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Abstract: The cellular metabolism of host tRNAs and life cycle of HIV-1 cross paths at several key
virus–host interfaces. Emerging data suggest a multi-faceted interplay between host tRNAs and
HIV-1 that plays essential roles, both structural and regulatory, in viral genome replication, genome
packaging, and virion biogenesis. HIV-1 not only hijacks host tRNAs and transforms them into
obligatory reverse transcription primers but further commandeers tRNAs to regulate the localization
of its major structural protein, Gag, via a specific interface. This review highlights recent advances
in understanding tRNA–HIV-1 interactions, primarily from a structural perspective, which start to
elucidate their underlying molecular mechanisms, intrinsic specificities, and biological significances.
Such understanding may provide new avenues toward developing HIV/AIDS treatments and
therapeutics including small molecules and RNA biologics that target these host–virus interfaces.
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1. Introduction

Viruses are opportunistic parasitic pathogens that mutate and evolve at accelerated
paces compared to their hosts. Their reiterative infection, replication, and transit cycles
expose viral elements to the crowded, confined intracellular environment of the host, creat-
ing ample opportunities for viruses to evolve new interfaces with various host components
and to usurp host resources for viral purposes. One of the most abundant (micromolar)
and essential components of the host housekeeping machinery is the dynamic pool of
transfer RNAs (tRNAs) that continually ferry amino acids to the ribosomes to sustain
protein synthesis, cellular growth, and renewal. Host tRNAs are among the most ancient
and fundamental building blocks of free-living, organic life forms. As a primary conduit
between the RNA world and the protein world, tRNAs act as physical bridges and adap-
tors to enable RNA-directed, RNA-catalyzed protein synthesis [1–6]. Such pivotal roles
of tRNAs in cellular mechanism have subjected them to constant natural selection and
evolution. This is evidenced by the high percentage of tRNA nucleotides that receive
post-transcriptional modifications compared to mRNAs and even rRNAs, as well as the
acquisition, fixation, and propagation of complex protein enzymes dedicated to fine-tuning
tRNA structure and functions [7–15]. Compensating for the lack of extraordinary lengths of
evolution time experienced by tRNAs, HIV-1 and other retroviruses undergo dramatically
accelerated evolution, owing to their rapid replication cycles and high mutation rates of
their reverse transcriptases.

The canonical adaptor function of tRNAs dictates that they remain largely free and
available to shuttle between aminoacyl-tRNA synthetases (aaRSes), which install the
amino acids, and the ribosomes that consume the amino acid cargos and eject depleted
tRNAs [12–14,16,17]. In order to transit the ribosome from the A to P to E sites, tRNAs
cannot stay shielded by cellular proteins at all times. As a result, host tRNAs largely
exist as abundant, solvent-exposed molecules that feature a well-defined “L”-shaped
overall architecture, characteristic molecular and electrostatic surfaces and crevices, and
are critically important to sustain the host metabolism. These properties together make
tRNAs attractive and vulnerable targets to be manipulated and exploited by viruses to
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serve their own purposes. In reciprocity, tRNAs and their associated protein enzymes
also impact HIV-1 in profound ways [18]. As a result of this constant interchange, viruses
have evolved strategies to commandeer and exploit host tRNAs for both structural and
regulatory functions. In this review, I discuss recent progress in understanding these viral
strategies at the expanding host–virus interfaces between tRNAs and HIV-1, primarily
from a structural perspective.

