedo material with high albedo material, which can be very effective
in lowering the temperature of the absorbed surface and its surroundings (Taha, Sailor &
Akbari, 1992; Yue et al., 2019). Moreover, a small modification of the engineering structure
could also be helpful. The increasing population of Beijing requires more construction for
housing, hospitals, schools and industries (Buckley & Simet, 2016). In the case of structural
development, we should use material that not only reduces the impacts of UHIs but also
shifts to CIs (cool islands). We contrived after analyzing the seasonal breeze/wind direction
on the city master plans that building structure could be effective in cooling the air and
providing protection from dust storm.

The second suggestion is the evaporative cooling in the urban canyons, which can
be enhanced by effectively implementing the ‘‘green city project’’, i.e., improve more
green spaces by planting shade trees, shrubs and grasses in open places. However, this
urban vegetation strategy mainly focuses on vertical vegetation on walls, roof gardening,
surrounding green belts, vegetation on road banks and streets, ultimately enhancing
evaporative cooling (Li et al., 2017; Tali et al., 2012; Zhang et al., 2017). Although the
proportion of this green city project is very small compared to the infrastructure and
population pressure, it can be a step forward, as many studies have confirmed that green
infrastructure can mitigate the UHI effect up to 2−8 ◦C by enhancing the cooler urban
breeze in very hot summers (Akbari et al., 1988; Lima Alves & Lopes, 2017; Taha, Sailor &
Akbari, 1992).

Anthropogenic heating is a key influential factor that contributes to the increase in
greenhouse gases, air pollution, urban heat fluxes, etc, which collaboratively enhanced the
effect of the UHI for the last ten years. Anthropogenic heating is waste heat emission from

Amir Siddique et al. (2020), PeerJ, DOI 10.7717/peerj.9115 19/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.9115


transportation, residential and commercial buildings, industrial operations and urban
development. The third strategy might be to improve open places in the city, e.g., the
concept of open cinema/theatre, parks, open markets, might be a more effective strategy
to conserve energy as well as mitigate the greenhouse gases by the use of indoor facilities
such as air conditioners, fridges and other machinery, which might be less necessary to
run this system (McCarthy et al., 2001). Anthropogenic heating is a key influential factor
that contributes to the increase in greenhouse gases, air pollution, and urban heat fluxes,
which collectively enhance the effect of urban heat islands (Lima Alves & Lopes, 2017;
Weng, Lu & Schubring, 2004). This is the waste heat emission of transportation, residential
and commercial buildings, industrial operations and urban development. This strategy
enhances the collective wisdom and sense of responsibility to maintain an eco-friendly
society along with all discussed mitigation options.

Finally, an urban heat mitigation strategy should be unique in its kind by which we can
achieve maximum social, economic and environmental benefits. Although the government
is playing and will continue to play a vital role in the mitigation of UHI effects, it is above
that. To better face and manage the extremes of this major problem help of ‘‘integrated
UHI mitigation efforts’’ from all stakeholders, including society, industry and government
is needed. Everyone must act as a responsible member for the development of a healthy
eco-friendly society. Moreover, capacity building in society needs to be enhanced by the
collective efforts of the government, education sector and media.

CONCLUSIONS
The present study assessed the LULCC effect on LST in the urban dynamics of Chaoyang
using RS data in conjunction with observations of developmental revolution and various
socioeconomic parameters. This study established the connectivity between the LST
and various land covers. The contribution of landscape composition and its impacts on
temperature were assessed by the determination of coefficient analysis and forecasting
its immediate impact by using the Markov model. An increase in every 5% built-up area
caused a 1% increase in temperature, and an increment of 10% in vegetation cover was also
negatively correlated. This study concluded that the increase in land surface temperature
(LST) was 5.5 ◦C, which was approximately 10.35% of the overall rise throughout the
study period (2018–2025), showing its remarkable contribution to heat intensity in urban
dynamics. The area of focus must be on urban design and infrastructure planning and
development. The enhancement of water bodies such as lakes, canals, waterfall, and
fountains, and considerable increases in green spaces, such as artificial parks, gardens and
linear plantations, especially woody plants, may have certain positive impacts onmitigation
activity. Alteration processes should be limited, and environmental education should be
reawakened to accomplish the desired ecological development concerning environmental
resource planning and management. The present study provides useful implications for
urban landscape planning that require rational use of landscape connectivity between green
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and impervious surfaces and their impact on LST. Future urban research could focus on
the issue of public health and infrastructure burden associated with rapid urbanization.
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