2. The Interwoven Paths of Host tRNAs and HIV-1

To understand how host tRNAs and HIV-1 cross paths, we need to first understand
their individual trajectories in the cell (Figure 1). Human tRNAs start their life cycle
as pre-tRNA transcripts produced by RNA polymerase (RNAP) III recruited to internal
promoters by transcription factors TFIIIB and TFIIIC [19,20]. Then pre-tRNAs are se-
quentially processed by two endonucleases: first the RNase P ribozyme to remove the
5′-leader and then ELAC2 (RNase Z) to trim its 3′-trailer, which is dependent on the
La protein associated with its 3′ terminal oligo-uridine region [21–25]. Then, the CCA-
adding enzyme TRNT1 appends a universal 3′-CCA trinucleotide, producing mature
tRNAs [26–28]. Some intron-containing pre-tRNAs are also spliced by the TSEN/CLP1
complex [24,29]. Nearly all tRNAs receive extensive modifications such as pseudouridyla-
tion by pseudouridine synthases (PUS) [7,30], before they are licensed for nuclear export by
Exportin-t/RanGTP [31,32]. Once in the cytoplasm, tRNAs are aminoacylated by their re-
spective aaRSes and relayed to eEF1A, which brings the aminoacyl-tRNAs to the ribosomes
for translation [12,14,33]. Although tRNA decay pathways are increasingly understood in
lower eukaryotes such as Saccharomyces cerevisiae, much less is known about tRNA decay
in human cells [33,34]. One tRNA-decay pathway involves the stress-activated tRNA
ribonuclease angiogenin (ANG) and possibly additional nucleases. ANG cuts tRNAs in
the anticodon loop and produces tRNA fragments termed tiRNAs (tRNA-derived stress-
induced RNAs, or tRNA halves). Progressive cleavage, or additional nucleases create
even shorter fragments called tRFs (tRNA-derived fragments; about a quarter-size of the
full tRNA). tiRNAs and tRFs are suggested to play regulatory roles such as translation
repression [35–37].

Upon membrane fusion of infectious HIV-1 virions with host cells, cone-shaped vi-
ral capsids are released into the cytoplasm and are actively transported to the nucleus via
the host microtubule and actin cytoskeleton [39–42,56]. At the same time, reverse tran-
scription of the single-stranded RNA (ssRNA) genome to double-stranded DNA (dsDNA)
occurs, largely in newly infected cells [60]. Then, capsids enter the nucleus via the nu-
clear pore complex (NPC) and uncoat to release the reverse-transcribed dsDNA poised for
genome integration [43,44]. HIV-1 proviruses can stay latent and replication-competent for
10–15 years prior to reactivation [61]. For activation, HIV-1 proviral DNA is transcribed by
host RNAP II, which initially produces mostly short 5′ truncated transcripts and then pauses
until viral Tat protein is produced. The accumulation of Tat allows it to bind the 5′ TAR
(trans-activation response) RNA and to recruit host positive transcription elongation factor b
(P-TEFb) as part of the super elongation complex [45,46]. The action of this ribonucleoprotein
complex releases paused RNAP II near the promoter and dramatically stimulates transcrip-
tion elongation to generate full-length (9.2 kilobase, or kb) genomic RNAs. To export this
intron-containing, unspliced or partially spliced RNA to the cytoplasm, another oligomeric
ribonucleoprotein complex assembles between HIV-1 Rev protein and a cis-acting RRE (Rev
response element) RNA element in the viral genome [47–51].
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Figure 1. A simplified overview of the interplay between tRNA metabolism and HIV-1. tRNA metabolism (green arrows)
starts with transcription by the RNAP III/TFIIIB complex [19,20] and proceeds to processing by RNase P and ELAC2 (RNase
Z) [21–25], CCA addition by TRNT1 [26–28], optional intron splicing by TSEN/CLP1 [24,29], various post-transcriptional
modifications such as pseudouridylation by pseudouridine synthases (PUS) [7,30], followed by nuclear export by the
Exportin-t/RanGTP complex [31,32]. In the cytoplasm, tRNAs are aminoacylated by aaRSes [12,14], transported by eEF1A
to the ribosomes for translation [38], and undergo cleavage and decay by various RNases to produce tRNA fragments
for further gene regulation [33–37]. The three green tRNAs inside the ribosomes denote the E-, P-, and A-site tRNAs
transiting the ribosomes. HIV-1 virions (following the blue arrows) fuse with the plasma membrane of infected cells and
release their conical capsids [39], which then travel to the nucleus while undergoing reverse transcription [40–42], engage
the nuclear pore complex, pass through, and uncoat to release the nascent double-stranded DNA (dsDNA) genome for
integration [43,44]. Proviral DNA transcription initiates with RNAP II and switches to productive elongation with the
stimulation by TAR RNA, HIV-1 Tat protein, and the super elongation complex [45,46]. Then, HIV-1 RNA (in blue) is spliced
or exported to the cytoplasm by the Rev/Crm1/RanGTP complex [47–51], and it can assume a monomeric form to template
translation or a dimeric form to be packaged into new virions [52,53]. Finally, viral particles assemble and bud from the
infected cell and mature into infectious virions [54–56]. This review highlights three interfaces and complexes formed
between host tRNAs and HIV-1 (highlighted in red): namely, the reverse transcription complex [57], tRNA–packaging
complex [58], and tRNA–Gag complex [59].

Once in the cytoplasm, the genomic RNA is suggested to assume at least two structural
forms which lead to two distinct fates, as determined by the transcription start site (TSS)
heterogeneity on its 5′ end [52,53]. Viral RNA genomes with shorter 5′ ends (e.g., “capped
1G”, meaning harboring a single G on the 5′ end that is further capped) juxtapose and
coaxially stack the termini of the 5′ TAR hairpin with its ensuing polyA hairpin, which
in turn exposes the DIS (dimerization initiation sequence) palindrome to form dimers
destined for packaging into new virions [53]. By contrast, viral RNA genomes with slightly
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longer 5′ ends (e.g., capped 2G or 3G, meaning transcripts that harbor 2–3 Gs and the
5′ cap) are unable to stack with and presumably stabilize the polyA hairpin, causing the
metastable hairpin to collapse. This leads to sequestration of the DIS sequence in a stem,
and thus, the HIV-1 RNA assumes a monomeric form fated to serve as efficient translation
templates. Then, viral translation produces HIV-1 Gag polyprotein and about a dozen other
viral proteins. Gag is the conductor that orchestrates multiple steps and threads of viral
particle assembly. It is responsible for specifying assembly sites on the plasma membrane,
the recruitment and packaging of dimeric genomic RNA, tRNA primers, and proteins,
the incorporation of envelope glycoprotein (Env), etc. [54,55]. Indeed, Gag expression
alone is sufficient to drive the assembly of virus-like particles that are morphologically
indistinguishable from functional immature virions [54,62]. Upon budding, HIV protease
(PR) cleaves the radially arranged Gag polyproteins in virions to release its individual
domains (matrix or MA, capsid or CA, nucleocapsid or NC, and p6). These mature proteins
act coordinately to assemble fullerene-like conical capsids around the NC-bound dimeric
genomic RNA and ultimately confer infectivity to the now mature virions [56].

As can be seen above, host tRNAs and HIV-1 elements share the same space and time
in all three locations including the cytoplasm, nucleus, and virions during essentially all
stages of the HIV-1 life cycle. This provides ample opportunities for potential encounters
and the evolution of new interfaces. While most of our current knowledge on tRNA–HIV-1
interactions is limited to the cytoplasm, it is conceptually conceivable that tRNAs and
pre-tRNAs may engage in presently unidentified, functionally important interplay with
HIV-1 components in the nucleus and in virions. In the following three sections, the
molecular structures and biological functions of three significant tRNA–HIV-1 complexes
will be discussed, namely the reverse transcription initiation complex (RTIC) responsible
for genome replication [57], the tRNA–packaging complex that captures and encapsu-
lates tRNA primers for reverse transcription [58,63,64], and the tRNA–Gag complex that
regulates Gag membrane localization and virus assembly [59,63].

3. Exploitation of tRNA as Reverse Transcription Primers

The most important role that host tRNAs play for HIV-1 and most other retroviruses
is to prime the reverse transcription of the RNA genome. This obviates a need for HIV-1 to
evolve a separate viral RNA primer besides its ssRNA genome or to commandeer a host
primase to lay down the RNA primer. Retroviruses exploit the same tRNA terminal 3′-OH
group used by the host for aminoacylation and peptidyl transfer as the recipient of deoxyri-
bose nucleotides as catalyzed by reverse transcriptase (RT). HIV-1 RT is a heterodimeric
enzyme composed of a longer p66 subunit and shorter p51 subunit derived from the prote-
olysis of p66 by HIV-1 protease (PR). While p51 plays supporting structural roles, p66 hosts
both DNA polymerase and RNase H activities on its two subdomains, which coordinately
create the DNA strand and destroy the RNA strand, converting the ssRNA genome to a
linear dsDNA intermediate ready for nuclear import and host genome integration by HIV
integrase (IN). Interestingly, tRNALys3 is further found to drive a conformational change in
the p66/p66 homodimer to facilitate PR cleavage and maturation of the functional p66/p51
heterodimer [64,65]. Consistent with this role of tRNALys3 in RT maturation, knocking
down Lysyl-tRNA synthetase (LysRS) in cells led to a pronounced reduction in viral parti-
cle production [65]. Given recent findings that tRNALys3 also controls virus assembly by
regulating Gag membrane localization [59,63,66], the observed replication defect was likely
attributable to several tRNA functionalities.

The assembly of functional reverse transcription initiation complexes (RTICs) is a multi-
step process that only completes after virion maturation and requires the molecular chaperone
activity of nucleocapsid (NC) and is assisted by RNA Helicase A (RHA) [67–72]. A recent
cryo-EM structure of this dynamic ternary complex consisting of RT, the HIV-1 U5-PBS
(primer-binding site) region, and tRNALys3 reveals a dramatic structural rearrangement of
the tRNALys3 primer (Figure 2) [57]. The cloverleaf tRNA secondary structure completely
refolds into a single extended hairpin, which is characterized by the transfer and annealing
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of its 5′-terminal strand with the 5′ strand of the T stem. This latter region of the tRNA
is also known as the anti-PAS (primer activation signal [73]), as it is complementary to
the PAS sequence in the U5-PBS leader region (Figure 2A) [74]. The reshuffle of tRNA
structure displaces the 18-nt-long, 3′-terminal anti-PBS element of the tRNA, making it
available to base pair with the complementary PBS element on the viral RNA (Figure 2A).
Furthermore, the D-stem loop (DSL) and anticodon-stem loop (ASL) of the tRNA merge
to form a distal single hairpin. This remarkable structural rearrangement is potentially
stabilized by a multi-segment, elongated coaxial stack, joining the PBS–anti-PBS stem
and tRNA 5′-strand–anti-PAS stem, and it is capped by the merged DSL-ASL stem loop
(Figure 2B,C). This tripartite co-coaxial stack, at an impressive 45-base pair (bp) combined
length, is reminiscent of the 32-bp-long coaxial “central spine” formed by the U-shaped
T-box riboswitches clamping their tRNA substrates [75–79]. As is in the case of the T-boxes,
this elongated coaxial stack may provide requisite stabilizing energy to help offset the
substantial cost of disrupting both individually stable structures of the U5-PBS template and
tRNA primer. Interestingly, this RTIC structure is clearly dynamic and will likely further
rearrange into downstream complexes involving another tRNA refolding event, which will
be needed to enable the PAS–anti-PAS pairing. Thus, the complex choreography of the
tRNA primer required for forming several conformationally and topologically distinct RT
complexes may have imposed the specificity for distinct tRNA primers used by different
retroviruses. Notably, tRNALys1 and tRNALys2, isoacceptors of tRNALys3, are similarly
packaged into HIV-1 as tRNALys3 due to comparable interactions with LysRS, but they are
not used as RT primers, which is presumably due to 14–16 nts differences in the sequences,
including one in the anticodon [58].

Figure 2. Formation and structure of the reverse transcription initiation complex (RTIC). (A) Secondary structure scheme of
tRNALys3 (left; in green), HIV-1 U5-PBS element (middle; in blue), and resulting complex bound by RT. ASL: anticodon-stem
loop; DSL: D-stem loop; TSL: T-stem loop; AAS: amino-acid accepting stem. PBS: primer-binding site; PAS: primer activation
signal. In addition to the merged ASL–DSL conformation, additional conformations could be sampled, such as the one
below where the ASL and DSL remain as separate hairpins. The dotted bidirectional arrow denotes this potential conforma-
tional change. Colored arrows indicate RT movements in subsequent steps of primer extension. RHA: RNA Helicase A.
(B) Tertiary structure of tRNALys3. PDB: 1FIR. (C) Cryo-EM structure of the RTIC, colored as in (A). EMDB: EMD-7032 [57].



Viruses 2021, 13, 1819 6 of 14

4. Hijacking and Packaging of tRNA Primers into HIV Virions

HIV-1, as other retroviruses, not only packages two copies of its genomic RNA and its
required tRNA primers but also a number of other host noncoding RNAs [68]. Interestingly,
most of these host ncRNAs are nascent RNAP III transcripts exported into the cytoplasm,
which are minimally processed and unbound by their protein partners such as La. A
comprehensive RNA “packageome” analysis [80], together with other targeted searches
revealed that the 7SL RNA, a component of the signal recognition particle (SRP), is the
most abundant host RNA packaged into HIV-1 virions. The packaging of 7SL is distinct
from that of the viral genome, and it is mediated by direct interactions with Gag both in the
cytosol and on the plasma membrane [81]. The packaging of 7SL RNA was suggested to
facilitate the co-packaging of antiviral cytidine deaminase APOBEC3G as a co-factor [82].
In general, the role of most packaged host ncRNAs in the HIV life cycle remains unclear.

By contrast, the packaging of specific tRNA primers by HIV-1 is mediated by a
proposed five-membered packaging complex consisting of tRNALys3, LysRS, Gag, Gag-Pol
precursor polyprotein, and viral genomic RNA (Figure 3) [58,83]. tRNALys3, the cargo, is
recruited into virions via its direct interaction with its cognate synthetase LysRS, whose
own encapsulation is turn driven by both Gag and Gag-Pol. A second direct interaction
between the C-terminal domain of CA (helix 4) and the motif 1 of LysRS is necessary to
recruit LysRS (Figure 3), while a third direct contact is suggested between tRNALys3 and
the thumb structure of the RT domain of Gag-Pol [84–87]. This putative packaging complex
is likely further stabilized by additional contacts between Gag and Gag-Pol as well as
between LysRS and genomic RNA. The latter interaction involves a tRNA-like element
(TLE) of the PBS region, which mimics the ASL of tRNA. Thus, this LysRS–TLE interaction
competitively weakens or dissociates the recruited LysRS-tRNALys3 complex in order to
hand over the tRNA primer from LysRS to the PBS for annealing [88–90]. Thus, HIV-1 goes
to great lengths to recruit, encapsulate, and position tRNALys3 primer onto the genomic
RNA, which is poised to initiate reverse transcription.

Figure 3. Cont.
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Figure 3. Hypothetical structural model of a tRNA-packaging complex. (A) Cartoon scheme of a
proposed tRNA-packaging complex consisting of tRNALys, LysRS (Lysyl-tRNA synthetase), Gag,
HIV genomic RNA, and Gag-Pol. ABD: anticodon-binding domain; CD: catalytic domain. NTD:
N-terminal domain; CTD: C-terminal domain. (B) A hypothetical structural model of the tRNA-
packaging complex, which was modeled based on known interactions between Gag and LysRS (in
red) and between tRNA and LysRS. Gag-Pol and genomic RNAs are not shown as their locations and
contacts are less clear.

5. Viral Appropriation of Host tRNAs to Regulate Gag Localization

Interestingly, tRNAs are not only hijacked and removed to serve as essential structural
components of functional virions, they are also exploited in the cytosol as regulatory molecules
to control Gag localization and the timing of virion biogenesis (Figure 4) [59,65,91]. This second
tRNA parasitism is mediated by a specific interaction between the N-terminal MA domain
of Gag and a set of host tRNAs, as revealed by a co-crystal structure of the MA-tRNALys3

complex and in-cell crosslinking analyses [59].
MA is responsible for driving Gag localization to the plasma membrane and achieves

this through the combined action of two surface features of its globular head—a 14-carbon,
aliphatic myristoyl post-translational modification on its N-terminus and an adjacent
highly basic region (HBR) [91–99]. The myristoyl group can be either exposed on the
surface or be tucked inside a hydrophobic crevice on MA [100]. As the intracellular
local concentrations of Gag rise, Gag multimerizes through its CA and NC domains,
and the multimerization drives the exposure of the myristoyl group and facilitates its
membrane insertion [100–102]. While this myristoyl switch is necessary to control Gag
membrane binding, interactions between the HBR with plasma membrane are also essential.
A molecular dynamics simulation study indicated that the HBR interactions alone are
sufficient to keep MA anchored to the plasma membrane [103]. HBR–plasma membrane
interactions involve both nonspecific electrostatic interactions and specific contacts between
the HBR residues and phosphatidylinositol-4,5-bisphosphate (PIP2), which is a plasma
membrane resident phospholipid [94,104,105]. Remarkably, the globular head of MA has
evolved a specific structural determinant, consisting primarily of three basic (R22, K27, K32)
and one aromatic (W36) residues, that acts to recognize the “elbow” structure of host tRNAs
(Figure 4) [59]. The tRNA binding site overlaps significantly with the PIP2-binding site on
MA [91], which readily explains the observed competition between tRNAs and membranes
for MA binding [68,91,93,106]. This novel HIV-1–host interface produces a Kd of ≈270 nM,
and considering the micromolar concentrations of tRNAs, it is expected to drive substantial
tRNA occupancy on Gag. Indeed, the tRNA–MA interaction keeps substantial quantities of
Gag molecules free in the cytosol and delays their association with the plasma membrane.
The disruption of tRNA interactions with MA led to premature binding of Gag to the
plasma membrane and significantly reduced HIV-1 replication [59]. The need for HIV-1 to
delay Gag localization by exploiting host tRNAs may be to synchronize particle assembly
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with other necessary threads, such as more complete viral protein translation, packaging of
viral genome and tRNA primers, or the removal of restriction factors such as APOBEC3G,
etc. [107].

Figure 4. Structural basis of host tRNA regulation of HIV-1 Gag localization and replication.
(A) Co-crystal structure of an HIV-1 MA (blue)–tRNALys3 (green) complex. PDB: 7MRL [59]. (B) A
highly specific interface between MA and the elbow region of tRNA. Four key residues are high-
lighted in red. (C) Cartoon illustration of the MA–tRNA elbow interface. (D) Host tRNA binding
to the N-terminal globular head of MA occludes the highly basic region (HBR) and delays Gag
localization to the plasma membrane.

6. Role of tRNAs and Associated Proteins in Host Defense against HIV-1

The sections above largely described how HIV-1 seizes and manipulates host tRNAs
for viral gains. In reciprocity, tRNAs and associated proteins also play prominent roles in
mounting countermeasures against HIV-1, primarily at the levels of translation control.
HIV-1, similar to other lentiviruses, exhibit a significant bias for the usage of A-rich
codons, especially in the late genes, whose translation therefore depends on certain rare
tRNAs [104,105]. This A/T-rich bias is thought to help maintain genomic RNA structural
flexibility. Manipulation of the host tRNA pool is a recurring viral strategy to optimize the
translation of late genes, and it is also a vulnerability that can be exploited by the host to
restrict viral translation. The interferon-inducible Schlafen (SLFN) family proteins, some of
which bind tRNAs, are emerging new players in tRNA-mediated antiviral defense [106,108].
SLFN11 associates with host tRNAs and counters the changes in tRNA pools elicited by
HIV-1 [109]. SLFN8 and SLFN13 cleave tRNAs in the 3′ acceptor stem to reduce global
tRNA pools, thereby restricting HIV-1 translation [110]. By contrast, SLFN2 binds to
and protect tRNAs from angiogenin-mediated cleavage, thus reducing product tiRNA-
mediated translation inhibition in T cells [36]. Similar to SLFN11, human Hili and mouse
Mili proteins sequester rare tRNAs preferred by HIV-1, thus exacerbating the codon non-
optimality of viral genes to suppress HIV-1 translation [111].
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A large number of aaRSes, including LysRS, have evolved non-canonical functions
in a variety of cellular processes beyond translation, which may include antiviral func-
tions [16,18]. GCN2, the founding member of integrated stress response, harbors a Histidyl-
tRNA synthetase (HisRS)-like domain that bind tRNAs [112,113]. Interestingly, GCN2 is
suggested to be activated by HIV-1 and other viral RNAs, and it restricts both viral transla-
tion by eIF2α phosphorylation and genome integration by phosphorylating IN [114,115].
Given the recent expansion of known GCN2 targets in cells [116], additional HIV-1-related
genes may cross paths with GCN2. Running in parallel to GCN2 is PKR, an interferon-
induced antiviral eIF2α kinase, which restricts and is antagonized by HIV-1 through
multiple mechanisms [117–119].

7. Summary, Conclusions and Outlook

Retroviruses such as HIV-1 encapsulate RNA genomes, which encode RNA-binding
proteins that in turn associate with, organize, and prepare the genomes for packaging
into new virions. The nuclear and cytosolic presence of both viral RNAs and virally
encoded RNA-binding proteins allow them to intermingle with host RNAs and RNA-
binding proteins, which prominently feature host tRNAs and tRNA-associated protein
machineries that support translation or regulate cellular metabolism. Through evolution,
new virus–host interfaces have gradually emerged between viral RNAs and host proteins
(e.g., HIV-1 TAR and P-TEFb [45], TAR and PKR [120,121], PBS and RHA [67]), viral
proteins and host RNAs (e.g., Gag matrix and tRNA [59,63]), viral RNAs and host RNAs
(e.g., PBS and tRNA primer [57,69]), and viral proteins and host proteins (e.g., Gag and
LysRS [63,87,88]). It is interesting that HIV-1 has developed several key dependencies on
free host tRNAs, in addition to usurping the translation machineries through which tRNAs
traverse. In addition, the host and HIV-1 diverge substantially in their structural, metabolic,
and regulatory characteristics and needs, such as codon preferences and mRNA structures.
These distinctions create opportunities for viruses to suppress the host metabolism and
divert limited host resources toward producing more viruses, and for hosts to selectively
restrict the viruses while sparing their own metabolism. This is exemplified by the fight
over tRNA pools between HIV-1 and the host Schlafen proteins. Therefore, newly evolved
virus–host interfaces, especially those between RNAs and proteins, provide a powerful new
arsenal that can be leveraged by both viruses and hosts to serve their distinct objectives.

While significant progress has been made in the past few years to visualize several key
HIV-1–tRNA interfaces and to understand their molecular specificities, much remains incom-
pletely understood and warrants further investigation. For the reverse transcription complex,
additional higher-resolution structures that represent downstream events are expected to
bring crucial insights into the dynamic conformational changes in both the tRNA primers
and the PBS. For HIV-1 MA–tRNA interactions, the tRNA selectivity by MA is dependent
on the sequence, structure, and potentially also flexibilities of the tRNA D-loop [59]. A full
accounting of the precise tRNA-binding preferences of MA and how MA recognizes several
in vitro selected RNA aptamers still awaits further examination [68,122,123]. In addition,
mature MA is presumably released into the cytoplasm upon new infections. It is unknown
if these MA molecules would associate with host tRNAs and impact translation or the
tRNA pool. For the large tRNA-packaging complex, no structure is yet available. Recent
technical advances in cryo-electron tomography (cryo-ET) provide an exciting new avenue
to visualize such large molecular assemblies in situ [124]. In addition to these known
tRNA–HIV-1 interfaces, others likely exist and remain to be discovered. For instance,
potential interactions in the nucleus involving pre-tRNAs and those potentially occurring
on various cell membranes have not been extensively explored. Gag from several retro-
viruses such as HIV-1 and Rous sarcoma virus (RSV) have been suggested to enter the
nucleus [125,126]. A recent report suggested that nuclear HIV-1 Gag colocalizes with and
may form complexes with unspliced genomic RNA and HIV-1 Rev, with implications in
genomic RNA export and packaging [126]. Given the abundance and concentration of
pre-tRNAs and tRNAs in the nucleus, Gag–tRNA interactions, especially those through the
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tRNA elbow [59], could play additional structural or regulatory roles. In addition, since
LysRS is also present in the nucleus [122,123,127], some of the contacts that make up the
tRNA-packaging complex (Figure 3) may also occur in the nucleus. It is also unclear how
HIV-1 exactly manipulates host tRNA pools to optimize late-gene translation and exploits
the dynamic multi-synthetase complexes (MSC) for LysRS release and potentially other
tRNA-related functions [128]. While an effective HIV-1 vaccine is still well beyond the
horizon, a fundamental understanding of HIV-1–host interactions continue to provide key
avenues toward developing new treatments and therapeutics in our tug of war with this
rapidly mutating pathogen.
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